Publications


For latest updates on Thangadurai Group Research: Google Scholar


2024

  • Ma, K., Chen, B., Li, C., Thangadurai, V.  Improvement of Li-ion conductivity and air stability of Ta-doped Li7La3Zr2O12 electrolyte via Ga co-doping and its application in Li-S battery. Journal of Materials Chemistry A. (2024) https://doi.org/10.1039/d3ta06229e

2023

  • Naseri, M., Amirian, S., Faraji, M., Abdur Rashid, M., Lourenço, M. P., Thangadurai, V.,  Salahub, D. Perovskitenes: Two-dimensional perovskite-type monolayer materials predicted by first-principles calculations. Physical Chemistry Chemical Physics. (2023) https://doi.org/10.1039/d3cp04435a
  • Yan, S., Yim, C.-H., Zhou, J., Wang, J., Abouali, S., Baranova, E. A., Weck, A., Thangadurai, V., Merati, A.,  Abu-Lebdeh, Y. (2023). Elucidating the Origins of Rapid Capacity Fade in Hybrid Garnet-Based Solid-State Lithium Metal Batteries. The Journal of Physical Chemistry C. (2023) https://doi.org/10.1021/acs.jpcc.3c05419
  • Gopalakrishnan, A., Surendran, V., Thangadurai, V.,  Tutolo, B. Pseudocapacitive materials for 3D printed supercapacitors. Pseudocapacitors, 237–256. (2023) https://doi.org/10.1007/978-3-031-45430-1_13 
  • Iyapazham Vaigunda Suba, P., Gopalakrishnan, A., Radović, J. R., Tutolo, B. M., Larter, S., Karan, K., Thangadurai, V. Electrochemical ocean alkalinity enhancement using a calcium ion battery. International Journal of Greenhouse Gas Control130, 104012.2023 https://doi.org/10.1016/j.ijggc.2023.104012. 2023
  • Nguyen, O. H., Iyapazham Vaigunda Suba, P., Shoaib, M., Thangadurai, V.  Investigating the Electro-Kinetics and Long-Term Solubility of Vanadium Electrolyte in the Presence of Inorganic Additives. Journal of The Electrochemical Society.(2023) https://doi.org/10.1149/1945-7111/ad0a75
  • Al-Attas, Tareq,M.A. Khan, T. J. Goncalves, N. G. Yasri, S. Roy, A. S. Zeraati, P. Kumar, K. A. Miller, P. M. Ajayan, I. D. Gates, J Hu, V.Thangadurai, S. Siahrostami, M. G. Kibria. “Bioinspired multimetal electrocatalyst for selective methane oxidation.” Chemical Engineering Journal, vol. 474, 2023, p. 145827, https://doi.org/10.1016/j.cej.2023.145827.
  • A.Ndubuisi, V.Thangadurai Oxygen Reduction Reaction Mechanism on PrSrCo2–xFexO5+d (x = 0, 1, 2) and Sm0.2Ce0.8O1.9 Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied energy materials https://doi.org/10.1021/acsaem.3c01390.s001
  • A. Sivakumaran, A. J. Samson, A. A. Bristi, V. Surendran, S. Butler, S. Reid, and V. Thangadurai,* “High ionic conducting rare-earth silicate electrolytes for sodium metal batteries”, J. Mater. Chem. A,  2023.
  • Zhou, C., Guo, Y., Chen, B., Sarkar, S., & Thangadurai, V.  A medium/low concentration localized electrolyte for safe and fast-charging lithium-ion batteries. Electrochimica Acta, 461, 142628.2023 https://doi.org/10.1016/j.electacta.2023.142628
  • Javed, A., Palafox Gonzalez, P. and Thangadurai, V. ‘A critical review of electrolytes for advanced low- and high-temperature polymer electrolyte membrane fuel cells’, ACS Applied Materials & Interfaces 2023. doi:10.1021/acsami.3c02635.
  • Sikstrom, D.; Javed, A.; Muhammad, S.; Thangadurai, V. Perovskite-type Nd1-xBaxCo0.8Fe0.2O3-δ (0≤ x ≤0.7) cathodes for intermediate temperature solid oxide fuel cells. ECS Trans 2023.https://doi.org/10.1149/11106.2397ecst
  • Mora, J. C.; Singh, K.; Hill, J. M.; Thangadurai, V.; Ponnurangam, S. Surface Basicity Controlled Degradation and Recoverability of Proton Conducting Perovskites, BaZr0.8Ce0.1Y0.1O3−δ and Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3−δ, in the Presence of CO2The Journal of Physical Chemistry C 2023. https://doi.org/10.1021/acs.jpcc.2c08847.
  • Yamada, H.; Ito, T.; Nakamura, T.; Bekarevich, R.; Mitsuishi, K.; Kammampata, S. P.; Thangadurai, V. High Cathode Loading and Low‐temperature Operating Garnet‐based All‐solid‐state Lithium Batteries – Material/Process/Architecture Optimization and Understanding of Cell Failure. Small 2023. DOI:10.1002/smll.202301904.
  • Lourenco, M. P.; Tchagang, A.; Shankar, K.; Thangadurai, V.; Salahub, D. R. Active Learning for Optimum Experimental Design – Insight into Perovskite Oxides. Canadian Journal of Chemistry 2023. https://doi.org/10.1139/cjc-2022-0198.
  • Boteju, T.; Abraham, A. M.; Ponnurangam, S.; Thangadurai, V. Theoretical Study on the Role of Solvents in Lithium Polysulfide Anchoring on Vanadium Disulfide Facets for Lithium−Sulfur Batteries. The Journal of Physical Chemistry C. https://doi.org/10.1021/acs.jpcc.2c08133.
  • Javed, A.; Sikstrom, D.; Thangadurai, V. Investigating the Electrochemical Performance of Nd1-xSrxCo0.8Fe0.2O3-δ (0 ≤ x ≤ 0.85) as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. International Journal of Hydrogen Energy 2023. https://doi.org/10.1016/j.ijhydene.2023.01.360.
  • Sikstrom, D.; Javed, A.; Muhammad, S.; Thangadurai, V. Perovskite-type Nd0.75Ba0.25Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells. Ionics 2023.https://doi.org/10.1007/s11581-023-04901-7.
  • Sivakumaran, A.; Samson, A. J.; Thangadurai, V. Progress in Sodium Silicates for All‐Solid‐State Sodium Batteries—a Review. Energy Technology 2023, 2201323. https://doi.org/10.1002/ente.202201323.
  • Sarkar, S.; Chen, B.; Zhou, C.; Shirazi, S. N.; Langer, F.; Schwenzel, J.; Thangadurai, V. Synergistic Approach toward Developing Highly Compatible Garnet‐Liquid Electrolyte Interphase in Hybrid Solid‐State Lithium‐Metal Batteries. Advanced Energy Materials 2023, 2203897.

2022

 

2021

  • C. Zhou, L. Zheng, T. He, M. A Garakani, S. Abouali, Y. Shen, L. Chen and V. Thangadurai*, “Rational design of a carbonate-glyme hybrid electrolyte for practical anode-free lithium metal batteries,” Energy Storage Materials. 42, 295–306 (2021).
  • R. Paul* and V. Thangadurai, “Understanding transport properties of conducting solids: Meyer-Neldel rule revisited, Ionics, 27, 4917-4925 (2021).
  • A. M. Abraham, S. Ponnurangam, and V. Thangadurai,* “Facet-Engineered Tungsten Disulfide for Promoting Polysulfide Electrocatalysis in Lithium−Sulfur Batteries,” Inorg. Chem. 60 (17), 12883–12892 (2021).
  • M.A. Khan , T. Al-Attas , S. Roy, M.M. Rahman, N. Ghaffour, V. Thangadurai , S. Larter, J. Hu* , P. M. Ajayan*, and Md. Kibria*, “Seawater Electrolysis for Hydrogen Production: A Solution Looking for a Problem?,” Energy Environ. Sci., 14, 4831-4834, (2021) (Perspective).
  • T. Al-Attas, N. Marei, X. Yong, N. Yasri, V. Thangadurai, G. Shimizu,* S. Siahrostami,* and Md. Kibria,* "Ligand Engineered Metal−Organic Frameworks for Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide", ACS Catalysis, 11, 7350-7357 (2021).
  • G. Wang,* S. Mulmi, H. Chen and V. Thangadurai* “Synthesis and characterization of calcium double perovskites for the potential application of semiconducting CO2 sensors,” Ceramic. International, 47(21), 30483-30503 (2021).
  • C. Zhou, A. J. Samson, M. A Garakani and V. Thangadurai*, “Anode-free lithium metal batteries: a case study of compression effects on coin cell performance,” J. Electrochem. Soc. 168, 060532 (4 pages) (2021).
  • P. Kumar, S. Mulmi, D. Laishram, K. Alam, U. Thakur, V. Thangadurai,* and K. Shankar*, “Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxide,” Nanotechnology,  32(48) 485407  (17 pages) (2021).
  • S. V. Venkatesan, A. Nandy, K. Karan, S. R Larter, and V. Thangadurai,*, “Recent advances in unconventional design of electrochemical energy devices,” Electrochemical Energy Reviews, (invited) (in press) (2021).
  • M. Pidburtnyi, B. Zanca, C. Coppex, S. J. Villegas, and V. Thangadurai,* “A Review on perovskite-type LaFeO3 Based Electrodes for Solid Oxide Cells: Current Understanding of Structure-Functional Property Relationship," Chem. Mater., 33 (12), 4249–4268 (2021) (invited).
  • S. Abouali, C.H. Yim, A. Merati, Y. Abu-Lebdeh, and V. Thangadurai,* “Garnet-based solid-state Li batteries - materials design to battery architecture,” ACS Energy Lett.  6 (5), 1920-1941 (2021) (Invited Focus Review).
  • S. V. Venkatesan, K. Karan, S. R. Larter, and V. Thangadurai,* “Correction: Auxiliary electrode mediated membrane-free electrochemical redox cell for energy storage,” Sustainable Energy &  Fuels, 5 (11), 3001-3002 (2021).
  • B. P. Dubey, A. Vinodhkumar, A. Sahoo, V. Thangadurai* and Y. Sharma,* “Microstructural Tuning of Solid Electrolyte Na3Zr2Si2PO12 by Polymer Assisted Solution Synthesis Method and its Effect on Ionic Conductivity, and Dielectric Properties,” ACS Appl. Energy Mater. 4(6), 5475–5485 (2021).

 

2020
 

  • R. Inada,* A. Takeda, Y. Yamazaki, S. Miyake, Y. Sakurai and V. Thangadurai,* “Effect of Post-annealing on the Properties of a Ta-Doped Li7La3Zr2O12 Solid Electrolyte Degraded by Li Dendrite Penetration,” ACS Appl. Energy Mater. 3, 12517–12524 (2020).
  • H. Yamada,* T. Ito, S. P. Kammampata, and V. Thangadurai, “Toward Understanding the Reactivity of Garnet-Type Solid Electrolytes with H2O/CO2 in a Glovebox Using X‑ray Photoelectron Spectroscopy and Electrochemical Methods,” ACS Appl. Mater. Interfaces 12, 36119−36127 (2020).
  • S. Bag, H. Murarka, C. Zhou, D. Jokhakar, V. Pol, and V. Thangadurai,*  “Understanding Na-ion Storage Mechanism in Na3+xV2-xMx(PO4)3 (M = Ni2+, Co2+, Mg2+; x = 0.1 - 0.5) Cathodes,” ACS Appl. Energy Mater. 3, 8475–8486 (2020).
  • Z. Zhang, K. Singh, Y. Tsur, J. Zhou, J. Dynes, and V. Thangadurai,*  “Studies on Effect of Ca-doping on Structure and Electrochemical Properties of Garnet-type Y3-xCaxFe5O12‑δ, J. Solid State Chem. 290, 121530 (11 pages) (2020).
  • A. Nandy, J. R. Radović, B. Novotnik, M. Sharma, S. R. Larter and V. Thangadurai,* “Investigation of crude oil degradation using metal oxide anode-based a microbial fuel cell,” Bioresource Technology Reports 11, 100449 (8 pages) (2020).
  • B. P. Dubey, A. Sahoo, V. Thangadurai, and Y. Sharma*, “Morphological, dielectric and transport properties of garnet-type Li6.25+yAl0.25La3Zr2-yMnyO12 (y = 0, 0.05, 0.1, and 0.2,” Solid State Ionics 351, 115339 (11 pages), (2020).
  • D. A. Levenson, J. Zhang, B. S. Gelfand, S. P. Kammampata, V. Thangadurai, and G. K. H. Shimizu,* “Particle size dependence of proton conduction in a cationic lanthanum phosphonate MOF,” Dalton Trans. 49, 4022-4029 (2020).
  • C. Zhou, S. Bag, B. Lv, and V. Thangadurai*, “Understanding the role of solvents on the morphological structure and Li -ion conductivity of poly(vinylidene fluoride)-based polymer electrolytes,” J. Electrochem. Soc. 167, 070552 (10 pages) (2020).
  • B. Novotnik, A. Nandy, S.V. Venkatesan, J. R. Radović, L.D. L. Fuente, S. Nejadi, R. C. Silva, A. Kouris, V. Thangadurai, S. Bryant, K. Karan, R. Shor, M. Strous, and S. R. Larter*, “Can fossil fuel energy be recovered and used without any CO2 emissions to the atmosphere?,” Reviews in Environmental Science and Bio/Technology 19, 217–240 (2020).
  • U. Farooq, S. A. Pervez, A. J. Samson, S. Palakkathodi Kammampata, P. Ganjeh-Anzabi, M. Trifkovic, V. Thangadurai, and E.P.L. Roberts* “Microstructure evolution and transport properties of garnet-type Li6.5La2.5Ba0.5TaZrO12 electrolyte for all-solid-state Li-ion batteries,” Appl. Surf. Sci., 510, 145399 (4 pages) (2020).
  • C. Wang, K. Fu, S. Palakkathodi Kammampata, D. W. McOwen, L. Zhang, G. T. Hitz, A. Nolan, A. Samson, E. D. Wachsman, Y. Mo, V. Thangadurai,* and L. Hu,* “Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries,” Chem. Rev. 120, 4257−4300 (2020) (Invited).
  • C. Zhou, S. Bag, T. He, B. Lv and V. Thangadurai*, “A 20 oC operating high capacity solid-state Li-S battery with an engineered carbon support cathode structure,” Applied Materials Today 19, 100585 (10 pages) (2020).
  • M. Sharma, A. Nandy, N. Taylor, S. V. Venkatesan, V.O. Kollath, K. Karan, V. Thangadurai, N. Tsesmetzis and L. M. Gieg* “Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site,” Journal of Hazardous Materials, 389, 121845 (10 pages)  (2020).
  • S. Bag, C. Zhou, S. Reid, S. Butler and V. Thangadurai,* “Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte,” J. Power Sources 454, 227954 (10 pages) (2020).
  • S. Mulmi and V. Thangadurai,* “Review-Solid-state electrochemical carbon dioxide sensors: fundamentals, materials and applications,” J. Electrochem. Soc. 167, 037567 (14 pages) (2020) (Editors’ choice).
  • O.A. Abubaker; K. Singh, and V. Thangadurai,* “Investigating the effect of Cu-doping on the electrochemical properties of perovskite-type Ba0.5Sr0.5Fe1-xCuxO3‑δ (0 ≤ x ≤ 0.20) cathodes,” J. Power Sources 451, 227777 (8 pages) (2020).
  • H. Huo, J. Luo, V. Thangadurai, X. Guo,* C. Nan,* and X. Sun*, “Li2CO3: A Critical Issue for Developing Solid Garnet Batteries,” ACS Energy Lett., 5, 252-262 (2020).
  • S. P. Kammampata, H. Yamada, T. Ito, R. Paul and V. Thangadurai,*, “The activation entropy for ionic conduction and critical current density for Li charge transfer in novel garnet-type Li6.5La2.9A0.1Zr1.4Ta0.6O12 (A = Ca, Sr, Ba) solid electrolytes,” J. Mater. Chem. A, 8, 2581–2590 (2020).
  • H.T. Handal, H.A. Mousa, S.M .Yakout, W. Sharmoukh, and V. Thangadurai, “Effect of Mn and Ni-doping on structure, photoluminescence and magnetic properties of perovskite-type BaSn0.99Gd0.01O3,” Journal of Magnetism and Magnetic Materials, 498,165946 (2020).
  • S. V. Venkatesan, K. Karan, S. R. Larter, and V. Thangadurai,* “Auxiliary electrode mediated membrane-free electrochemical redox cell for energy storage,” Sustainable Energy Fuels, 4, 2149-2152 (2020).
  • S. Bag, C. Zhou, P.J. Kim, V.G. Pol, and V Thangadurai,* “LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries,” Energy Storage Mater., 24, 198-207 (2020).


2019
 

  • A. M. Abraham, S. P. Kammampata, S. Ponnurangam, and V. Thangadurai,* “Efficient Synthesis and Characterization of Robust MoS2 and S Cathode for Advanced Li-S Battery: Combined Experimental and Theoretical Studies,” ACS Appl. Mater. Interfaces 11, 35729-35737 (2019).
  • A.  J. Samson, K. Hofstetter, S. Bag, and V Thangadurai,* “A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries,” Energy Environ. Sci., 12, 2957-2975 (2019) (Invited).
  • B. Pal, S. Yang, S. Ramesh, V. Thangadurai, and R Jose,* “Electrolyte selection for supercapacitive devices: A critical review,” Nanoscale Adv., 1, 3807-3835 (2019).
  • S.A. Pervez,* M. Cambaz, V. Thangadurai, and M. Fichtner, "Interface in Solid-State Li Battery: Challenges, Progress and Outlook," Appl. Mater. Interfaces 11, 22029-22050 (2019).
  • P-L. Champagne, D. F. Ester, D. Pollan, V. Williams,* V. Thangadurai,* and C-C. Ling,* “Amphiphilic Cyclodextrin-based Liquid Crystals for Proton Conduction,” J. Am. Chem. Soc., 141, 9217−9224 (2019).
  • K. Hofstetter, A. J. Samson, J. Dai, J. E. Gritton, L. Hu, E. D. Wachsman, and V. Thangadurai,* “Electrochemical stability of garnet-type Li7La2.75Ca0.25Zr1.75Nb0.25O12 with and without atomic layer deposited-Al2O3 under CO2 and humidity,” J. Electrochem. Soc., 166, A1844-A1852 (2019).
  • S. A. Pervez, P. Ganjeh-Anzabi, U. Farooq, M. Trifkovic, E. P. L. Roberts, and V. Thangadurai,* “Fabrication of a Dendrite-Free all Solid-State Li Metal Battery via Polymer Composite/Garnet/Polymer Composite Layered Electrolyte,* Adv. Mater. Interfaces, 6, 1900186 (2019).
  • K. Singh, R. Kannan, V. Thangadurai, “Perspective of perovskite-type oxides for proton conducting solid oxide fuel cells”, Solid State Ionics 339, 114951 (2019).
  • P-L. Champagne, D. F. Ester, A. Bhattacharya, K. Hofstetter, C. Zellman, S. Bag, H. Yu, S. Trudel, V. K Michaelis, V. Williams,* V. Thangadurai,* and C-C. Ling,* “Liquid Crystalline Lithium-ion Electrolytes Derived from Biodegradable Cyclodextrin,” J. Mater. Chem. A 7, 12201 – 12213 (2019).
  • C. Cao, K. Singh, W. H. Kan, M. Avdeev, and V. Thangadurai,* “Electrical Properties of Hollandite-Type Ba1.33Ga2.67Ti5.33O16, K1.33Ga1.33Ti6.67O16, and K1.54Mg0.77Ti7.23O16,” Inorg. Chem., 58, 4782–4791 (2019).
  • A. Nandy, M. Sharma*, S. V. Venkatesan, N. Taylor and L. Gieg, and V. Thangadurai,* “Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge,” Energies 12, 1034-1049 (2019).
  • S. Mulmi and V. Thangadurai,*A perovskite-type Nd0.75Sr0.25Co0.8Fe0.2O3‑δ cathode for advanced solid oxide fuel cells,Chem. Commun., 55, 3713-3716 (2019).
  • S.P. Kammampata, R.H. Basappa, T. Ito, H. Yamada, and V. Thangadurai,*Microstructural and Electrochemical Properties of Alkaline Earth Metal-Doped Li Garnet-Type Solid Electrolytes Prepared by Solid-State Sintering and Spark Plasma Sintering Methods,ACS Appl. Energy Mater., 2, 1765−1773 (2019).
  • S. Narayanan, S. Reid, S. Butler, and V. Thangadurai,*Sintering Temperature, Excess Sodium, and Phosphorous Dependencies on Morphology and Ionic Conductivity of NASICON Na3Zr2Si2PO12,Solid State Ionics, 331, 22-29 (2019).
  • A. K. Baral Y. Tsur and V. Thangadurai,*Electrochemical Studies of Ruddlesden-Popper Layered Perovskite-type La0.6Sr1.4Co0.2Fe0.8O4+δ Cathode for Solid Oxide Fuel Cells and Associated Electrical Loss Phenomena,” Ceramics Int., 45, 1641-1650 (2019).


2018
 

  • C. Zhou, S. Bag, and V. Thangadurai,*Engineering Materials for Progressive All-Solid-State Na Batteries,” ACS Energy Lett., 3, 2181-2198 (2018).
  • C. Zhou, A. J. Samson, K. Hofstetter, and V. Thangadurai,*Surfactant-Assisted Strategy to Tailor Li-ion Charge Transfer Interfacial Resistance for Scalable All-Solid-State Li Batteries, Sustainable Energy Fuels, 2, 2165 – 2170 (2018).
  • A. Oz, K. Singh, D. Gelman, V. Thangadurai,* and Y. Tsur*, “Understanding of Oxygen Reduction Reaction on Perovskite-Type Ba0.5Sr0.5Fe0.91Al0.09O3‑δ and Ba0.5Sr0.5Fe0.8Cu0.2O3‑δ Using AC Impedance Spectroscopy Genetic Programming,” J. Phys. Chem. C. 122, 15097−15107 (2018).
  • A. J. Samson, K. Hofstetter, E. Wachsman, and V. Thangadurai,*“Towards Mixed Ionic and Electronic Conducting Li-Stuffed Garnets,” J. Electrochem. Soc., 165,  A1-A9 (2018).
  • T. Amiri*, K. Singh, N. K. Sandhu, A. R. Hanifi, T. H. Etsell, J. L. Luo, V. Thangadurai, and P. Sarkar, “High-Performance Tubular Solid Oxide Fuel Cell based on Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3-δ Proton Conducting Electrolyte,” J. Electrochem. Soc.,165, F764–F769 (2018).
  • P. J. Kim, S. Narayanan, J. Xue, V. Thangadurai, and V. G. Pol,* “Li-Ion-Permeable and Electronically Conductive Membrane Comprising Garnet-Type Li6La3Ta1.5Y0.5O12 and Graphene Toward Ultrastable and High-Rate Lithium-Sulfur Batteries,” ACS Applied Energy Materials, 1, 3733–3741 (2018).
  • K. Hofstetter, A. J. Samson, S. Narayanan, and V. Thangadurai,*“Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium,” J. Power Sources, 390, 297–312 (2018).
  • J. A. Lussier, F. J. Simon, P. S. Whitfield, K. Singh, V. Thangadurai, and M. Bieringer,* “Structure Evolution and Reactivity of the Sc(2−x)VxO3+δ (0 ≤ x ≤ 2.0) System,” Inorg. Chem., 57, 5607−5614 (2018).
  • K. Singh, W. H. Kan, B. Patton, A. Huq, and V. Thangadurai,* “Insights into B‑Site Ordering in Double Perovskite-Type Ba3Ca1+xNb2−xO9‑δ (0 ≤ x ≤ 0.45): Combined Synchrotron and Neutron Diffraction and Electrical Transport Analyses,” Inorg. Chem., 57, 2609−2619 (2018).
  • A. Singh, S. Paulson, H. Farag, V. Birss, and V. Thangadurai,* “Role of Presulfidation and H2S Cofeeding on Carbon Formation on SS304 Alloy during the Ethane−Steam Cracking Process at 700 °C,” Ind. Eng. Chem. Res., 57, 1146−1158 (2018).
  • S. P. Kammampata and V. Thangadurai*, “Cruising in Ceramics—Discovering New Structures for All-Solid-State Batteries—Fundamentals, Materials, and Performances,” Ionics, 24, 639–660 (2018).
  • K. Hofstetter, A. J. Samson, and V. Thangadurai,*“Characterization of Li-Rich Garnet-Type Li6.5La2.5Ba0.5ZrTaO12 for Beyond Intercalation Chemistry-Based Li-ion Batteries,” Solid State Ionics, 318, 71-81(2018).
  • W. Li, H. Hu, H. Shi, X. Teng, V. Thangadurai, and Y. Zhu,* “Establishment and practical application of the electron transfer model in lithium-air batteries,” Ionics,  24, 743–752 (2018)


2017
 

  • R. Paul* and V. Thangadurai, “Correction to Formulation of a Statistical Mechanical Theory To Understand the Li-Ion Conduction in Crystalline Electrolytes: A Case Study on Li-Stuffed Garnets,” J. Phys. Chem. C, 121, 28604–28604 (2017).
  • J. Arteaga, H. Zareipour,* and V. Thangadurai,* “Overview of Lithium-Ion Grid-Scale Energy Storage Systems,” Curr. Sustainable/Renewable Energy Rep., 4, 197–208 (2017).
  • R. Paul* and V. Thangadurai, “Formulation of a Statistical Mechanical Theory To Understand the Li-Ion Conduction in Crystalline Electrolytes: A Case Study on Li-Stuffed Garnets,” J. Phys. Chem. C, 121, 17137–17142 (2017).
  • D. M. A. Basset, S. Mulmi, M. S. El-Bana, S. S. Fouad,* and V. Thangadurai* “Structure, Ionic Conductivity, and Dielectric Properties of Li-Rich Garnet-type Li5+2xLa3Ta2-xSmxO12 (0 ≤ x ≤ 0.55) and Their Chemical Stability,” Inorg. Chem., 56, 8865–8877 (2017).
  • D. M. A. Basset, S. Mulmi, M. S. El-Bana, S. S. Fouad, and V. Thangadurai* “Correction: Synthesis and Characterization of Novel Li-stuffed Garnet-like Li5+2xLa3Ta2-xGdxO12 (0 ≤ x ≤ 0.55): Structure-Property Relationships,” Dalton Trans. 46, 8304-8305 (2017).
  • M. Zarabian, M. Bartolini, P. Pereira-Almao, and V. Thangadurai,* X-ray Photoelectron Spectroscopy and AC Impedance Spectroscopy Studies of Li-La-Zr-O Solid Electrolyte Thin Film/LiCoO2 Cathode Interface for All-Solid-State Li Batteries,” J. Electrochem. Soc., 164, A1133-A1139 (2017).
  • S. Mulmi, H. Chen, A. Hassan, J. F. Marco, F. J. Berry, F. Sharif, P. R. Slater, E. P. L. Roberts, S. Adams, and V. Thangadurai*Thermochemical CO2 splitting using double perovskite-type Ba2Ca0.66Nb1.34-xFexO6, J. Mater. Chem. A, 5, 6874–6883 (2017). 
  •  X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman* and L. Hu*, “Negating Interfacial Impedance in Garnet-based Solid-State Li Metal Batteries,” Nat. Mater. 16, 572-579 (2017).
  • D. M. A. Basset, S. Mulmi, M. S. El-Bana, S. S. Fouad, and V. Thangadurai*“Synthesis and Characterization of Novel Li-stuffed Garnet-like Li5+2xLa3Ta2-xGdxO12 (0 ≤ x ≤ 0.55): Structure-Property Relationships,” Dalton Trans. 46, 933-946 (2017).   


2016
 

  • W.H. Kan, A. J. Samson, and V. Thangadurai,* Trends in Electrode Development for Next Generation Solid Oxide Fuel Cells,” J. Mater. Chem. A, 4, 17913-17932 (2016). 
  • S. Narayanan, X. Tong, and V. Thangadurai,* "The Synthesis and Electrical Properties of Hybrid Gel Electrolytes Derived from Keggin-type Heteropoly acids and 3-(pyridin-1-ium-1-yl) propane-1-sulfonate (PyPs)," RSC Adv., 6, 102549-102556 (2016).
  • E. N. El Sawy, H. T. Handal, V. Thangadurai, and V.I. Birss,* Pt-Ir Alloy Nanoparticles with Fully Tunable Bulk and Surface Compositions,” J. Mater. Chem. A, 4, 15400-15410 (2016). 
  • K. Singh, A. K. Baral, and V. Thangadurai,* “Ni-Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3Anode Composites for Proton Conducting Solid Oxide Fuel Cells (H-SOFCs),” J. Mater. Sci. Res., 5, 34-43 (2016).
  • S. Narayanan, A. K. Baral, and V. Thangadurai,* Dielectric Characteristics of Fast Li-ion Conducting Garnet-Type Li5+2xLa3Nb2-xYxO12 (x = 0.25, 0.5 and 0.75),” Phys. Chem. Chem. Phys., 18, 15418-15426 (2016).
  • H. T. Handal, P. Addo, A. Buyukaksoy, V. Birss and V. Thangadurai,* “Evaluation of MIEC Ce0.8Y0.1Mn0.1O2-δ Anode in Electrolyte-Supported SOFC,” J. Electrochem. Soc., 163 (11) F3091-F3098 (2016).
  • K. Singh, R. Kannan, and V. Thangadurai,* “Synthesis and Characterisation of Ceramic Proton Conducting Perovskite-type Multi-element -Doped Ba0.5Sr0.5Ce1-x-y-zZrxGdyYzO3-δ (0 < x < 0.5; y = 0, 0.1, 0.15; z = 0.1, 0.2),” Int. J. Hydrogen Energy, 41, 13227–13237 (2016).
  • S. Mulmi and V. Thangadurai,* “Semiconducting SnO2-TiO2 (S-T) Composites for Detection of SO2 Gas,” Ionics, 22, 1927-1935 (2016).
  • W.H. Kan, P. Dong, J-S. Bae, S. Adams and V. Thangadurai,* “Probing Surface Valence, Magnetic Property, and Oxide Ion Diffusion Pathways in B-Site Ordered Perovskite-type Ba2Ca0.67M0.33NbO6-d (M = Mn, Fe, Co)”, Solid State Ionics, 290, 90-97 (2016).
  • H. Handal, A. Hassan, R. Leeson, S. Eloui, M. Fitzpatrick, and V. Thangadurai,* “Profound Understanding of Effect of Transition Metal Dopant, Sintering Temperature and pO2 on the Electrical and Optical Properties of Proton Conducting BaCe0.9Sm0.1O3-δ" Inorg. Chem., 55, 729–744 (2016).
  • K. Singh, A. K. Baral, and V. Thangadurai,* “Electrochemical Studies of Gd0.5Pr0.5BaCo2O5+δ (GPBC) Cathode for Oxide Ion and Proton Conducting Solid Oxide Fuel Cells,” Solid State Ionics, 288, 351-356 (2016).
  • K. Singh, A. K. Baral, and V. Thangadurai,* “Grain Boundary Space Charge Effect and Proton Dynamics in Chemically Stable Perovskite-type Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3-δ (BSCZGY): A Case Study on Effect of Sintering Temperature,” J. Am. Ceram. Soc., 99, 866-875 (2016).
  • D. Pinzaru and V. Thangadurai,* “Evaluation on the Effect of Gd-doping for Nb on the Morphology and Ionic Conductivity of Garnet-like Li5La3Nb2O12,” Can. J. Chem., 94, 321-329 (2016).


2015
 

  • S. Narayanan, F. Ramezanipour, and V. Thangadurai,* “Dopant Concentration – Porosity−Li-Ion Conductivity Relationship in Garnet-Type Li5+2xLa3Ta2−xYxO12 (0.05 ≤ x ≤ 0.75) and Their Stability in Water and 1 M LiCl,” Inorg. Chem., 54, 6968-6977 (2015).
  • S. Narayanan, G. H. Hitz, E.D. Wachsman, and V. Thangadurai,* “Effect of Excess Li on the Structural and Electrical Properties of Garnet-Type Li6La3Ta1.5Y0.5O12,” J. Electrochem. Soc., 162, A1772-A1777 (2015).
  • M. Chen, S. Paulson, W.H. Kan, V. Thangadurai and V. Birss,* “Surface and Bulk Study of Strontium-Rich Chromium Ferrite Oxide as a Robust Solid Oxide Fuel Cell Cathode,” J. Mater. Chem. A, 3, 22614-22626 (2015). 
  • J. Lee, S. Mulmi, V. Thangadurai,* S. Park, “Magnetically Aligned Iron Oxide/Au Nanoparticles Decorated Carbon Nanotube Hybrid Structure as Humidity Sensor,” ACS Appl. Mater. Interfaces, 7, 15506-15513 (2015).
  • X. Tong, and V. Thangadurai,* “Hybrid Gel Electrolytes Derived from Keggin-Type Polyoxometalates and Imidazolium-Based Ionic Liquid with Enhanced Electrochemical Stability and Fast Ionic Conductivity,”  J. Phys. Chem. C., 119, 7621-7630 (2015).
  • X. Tong, V. Thangadurai,* and E.D. Wachsman, “Highly Conductive Li Garnets by a Multi-element Doping Strategy.” Inorg. Chem., 54, 3600-3607 (2015).
  • V. Thangadurai,* D. Pinzaru, S. Narayanan, and A. K. Baral, "Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage," J. Phys. Chem. Lett., 6, 292−299 (2015) (Invited).
  • W. H. Kan, and V. Thangadurai,* “Challenges and Prospects of Anodes for Solid Oxide Fuel Cells (SOFCs),” Ionics, 21, 301–318 (2015).
  • W. H. Kan, L. Troungand V. Thangadurai,* “Effect of V-doping on the Structure and Conductivity of Garnet-type Li5La3Nb2O12,” Ionics, 21, 373-379 (2015).
  • F. Ramezanipour, A. Singh, S. Paulson, H. Farag, V. I. Birss, and V. Thangadurai,* “Carbon Formation on Stainless Steel 304H in the Convection Section of an Ethane Cracking Plant,” Corrosion Engineering Science and Technology, 50, 303-310 (2015). 


2014
 

  • D. Pinzaru and V. Thangadurai,* “Synthesis, Structure and Li-ion Conductivity of Garnet-like Li5+2xLa3Nb2-xSmxO12 (0 ≤ x ≤ 0.7),” J. Electrochem. Soc.,161, A2060-A2067 (2014).
  • Y. Zhu,* Z. Ruan, S. Tang and V. Thangadurai, “Research Status in Preparation of FePO4: A Review,” Ionics, 20, 1501-1510 (2014).
  • W. H. Kan, J. Lussier, M. Bieringerand V. Thangadurai,* “Studies on Polymorphic Sequence During the Formation of the 1:1 Ordered Perovskite-type BaCa0.335M0.165Nb0.5O3-δ (M = Mn, Fe, Co) Using In-Situ and Ex-Situ Powder X-ray Diffraction,” Inorg. Chem., 53, 10085–10093 (2014).
  • A. Baral,  S. Narayanan, F. Ramezanipour, and V. Thangadurai,* “Enhancing Li ion Conductivity of Li-stable Li5La3Ta2O12 and Understanding of Li-ion Transport Mechanism Using ac Impedance and Dielectric Spectroscopy,” Phys. Chem. Chem. Phys., 16, 11356-11365 (2014).
  • W. H. Kan, M. Chen, J-S. Bae, B-H. Kim and V. Thangadurai,* “Determination of Fe Oxidation States in the B-site Ordered Perovskite-type Ba2Ca0.67Fe0.33NbO6−δ at Surface (nano-scale) and Bulk Using Variable Temperature XPS and TGA and its Impact on Electrochemical Catalysis,” J. Mater. Chem. A, 2, 8736-8741 (2014).
  • V. Thangadurai,* S. Narayanan, and D. Pinzaru, “Garnet-type Solid-State Fast Li-ion Conductors for Li Batteries: Critical Review,” Chem. Soc. Rev., 43, 4714–4727 (2014) (Invited).
  • B. Mirfakhraei, F. Ramezanipour, S. Paulson, V.I. Birss and V. Thangadurai,* “Effect of Sintering Temperature on Microstructure, Chemical Stability and Electrical Properties of Transition Metal or Yb-Doped BaZr0.1Ce0.7Y0.1M0.1O3-δ (M = Fe, Ni, Co and Yb),” Front. Energy Res., 2, 1-10 (2014).
  • C. M. Gore, J. O. White, E.D. Wachsman,* and V. Thangadurai,* “Effect of Composition and Microstructure on Electrical Properties and CO2 Stability of Donor-Doped, Proton Conducting BaCe1-(x+Y)ZrxNbyO3,” J. Mater. Chem. A, 2, 2363-2373 (2014).
  • K. Singh and V. Thangadurai,* “Chemical Reactivity Between Ce0.7RE0.2Mo0.1O2 (RE = Y& Sm) and 8YSZ, and Conductivity Studies of Their Solid Solutions,” Solid State Ionics, 262, 444-448 (2014).
  • H. T. Handal and V. Thangadurai,* “Electrochemical Characterization of Multi-Element- Doped Ceria As Potential Anodes for SOFCs,” Solid State Ionics, 262, 359-364 (2014).
  • S. Mulmi, R. Kannan, and V. Thangadurai,* “CO2 and SO2 Tolerant Fe-Based Metal Oxides for Solid State Gas Sensors,” Solid State Ionics, 262, 274-278 (2014).


2013
 

  • B. Mirfakhraei, S. Paulson, V. Thangadurai, and V. Birss,* “Enhanced Hydrogen Oxidation Activity and H2S Tolerance of Ni-Infiltrated Ceria Solid Oxide Fuel Cell Anodes,” J. Power Sources, 243, 95-101 (2013).
  • N. Arulmozhi, W. H. Kan, V. Thangadurai, and K. Karan,* “Kinetics and Thermodynamics of Carbonation of a Promising SOFC Cathode Material La0.5Ba0.5CoO3−δ (LBC),” J. Mater. Chem. A, 1, 15117-15127 (2013).
  • W. H. Kan, M. Roushanafshar, A. Vincent, T. Fürstenhaupt, M. Parvez, J. Luo, and V. Thangadurai,* “Effect of Substitution of B-sites by Mn, Fe and Co in Double Perovskite-type Ba3CaNb2O9 on Crystal Structure and Electrical Properties,” RSC Adv., 3, 23824-23832 (2013).
  • L.Truong, M. Howard, O. Clemens, K. S. Knight, P. R. Slater, and V. Thangadurai,* “Facile Proton Conduction in H+/Li+ Ion-Exchanged Garnet-Type Fast Li-ion Conducting Li5La3Nb2O12,” J. Mater. Chem. A, 1, 13469-13475 (2013).
  • R. Kannan, S. Gill, K. Singh, T. Fürstenhaupt, and V. Thangadurai,* “Chemically Stable Proton Conducting Doped BaCeO3 -No More Fear to SOFC Wastes,” Sci. Report, 3, 2138, (2013) (Open Access).
  • F. Ramezanipour, M. Shishkin, K. Singh, J. P. Hodges, T. Ziegler, and V. Thangadurai,* “Interstitial Oxygens and Cation Deficiency in Mo-Doped Ceria, an Anode Material for SOFCs,” J. Mater. Chem. A, 1, 8344-8347 (2013).
  • H. T. Handal and V. Thangadurai,* “Evaluation of Chemical Stability, Thermal Expansion Coefficient, and Electrical Properties of Solid State and Wet-Chemical Synthesised Y and Mn -codoped CeO2 for SOFCs”, J. Power Sources, 243, 485-471 (2013).
  • L. Truong, J. Colter, and V. Thangadurai,* “Chemical Stability of Li-stuffed Garnet-type Li5+xBaxLa3-xTa2O12 (x = 0, 0.5, 1) in Water: A Comparative Analysis with the Nb Analogue,” Solid State Ionics, 247-248, 1-7 (2013).
  •  G. T. Hitz, E. D. Wachsman,* and V. Thangadurai,* “Highly Li-Stuffed Garnet-Type Li7+xLa3Zr2-xYxO12,” J. Electrochem. Soc., 160(8), A1248-A1255 (2013).
  • S. Mulmi and V. Thangadurai,* “Preparation, Structure and CO2 Sensor Studies of BaCa0.33Nb0.67−xFexO3−δ,” J. Electrochem. Soc., 160(8), B95-B101 (2013).
  • Y. Shi,* I. Badran, A. Tkalych, W. H. Kan, and V. Thangadurai, “Growth of Crystalline Tungsten Carbides Using 1,1,3,3-Tetramethyl-1,3-disilacyclobutane on a Heated Tungsten Filament,” J. Phys. Chem. C, 117, 3389−3395 (2013).
  • R. Kannan, S. Mulmi, and V. Thangadurai,* “Synthesis and Characterization of Perovskite-type BaMg0.33Nb0.66-xFexO3−δ for Potential High Temperature CO2 Sensor,” J. Mater. Chem. A, 1, 6874- 6879 (2013).
  • M. Chen, S. Paulson, V. Thangadurai, and V. I. Birss,* “Sr-rich Chromium Ferrites as Symmetrical SOFC Electrodes,” J. Power Sources, 236, 68-79, (2013).
  • S. Gill, R. Kannan, N. Maffeiand V. Thangadurai,* “Effect of Zr Substitution for Ce in BaCe0.8Gd0.15Pr0.05O3−δ on the Chemical Stability in CO2 and Water, and Electrical Conductivity,” RSC Adv., 3, 3599 - 3605 (2013).
  • S. Mulmi, A. Hassan, P. Pereira-Almao, and V. Thangadurai,*Detecting CO2 at ppm Level in Synthetic Air Using Mixed Conducting Double Perovskite-type Metal Oxides,” Sens. Actuators, B, 178, 598– 605 (2013).
  • K.G.S. Pannu, T. Pannu, T. Fürstenhaupt, and V. Thangadurai,* “Electrical Properties of Ionic Liquid and Double Perovskite-type Metal Oxide Composites – A New Method to Tailor Grain-Boundary Impedance of Ceramic Electrolytes,” Solid State Ionics, 232, 106–111 (2013). 
  • K. Singh, J. Nowotny, and V. Thangadurai,* “Amphoteric Oxide Semiconductors for Energy Conversion Devices: A Tutorial Review,” Chem. Soc. Rev., 42 (5), 1961-1972 (2013) (Invited).
  • R. Kannan, S. Gill, N. Maffei,and V. Thangadurai,* “BaCe0.85-x ZrxSm0.15O3-d (0.01 < x < 0.3) (BCZS): effect of Zr content in BCZS on Chemical Stability in CO2 and H2O Vapor, and Proton Conductivity,” J. Electrochem. Soc., 160, F18-F26 (2013).
  • Y. Zhu,* V. Thangadurai, and W. Weppner, “Garnet-like Solid State Electrolyte Li6BaLa2Ta2O12 Based Potentiometric CO2 Gas Sensor,” Sens. Actuators, B, 176, 284– 289 (2013).


2012
 

  • S. Narayanan, F. Ramezanipour, and V. Thangadurai,* “Enhancing Li ion Conductivity of Garnet-type Li5La3Nb2O12 by Y and Li-codoping:  Synthesis, Structure, Chemical Stability and Transport Properties,” J. Phys. Chem. C, 116, 20154–20162 (2012).
  • W. H. Kan and V. Thangadurai,* “Thermo-chemistry of Sr2Ce1-xPrxO4 (x = 0, 0.2, 0.5, 0.8 and 1)–Variable Temperature and Atmosphere In-situ and Ex-situ Powder X-ray Diffraction Studies and Their Physical Properties,” Inorg. Chem., 51, 8973–8981 (2012).
  • Y. Ren, W.H. Kan, V. Thangadurai, and T. Baumgartner,* “Bio-Inspired Phosphole-Lipids: From Highly Fluorescent Organogels to Mechanically Responsive FRET,” Angew. Chem. Int. Ed., 51, 3964–3968 (2012).
  • A. E. Murschell, W. H. Kan, V. Thangadurai, and T. C. Sutherland*, “Anthraquinone Derivatives as Electron-Acceptors with Liquid Crystalline Properties,” Phys. Chem. Chem. Phys., 14, 4626–4634 (2012).
  • A Kuhn, V Epp, G Schmidt, S. Narayanan, V. Thangadurai, and M. Wilkening*, “Spin-Alignment Echo NMR: Probing Li+ Hopping Motion in the Solid Electrolyte Li7La3Zr2O12 with Garnet-Type Tetragonal Structure,” J. Phys.: Condens. Matter, 24, 035901 (2012)
  • S. Narayanan, V. Epp, M. Wilkening, and V. Thangadurai,* “Macroscopic and Microscopic Li+ Transport Parameters in Cubic Garnet-Type “Li6.5La2.5Ba0.5ZrTaO12” as Probed by Impedance Spectroscopy and NMR,” RSC Adv., 2, 2553-2561 (2012).
  • L. Truong and V. Thangadurai,* “First Total H+/Li+ Ion-Exchange in Garnet-Type Li5La3Nb2O12 Using Organic Acids and Studies on the Effect of Li Stuffing,” Inorg. Chem., 51, 1222-1224 (2012).


2011
 

  • Y. Ren, W. H. Kan, M. A. Henderson, P. G. Bomben, C. P. Berlinguette, V. Thangadurai, and T. Baumgartner,* “External-Stimuli Responsive Photophysics and Liquid Crystal Properties of Self-Assembled "Phosphole-Lipids”, J. Am. Chem. Soc., 133, 17014-17026 (2011).
  • L. Spencer, E. Coomes, E. Ye, V. Terskikh, A. Ramzy, V. Thangadurai, and G. R. Goward,* “Structural Analysis of Lanthanum-Containing Battery Materials Using 139La Solid-State NMR”, Can. J. Chem., 89, 1105-1117 (2011).
  • L. Truong and V. Thangadurai,* “Soft-Chemistry of Garnet-Type Li5+xBaxLa3-xNb2O12 (x = 0, 0.5, 1):  Reversible H+/Li+ Ion-Exchange Reaction and Their X-ray, 7Li MAS NMR, IR, and AC Impedance Spectroscopy Characterization,” Chem. Mater., 23(17), 3970–3977 (2011).
  • T.L. Spencer, A. Ramzy, V. Thangadurai,* and G. R. Goward,* Structural Complexity and Electrical Properties of the Garnet-Type Structure LaLi0.5Fe0.2O2.09 Studied by 7Li and 139La Solid State NMR Spectroscopy and Impedance Spectroscopy, Chem. Mater., 23 (12), 3105–3113 (2011).
  • S. Narayanan and V. Thangadurai,* “Effect of Y Substitution for Nb in Li5La3Nb2O12 on Li ion Conductivity of Garnet-Type Solid Electrolytes,” J. Power Sources, 196, 8085-8090 (2011).
  • S. S. Bhella and V. Thangadurai,* “Dielectric Properties of Ba3-xKxCaNb2O9-d (0.5 < x < 1.25) (KBCN) Double Perovskites,” Mater. Res. Bull., 46, 668-674 (2011).
  • W. H. Kan, T. T. Trinh, T. Fürstenhaupt, and V. Thangadurai,* “Synthesis, Rietveld Refinement of Crystal Structure, Electron Diffraction, and Electrical Transport Properties of Ba2(Ca0.67+x+yFexNby)(Nb1.33-y-zFez)O6-δ Double Perovskites,” Can. J. Chem., 89, 688-696 (2011).
  • S. S. Bhella, T. Fürstenhaupt, R. Paul,* and V. Thangadurai,* “Synthesis, Structure, Chemical Stability and Electrical Transport Properties of Nb, Zr and Nb-codoped BaCeO3 Perovskites,* Inorg. Chem., 50, 6493–6499 (2011).
  • M. Talimi and V. Thangadurai,* “Electrical Conductivity and Chemical Stability of Perovskite-type BaCe0.8-xTixY0.2O3-δ,” Ionics, 17, 195-200 (2011).
  • A. Kuhn, S. Narayanan, L. Spencer, G. Goward, V. Thangadurai, and M. Wilkening,* “Li Self-Diffusion in Garnet-type Li7La3Zr2O12 with Tetragonal Symmetry as Probed Directly by Diffusion-Controlled Li Spin-Lattice Relaxation NMR Spectroscopy,” Phys. Rev. B: Condens. Matter, 83, 094302-10 (2011).
  • T. Pannu, K. G. S. Pannu, and V. Thangadurai,* “Perovskite-Type Metal Oxides Exhibiting Negligible Grain-Boundary Resistance to Total Electrical Conductivity,” Inorg. Chem., 50, 647–655 (2011).
  • Q. Li and V. Thangadurai,* “Novel Nd2WO6-type Sm2-xAxM1-yByO6-d (A = Ca, Sr; M = Mo, W; B = Ce, Ni) Mixed Conductors,” J. Power Sources, 196, 169-178 (2011).
  • S. S. Bhella and V. Thangadurai,* “Investigations on the Thermo-Chemical Stability and Electrical Conductivity on the Partial K-Substitution for Ba in Ba3CaNb2O9,” Solid State Ionics, 192, 229-234 (2011).
  • E. Atamanik, S. S. Bhella, and V. Thangadurai,* “Electrical Properties of Fe-doped Perovskite-like BaNb0.75-xFexNa0.25O3-δ (0.05 < x < 0.5),” Solid State Ionics, 192, 205-209 (2011).


2010
 

  • J. E. Joy, E. Atamanik, R. Mani, A. Nag, R.M. Tiwari, V. Thangadurai, and J. Gopalakrishnan,* “Ba3MIIITiMVO9 (MIII = Fe, Ga, Y, Lu; MV = Nb, Ta, Sb) Perovskite Oxides: Synthesis, Structure and Dielectric Properties,” Solid State Sci., 12, 1970-1976 (2010).
  • T.El-Marsi, Q. Li, and V. Thangadurai,* “Studies on Chemical Stability in CO2 and H2O and Electrical Conductivity of Perovskite-type Ba3In2Zr1-xCexO8 (x = 0, 0.5, 1),” Ionics, 16, 591-602 (2010).
  • J. Dauter, N. Maffei, S. S. Bhella, and V. Thangadurai,* “Studies on Chemical Stability and Electrical Properties of Proton Conducting Perovskite-like Doped BaCeO3,” J. Electrochem. Soc., 157, B1413-B1418 (2010).
  • T. T. Trinh and V. Thangadurai,* “Effect of Ti Substitution for Nb in Double Perovskite-type Ba3CaNb2O9 on Chemical Stability and Electrical Conductivity,” Electrochimica Acta, 56, 227–234 (2010).
  • Q. Li and V. Thangadurai,* “A Comparative 2 and 4-Probe DC and 2-Probe AC Electrical Conductivity Studies of Novel codoped Ce0.9-xRExMo0.1O2.1-0.5x (RE = Y, Sm, Gd; x = 0.2, 0.3),” J. Mater. Chem., 20, 7970-7983 (2010).
  • S. S. Bhella, T. Fürstenhaupt, and V. Thangadurai,* “TEM and ED Confirmation of Conversion of 3D and 2D Perovskite into Fluorites,” J. Alloys and Compounds, 503, L5–L8 (2010).
  • A. Ramzy and V. Thangadurai,*“Tailor-Made Development of Fast Li ion Conducting Garnet-Like Solid Electrolytes,” ACS Appl. Mater. Interfaces, 2, 385-390 (2010).
  • S. S. Bhella, S. P. Shafi, F. Trobec, M. Bieringer,* and V. Thangadurai,* “In-situ Powder X-Ray Diffraction Investigation of Reaction Pathways for the BaCO3–CeO2–In2O3 and CeO2–In2O3 Systems,” Inorg. Chem., 49, 1699-1704 (2010).


2009
 

  • S. S. Bhella, L. M. Kuti, Q. Li, and V. Thangadurai,* “Electrical Properties of In-doped       Ce1-xInxO2-d,” Dalton Trans., 43, 9520-9528 (2009).
  • J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, I. L. Moudrakovski, C. I. Ratcliffe, and G. K. H. Shimizu,* “Anhydrous Proton Conduction at 150oC in a Crystalline Metal-Organic Framework,” Nat. Chem., 1, 705-710  (2009).
  • Q. Li and V. Thangadurai,* “Synthesis, Structure and Electrical Properties of Mo-doped CeO2 - Materials for SOFCs,” Fuel Cells, 9, 684-698 (2009). 
  • L. M. Kuti, S. S. Bhella, and V. Thangadurai,* “Revisiting Tungsten Trioxide Hydrates (TTHs) Synthesis - Is There Anything New?” Inorg. Chem., 48, 6804–6811 (2009).
  • S. S. Bhella and V. Thangadurai,* “Sintering Effects on Proton Conductivity of Ta-doped Ba2(CaNb)2O6 and its Reactivity with SOFC Cathodes,” J. Electrochem. Soc., 156, B634-B642 (2009).
  • E. Atamanik and V. Thangadurai,* “Dielectric Properties of Ga-doped Na0.5K0.5NbO3," J. Phy. Chem C., 113, 4648-4653 (2009).   
  • E. Atamanik and V. Thangadurai,* “Study of the Dielectric Properties in the NaNbO3 - KNbO3-In2O3 System Using ac Impedance Spectroscopy,” Mater. Res. Bull., 44, 931–936 (2009).
  • M.C. Pearce and V. Thangadurai,* “Electrical Transport Properties of Aliovalent Cation-Doped CeO2,” Asia-Pac. J. Chem. Eng., 4, 33–44 (2009) (Invited).
  • R. G. Gerlach, S. S. Bhella, and V. Thangadurai,* “Facile Conversion of Layered Ruddlesden-Popper-Related Structure Y2O3-doped Sr2CeO4 into Fast Oxide Ion Conducting Fluorite-type Y2O3-doped CeO2,” Inorg. Chem., 48, 257-266 (2009).
  • S. S. Bhella and V. Thangadurai,* “Synthesis and Characterization of Carbon Dioxide and Boiling Water Stable Proton Conducting Double Perovskite-Type Metal Oxides,” J. Power Sources, 186, 311-319 (2009).


2008
 

  • F. Trobec and V. Thangadurai,* “Transformation of Proton Conducting Perovskite-type into Fluorite-type Fast Oxide Ion Electrolytes using CO2 Capture Technique and Their Electrical Properties,” Inorg. Chem., 47, 8972-8984 (2008). 
  • R. Sui, V.  Thangadurai, and C.P. Berlinguette,* “Simple Protocol for Generating TiO2 Nanofibers in Organic Media,” Chem. Mater., 20, 7022–7030 (2008).
  • M.C. Pearce and V. Thangadurai,* “Investigations of Chemical Stability of Ce0.85Ca0.05Sm0.1O1.9 with Sr-doped ABO3 (A = La, Sm; B = Mn, Co) Using X-ray Powder Diffraction and AC Impedance,” Ionics, 14, 483-489 (2008)  
  • R. Murugan, W. Weppner,* P. Schmid-Beurmann and V. Thangadurai, “Structure and Lithium ion Conductivity of Garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12,” Mater. Res. Bull., 43, 2579-2591 (2008).
  • R.  Murugan, V. Thangadurai, and W. Weppner,* “Effect of Lithium ion Content on the Lithium ion Conductivity of the Garnet-like Structure Li5+xBaLa2Ta2O11.5+0.5x (x =  0 - 2),” Appl. Phys. A, 91, 615-620 (2008). 
  • R. Murugan, V. Thangadurai, and W. Weppner,* “Lattice Parameter and Sintering Temperature Dependence of Bulk and Grain-Boundary Conduction of Garnet-like Solid Li-Electrolytes,” J.  Electrochem. Soc., 155, A90-A101 (2008).


2007
 

  • B. R. Sneha and V. Thangadurai,* “Synthesis of Nano-sized Crystalline OxideIon Conducting Fluorite-Type Y2O3-Doped CeO2 using Perovskite-like BaCe0.9Y0.1O2.95 (BCY) and Study of CO2 Capture Properties of BCY,” J. Solid State Chem., 180, 2661-2669 (2007).
  • V. Thangadurai* and P. Kopp, “Chemical Synthesis of Ca-doped CeO2 – Intermediate Temperature Oxide Ion Electrolytes,” J. Power Sources, 168, 178-183 (2007).
  • R.  Murugan, V. Thangadurai, and W. Weppner,* “Fast Lithium Ion Conduction in Garnet-type Li7La3Zr2O12,” Angew. Chem. Int. Ed., 46, 7778-7781 (2007).
  • R. Murugan,* W. Weppner,* P.S. Beurmann, and V. Thangadurai, “Structure and Lithium Ion Conductivity of Bismuth Containing Lithium Garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12,” Mater. Sci. Eng., B, 143, 14-20 (2007).
  • R. Murugan, V. Thangadurai, and W. Weppner,* “Lithium Ion Conductivity of Li5+xBaxLa3-x Ta2O12 (x = 0 - 2) with Garnet-Related Structure in Dependence of the Barium Content,” Ionics, 13, 195-203 (2007).


2006
 

  • V. Thangadurai* and W. Weppner, “Recent Progress in Solid Oxide and Lithium Ion Conducting Electrolytes Research,” Ionics, 12, 81-92 (2006).
  • W. F. Chu, V. Thangadurai, and W. Weppner,* “Ionics-a key Technology for our Energy and Environmental Needs on the Rise,” Ionics 12, 1-6 (2006).
  • V. Thangadurai* and W. Weppner, “Effect of Sintering on the Ionic Conductivity of Garnet-Related Structure Li5La3Nb2O12, and In- and K-doped Li5La3Nb2O12,” J. Solid State Chem., 179, 974-984 (2006) (a ‘top 25’ the most cited article as published 2005-2008).
  • J. Schwenzel, V. Thangadurai, and W. Weppner,* “Developments of High-Voltage All-Solid-State Thin-Film Lithium Ion Batteries,” J. Power Sources, 154, 232-238 (2006).

2001-2005
 

  • S. Schott, Z. Jia, A. K. Schaper,* V. Thangadurai, W. Weppner and P. S. Beurmann, “Superlattice Ordering in SrFeO3-d: Electron Microscopy and Diffraction Study,” Phys. Sat. Sol., 202, 2330-2335 (2005).
  • V. Thangadurai* and W. Weppner, “Studies on Electrical Properties of La0.8Sr0.2Ga0.8Mg0.2 O2.8 (LSGM) and LSGM-SrSn1-xFexO3 (x = 0.8; 0.9) Composites and Their Chemical Reactivity,” Electrochimica Acta, 50, 1871-1877 (2005).
  • V. Thangadurai* and W. Weppner, “Investigations on Electrical Conductivity and Chemical Compatibility Between Fast Lithium Ion Conducting Garnet-like Li6BaLa2Ta2O12 and Lithium Battery Cathodes,” J. Power Sources, 142, 339-344 (2005).
  • V. Thangadurai* and W. Weppner, “Li6ALa2Nb2O12 (A = Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet-Like Structure,” J. Am. Ceram. Soc., 88, 411-418 (2005).
  • V. Thangadurai* and W. Weppner, “Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction,” Adv. Funct. Mater., 15, 107-112 (2005).
  • V. Thangadurai, J. Schwenzel and W. Weppner, “Tailoring Ceramics for Specific Applications: A Case Study on All-Solid-State Lithium Batteries,” Ionics, 11, 11-23 (2005).
  • V. Thangadurai,* S. Adams,* and W. Weppner,* “Crystal Structure Revision and Identification of Li+-ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides,” Chem. Mater., 16, 2998-3006 (2004).
  • V. Thangadurai* and W. Weppner,* “Ce0.8Sm0.2O1.9: Characterization of Electronic Charge Carriers and Application in Limiting Current Oxygen Sensors,” Electrochimica Acta, 49, 1577-1585 (2004). 
  • V. Thangadurai and W. Weppner,* “Li0.3Sr0.6B0.5Ti0.5O3 (B = Nb, Ta) and Li0.3Sr0.6Ta0.5   Ti0.5-xFexO3 (0 < x < 0.3): Novel Perovskite-Type Materials for Monolithic Electrochromic Devices,” J. Electrochem. Soc., 151, H1-H6 (2004).
  • V. Thangadurai* and W. Weppner,* “Mixed Protonic-Electronic Conductivity in the Dion-Jacobson Type Layered Perovskites in Hydrogen Containing Atmosphere and Their Application in Ammonia Sensors,” Solid State Ionics, 174, 175-183 (2004). 
  • V. Thangadurai, C. Knittlmayer, and W. Weppner,* “Metathetic Room Temperature Preparation and Characterization of Scheelite-Type ABO4 (A = Ca, Sr, Ba, Pb; B = Mo, W) Powders,” Mater. Sci. & Eng. B., 106, 228-233 (2004).
  • S. Stramare, V. Thangadurai,* and W. Weppner, “Lithium Lanthanum Titanates: A Review,” Chem. Mater., 15, 3974-3990 (2003) (cover page). 
  • P. S. Beurmann,* V. Thangadurai, and W. Weppner, “Phase Transitions in the SrSnO3-SrFeO3 Solid Solutions: X-ray Diffraction and Mössbauer Studies,” J. Solid State Chem., 174, 392-402 (2003).
  • V. Thangadurai, H. Kaack, and W. Weppner,* “Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta),” J. Am. Ceram. Soc., 86, 437-440 (2003).
  • V. Thangadurai, P. S. Beurmann, and W. Weppner,* “Mixed Oxide Ion and Electronic Conductivity in Perovskite-Type SrSnO3 by Fe Substitution,” Mater. Sci. & Eng. B, 100, 18-22 (2003).
  • V. Thangadurai and W. Weppner, “Monolithic Electrochemical Devices Using Lithium Ion Conducting Perovskite Oxides,” Ionics, 9, 308-314 (2003). 
  • V. Thangadurai, P.S. Beurmann, and W. Weppner,* “SrSn1-xFexO3-d(0 ≤ x ≤1) Perovskites: A Novel Mixed Oxide Ion and Electronic Conductor,” Mater. Res. Bull., 37, 599-604 (2002).
  • V. Thangadurai and W. Weppner,* “Complete, Reversible H+/Li+ Ion Exchange Reaction between Rhombohedral LiMO3 and Perovskite-Type HMO3 (M = Nb, Ta),” Mater. Res. Bull., 37, 2417-2425 (2002).
  • V. Thangadurai and W. Weppner,* “Determination of the Sodium Ion Transference Number of the Dion-Jacobson Type Layered Perovskite NaCa2Nb3O10 Using AC Impedance and DC Methods,” Chem. Mater., 14, 1136-1143 (2002).
  • V. Thangadurai, R. A. Huggins,* and W. Weppner, “Use of Simple AC Technique to Determine the Ionic and Electronic Conductivities in Pure and Fe-Substituted SrSnO3 Perovskites,” J. Power Sources, 108, 64-69 (2002).
  • V. Thangadurai and W. Weppner, “Solid-State Lithium Ionic Conductors: Design Considerations by Thermodynamic Approach,” Ionics, 8, 281-292 (2002).
  • V. Thangadurai and W. Weppner, “Materials Development for Advanced Lithium Batteries and Fuel Cells,” J. China Uni. of Science and Technology, 32, 4-29 (2002).
  • V. Thangadurai and W. Weppner, “Development and Investigation of Perovskite (ABO3)-Type Oxides for Power Generation,” Ionics, 8, 360-371 (2002).
  • V. Thangadurai, R. A. Huggins,* and W. Weppner, “Mixed Ionic–Electronic Conductivity in Phases in the Praseodymium Oxide System,” J. Solid State Electrochem., 5, 531-537 (2001).
  • V. Thangadurai and W. Weppner,* “AA¢2M3O10 (A = K, Rb, Cs; A¢ = Ca; M = Nb) Layered Perovskites: Low-Temperature Proton Conductors at Hydrogen Atmosphere,” J. Mater. Chem., 11, 636-639 (2001).
  • V. Thangadurai and W. Weppner,* “Synthesis and Electrical Properties of K-and Pr-Substituted LaGaO3 and LaInO3 Perovskites,” J. Electrochem. Soc., 148, A1294-A1301 (2001).
  • V. Thangadurai, P. S. Beurmann, and W. Weppner,* “Synthesis, Structure and Electrical Conductivity of A¢A2B3O10 (A¢ = Rb, Cs; A = Sr, Ba; B = Nb, Ta): New Members of Dion-Jacobson-Type Layered Perovskites,” J. Solid State Chem.,158, 279-289 (2001).
  • V. Thangadurai and W. Weppner, “Electrical Properties of A¢Ca2Nb3O10 (A¢ = K, Rb, Cs) Layered Perovskite Ceramics,” Ionics, 7, 22-31 (2001).


1994-2000
 

  • V. Thangadurai and W. Weppner,* “Effect of B-site Substitution of (Li,La)TiO3 Perovskites by Di- Tri-, Tetra- and Hexavalent Metal Ions on the Lithium Ion Conductivity,” Ionics,  6, 70-77 (2000).
  • J. Gopalakrishnan,* T. Shivakumar, K. Ramesha, V. Thangadurai, and G. N. Subbanna, “Transformations of Ruddlesden-Popper Oxides to New Layered Perovskite Oxides by Metathesis Reactions,” J. Am. Chem. Soc., 122, 6237-6241 (2000).
  • K. Ramesha, V. Thangadurai, D. Sutar, S. V. Subramanyam, G. N. Subbanna, and J. Gopalakrishnan,* “ALaMnBO6 (A = Ca, Sr, Ba; B = Fe, Ru) Double Perovskites,” Mater. Res. Bull., 35, 559-565 (2000).
  • A. Netz, W. F. Chu, V. Thangadurai, R. A. Huggins,* and W. Weppner, “Investigations of Praseodymium Oxide Electrodes in Lithium Concentration Cells,” Ionics, 5, 426-433 (1999).
  • J. Gopalakrishnan,* T. Sivakumar, V. Thangadurai, and G. N. Subbanna, “A[Bi3Ti4O13] and A[Bi3PbTi5O16] (A = K, Cs) - New n = 4 and n = 5 Members  of the Layered Perovskite Series, A[A¢n-1BnO3n+1], and Their Hydrates,” Inorg. Chem., 38, 2802-2806 (1999).
  • J. Gopalakrishnan,* A. K. Shukla, and V. Thangadurai, “Rational Design of Solid Materials - A Case Study of Lithium-ion Conductors,” Current Science, 76, 1473-1480 (1999).
  • V. Thangadurai, A. K. Shukla, and J. Gopalakrishnan,* “New Lithium Ion Conductors Based on the NASICON Structure,” J. Mater. Chem., 9, 739-741 (1999).
  • V. Thangadurai, A.  K.  Shukla, and J. Gopalakrishnan,* “LiSr1.650.35 B1.31.7O9 (B = Ti, Zr, B¢ = Nb, Ta)-New Lithium-ion Conductors Based on the Perovskite Structure,” Chem. Mater., 11, 835-839 (1999).
  • V. Thangadurai, A. K. Shukla, and J. Gopalakrishnan,* “La0.9Sr0.1Ga0.8Mn0.2O2.85 - A New Oxide-ion Conductor,” J. C. S. Chem. Commun., 2647-2648 (1998).
  • V. Thangadurai, G. N. Subbanna, and J. Gopalakrishnan,* “Ln2Ti2O7 (Ln = La, Nd, Sm, Gd) - A Novel Series of Defective Ruddlesden-Popper Phases Formed by Topotactic Dehydration of HLnTiO4,” Chem. Commun., 1299-1300 (1998).
  • V. Thangadurai, A. K. Shukla, and J. Gopalakrishnan,* “Oxide-ion Conduction in Anion-Deficient Double Perovskites, Ba2BB¢O5.5 (B = Li, Na; B¢ = Mo, W, Te),” Solid State Ionics, 104, 277-283 (1997).
  • V. Thangadurai, G. N. Subbanna, A. K. Shukla, and J. Gopalakrishnan,* “AM1-xAlxO3-x (A = Na, K; M = Nb, Ta) – New Anion-Deficient Perovskite Oxides Exhibiting Oxide-ion Conduction,” Chem. Mater., 8, 1302-1306 (1996).
  • V. Thangadurai, A. K. Shukla, and J. Gopalakrishnan,* “Proton Conduction in Layered Perovskite Oxides,” Solid State Ionics, 73, 9-14 (1994).

Patents

  • V. Thangadurai,* A. Abaraham, and S. Ponnurangam, “ In Situ Generated Sulfur Electrode,” US PCT 62/940,641  (under review) (November 2019) . 
  • V. Thangadurai,* S. Venkatesan, K. Karan and S. Later, “Auxiliary Electrode Mediated Membrane-Free Redox Electrohemical Cell for Energy Storage,” US 62/887,464 (under review) (Aug 2019). 
  • V. Thangadurai,* K. Hofstetter, and A. Samson, “Rechargeable Lithium–Ion battery Containing Li-Rich gannet Electrolyte,” US PCT/CA2018/050514 (under review) (May 2018). 
  • E.D. Wachsman,* L. Hu* and V. Thangadurai,* Ion Conducting Batteries with Solid State Electrolyte Materials, US 2014/02873.05 A1 (USA Patent) (September 2014).
  • V. Thangadurai,* K. Ramaiyan, K, Singh and S. Gill, “Chemically Stable Proton Conducting Doped BaCeO3,” US 2017/0149082 A1 (US Patent) (2020). 
  • V. Thangadurai,* “Perovskite-like Structures,” USA Patent, US/2011/0086289, April 2014. 
  • V. Thangadurai* and W. Weppner* “Chemischer Stabiler, Fester Lithium Ionenleiter,” DE 102004010892 (Deuchland Patent) (US7901658B2) (US Patent) (2005).

Book Chapters

  • S. Mulmi and V. Thangadurai, “Solid State Electrolytes: Structural Approach,” in Solid Electrolytes for Advanced Applications: Garnets and Competitors, Springer-Nature, pp. 3-24 (R. Murugan and W. Weppner, Eds.) (2020).
  • S. Bag and V. Thangadurai, “Electrolyte Development of Solid State Lithium ion Batteries,” in Solid State Energy, RSC Publisher, UK pp.100-135 (S. Skinner, Ed.) (2020)
  • V. Thangadurai and W. Weppner “Solid Oxide Ion Conductors: Materials and Applications,” in New Developments in Electrochemistry Research, (Ed. M. Nunez), 145- 185 (2005), ISBN: 1-59454-544-8, Nova Science Publishers Inc., New York, USA.
  • V. Thangadurai and W. Weppner, “Materials Aspects of Solid-State Ionic Devices: Solid Oxide Fuel Cells and Electrochromism,” Recent Research Developments in Solid State Ionics, 1, 131-156 (2003), ISBN: 81-7895-069-3, Transworld Research Network, India.