UofC " This Is Now

Search Calendar:


Site Navigation
Welcome
Important Notice and Disclaimer
Fee Payment Deadlines
Academic Schedule
Undergraduate Degrees with a Major
Combined Degrees
Minor Programs
Student Services
Undergraduate Admissions
Academic Regulations
Tuition and General Fees
English for Academic Purposes Program
Faculty of Arts
Cumming School of Medicine
Faculty of Environmental Design
Faculty of Graduate Studies
Haskayne School of Business
Faculty of Kinesiology
Faculty of Law
Faculty of Nursing
Qatar Faculty
Schulich School of Engineering
Faculty of Science
Faculty of Social Work
Faculty of Veterinary Medicine
Werklund School of Education
Co-operative Education/Internship
Continuing Education
Awards and Financial Assistance
COURSES OF INSTRUCTION
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
C
D
E
F
G
H
I
J, K
L
M
N, O
P
Petroleum Engineering ENPE
Petroleum Land Management PLMA
Philosophy PHIL
Physical Education PHED
Physics PHYS
Plant Biology PLBI
Political Science POLI
Psychology PSYC
Public Policy PPOL
Pure Mathematics PMAT
R
S
T, U
V, W, Z
About the University of Calgary
Where
Who's Who
Glossary of Terms
Contact Us
Archives
Summary of Revisions
University of Calgary Calendar 2014-2015 COURSES OF INSTRUCTION Course Descriptions P Physics PHYS
Physics PHYS

Instruction offered by members of the Department of Physics and Astronomy in the Faculty of Science.

Department Head – R.I. Thompson

Note: For listings of related courses, see Astronomy, Astrophysics, Medical Physics and Space Physics.

Students intending to register in any Physics course should read the relevant Faculty of Science Program section of this Calendar.

Modules for First Year and First Term Second Year Physics Courses
Physics 106       Module M6 Thermal Physics
Thermal Physics. Gas laws; kinetic theory of gases; temperature; internal energy; specific heat; energy transfer; laws of thermodynamics; PVT diagrams.
Course Hours:
E(12 hours)
Prerequisite(s):
Consent of the Department.
Notes:
Taught as part of Physics 223.  Contact the instructor in Physics 223 regarding the schedule.  
back to top
Physics 107       Module M7 Basic Optics
Basic Optics. Reflection, refraction; real and virtual images; images as objects; mirrors; lenses; optical instruments; wave nature of light; interference.
Course Hours:
E(12 hours)
Prerequisite(s):
Consent of the Department.
Notes:
Taught as part of Physics 223.  Contact the instructor in Physics 223 regarding the schedule.  
back to top
Junior Courses
Physics 211       Mechanics
Introductory Newtonian particle mechanics and rigid bodies in rotational equilibrium: Kinematics, Newton's laws, conservation of momentum and mechanical energy.
Course Hours:
H(4-2)
Prerequisite(s):
Mathematics 30-1 or Pure Mathematics 30 or Mathematics II (offered by Continuing Education). Note: Physics 30 is recommended as preparation for Physics 211.
Antirequisite(s):
Credit for both Physics 211 and either of 221 or 227 will not be allowed. Not open to students who meet ALL of the following criteria: 70 per cent or higher in Physics 30, 70 per cent or higher in  Mathematics 30-1 or Pure Mathematics 30 and 60 per cent or higher in Mathematics 31, except with special Departmental permission.
Notes:
Physics 211 and 221 differ in their prerequisites, but cover the same material and have the same examinations and tutorial quizzes. Physics 211 has an extra lecture hour per week to deal with certain topics from High School Physics and Mathematics 31. Mathematics 31 is recommended.
back to top
Physics 221       Mechanics
Introductory Newtonian particle mechanics and rigid bodies in rotational equilibrium: Kinematics, Newton's laws, conservation of momentum and mechanical energy.
Course Hours:
H(3-2)
Prerequisite(s):
A grade of 70 per cent  or higher in Physics 30; 50 per cent or higher in Mathematics 31; and 70 per cent or higher in Mathematics 30-1 or Pure Mathematics 30 or a grade of "B-" or 70 per cent or better in Mathematics II (offered by Continuing Education).
Antirequisite(s):
Credit for both Physics 221 and either of 211 or 227 will not be allowed.
back to top
Physics 223       Introductory Electromagnetism, and Thermal Physics
Electrical forces and energy. Static electric fields due to point charges. Parallel-plate capacitor. Simple DC circuits. Lorenz force. Static magnetic fields generated by electric currents. Electromagnetic induction. Gas Laws; kinetic theory of gases; temperature, thermal energy, specific heat; energy transfer; laws of thermodynamics; PVT diagrams.
Course Hours:
H(3-1T-3/2)
Prerequisite(s):
Physics 211 or 221 or 227.
Notes:
For students intending to major in Biological Sciences, Chemistry, Geology, or Geophysics.
back to top
Physics 227       Classical Physics
Kinematics and statics of rigid bodies; conservation laws; rotational mechanics.
Course Hours:
H(3-2T-2)
Prerequisite(s):
A grade of 75 per cent or higher in Physics 30; 60 per cent or higher in Mathematics 31; and 75 per cent or higher in Mathematics 30-1 or Pure Mathematics 30 or a grade of "B" or 70 per cent or better in Mathematics II (offered by Continuing Education).
Antirequisite(s):
Credit for Physics 227 and 321 will not be allowed.
Notes:
Open only to Physics and Astrophysics majors, Natural Science students concentrating in Physics, and Environmental Science students concentrating in Physics. Natural Sciences students without approved concentrations who are interested in concentrating in Physics should contact the Department for approval.
back to top
Physics 255       Electromagnetic Theory I
Electrostatics, DC circuits, calculation of magnetic intensity from currents, motion of charged particles in electric and magnetic fields, electromagnetic induction, transient effects in capacitors and inductors, electric and magnetic properties of materials.
Course Hours:
H(3-3)
Prerequisite(s):
Physics 211 or 221 or 227; Applied Mathematics 217 or Mathematics 249 or 251 or 265 or 275.
Antirequisite(s):
Credit for any of Physics 255 and 259 or 323 or 355 will not be allowed.
Notes:
Prior completion of or concurrent registration in Mathematics 277 is highly recommended.  Open only to Physics and Astrophysics majors, Natural Science students concentrating in Physics, and Environmental Science students concentrating in Physics. Natural Sciences students without approved concentrations who are interested in concentrating in Physics should contact the Department for approval.
back to top
Physics 259       Electricity and Magnetism (for students in Engineering)
Electric charges and electric current; Ohm's Law, Kirchhoff's Laws, application to simple circuits; potential and capacitance. An introduction to electromagnetic induction; inductance; electromotive force; electrical properties of materials.
Course Hours:
H(4-2)
Prerequisite(s):
Applied Mathematics 217 or Mathematics 265 or 275 and Mathematics 211.
Antirequisite(s):
Credit for Physics 259 and either of 255 or 323 will not be allowed.
Notes:
Prior completion of or concurrent registration in Mathematics 277 is highly recommended.
back to top
Physics 271       How Things Work
Physics behind many common devices will be discussed. Topics will be chosen from among the following: the use of simple and compound machines; waves, sound, acoustics; light and optics; household electric circuitry; magnetism.
Course Hours:
H(3-0)
Antirequisite(s):
Credit for Physics 271 and any 200-level Physics course will not be allowed.
Notes:
Some previous exposure to physics, e.g., Science 10, is strongly recommended. Not intended for Physics majors, Natural Science Physics Concentrators, or Environmental Science Physics Concentrators. Will not count in the field of Physics.
back to top
Senior Courses
Physics 303       Quantum Mysteries and Paradoxes
Aims to explain basic quantum phenomena for students outside the physical sciences. Topics covered may include wave-particle duality, quantum interference, as well as the paradoxes of entanglement and quantum nonlocality. Applications such as quantum cryptography and quantum teleportation are discussed, as are the philosophical interpretations of the quantum picture of the world.
Course Hours:
H(3-0)
Notes:
The course makes limited use of high-school algebra. Not intended for Physics majors and will not count in the field of Physics.    
back to top
Physics 321       Harmonic Motion, Waves, and Rotation
Simple harmonic oscillations. Progressive waves in one dimension. Energy of a wave. Superposition. Standing waves. Newtonian mechanics of rigid body rotation.
Course Hours:
H(3-2T)
Prerequisite(s):
Physics 211 or 221 and Mathematics 211 or 213 and Mathematics 267 or 277 or 253 or Applied Mathematics 217.
Antirequisite(s):
Credit for Physics 321 and 227 will not be allowed.
back to top
Physics 323       Optics and Electromagnetism
Static electric fields due to charge distributions. Static magnetic fields due to current distributions. Time-dependent behaviour of capacitors and inductances. Geometrical optics: Thin lenses and curved mirrors. Physical optics: Interference and diffraction.
Course Hours:
H(3-3/2)
Prerequisite(s):
Physics 211 or 221 or 227 and 223; and Applied Mathematics 217 or Mathematics 249 or 251 or 275.
Antirequisite(s):
Credit for Physics 323 and either of 255 or 259 will not be allowed.
Notes:
Prior completion of or concurrent registration in Mathematics 277 is highly recommended.
back to top
Physics 325       Modern Physics
Origins of quantum mechanics, a historical perspective. Concepts of wave mechanics and applications. Nuclear physics and radioactivity. Topics include: Special Theory of Relativity, Electromagnetic waves, Blackbody radiation, Photoelectric Effect, X-rays and Bragg Diffraction, Compton Scattering, Atomic Structure, The Bohr Model, Atomic Spectra, Applications of the Schrödinger Wave Equation, Radioactivity, Nuclear Stability, Nucleosynthesis, Structure of the Nucleus, Elementary Particles.
Course Hours:
H(3-3)
Prerequisite(s):
Physics 211 or 221 or 227; and 223 or 255 or 259 or 355; and Mathematics 211 or 213; and Mathematics 249 or 251 or 275 or Applied Mathematics 217.
Antirequisite(s):
Credit for both Physics 325 and 209 will not be allowed.
back to top
Physics 341       Classical Mechanics I
Forced and damped harmonic oscillations with real and complex numbers; anharmonic oscillators; central force motion and scattering; non-inertial frames; 2- and 3-body problems; applications of linear differential equations and complex numbers.
Course Hours:
H(3-3/2)
Prerequisite(s):
Physics 227 or 321; and Mathematics 211 or 213; and Applied Mathematics 219 or Mathematics 253 or 267 or 277 or 283.
back to top
Physics 343       Classical Mechanics II
Rotating frames of reference; general rotations of rigid bodies; moment of inertia tensor; eigenvalues and eigenvectors; Lagrangian and Hamiltonian mechanics; potential theory and tides; perturbation theory.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 341.
back to top
Physics 369       Acoustics, Optics and Radiation (for students in Engineering)
Wave motion as applied to acoustics, geometric and physical optics, and radiant energy transfer. Traditional and modern applications.
Course Hours:
H(3-3/2)
Prerequisite(s):
Applied Mathematics 219 or Mathematics 277; and Physics 259.
back to top
Physics 371       Introduction to Energy
Energy and power will be discussed. Sources of energy such as wind power, solar power, nuclear power, geothermal energy and fossil fuels and related limitations will be considered. Generation and distribution of electricity will be discussed.
Course Hours:
H(3-0)
Antirequisite(s):
Credit both for Physics 371 and Energy and Environment, Engineering 355 will not be allowed.
Notes:
Some previous exposure to physics, e.g., Science 10, is strongly recommended. Not intended for Physics majors and will not count in the field of Physics.
back to top
Physics 375       Introduction to Optics and Waves
Geometrical Optics: lenses, mirrors, and other basic optical components. Wave motion. Description of light as a wave. Fermat’s principle. Refraction, scattering, interference, diffraction, and polarization. Optical instruments (including telescopes and microscopes). Lasers and fibre optics if time allows.
Course Hours:
H(3-3/2)
Prerequisite(s):
Physics 255; and one of Applied Mathematics 219 or Mathematics 253 or 267 or 277 or 283.
back to top
Physics 381       Computational Physics I
Solution of problems associated with the analysis of physical systems, using digital computers, high level programming languages, and mathematical computation systems.
Course Hours:
H(1-3)
Prerequisite(s):
Computer Science 217 or 231; and Physics 227.
Notes:
Prior completion of or concurrent registration in Physics 343 is highly recommended.
back to top
Physics 397       Applied Physics Laboratory I
Basic laboratory electronics, vacuum systems, and optical devices. Introduction to experimental control, data collection, and analysis. Fundamentals of error analysis and error propagation.
Course Hours:
H(2-1T-3)
Notes:
Prior completion of or concurrent registration in Physics 223 or 255 or 259 is highly recommended.
back to top
Physics 443       Quantum Mechanics I
Basic postulates of quantum mechanics. Mathematical formalism of the theory and its physical interpretation. Schrödinger's time-dependent and time-independent equations. Single particle in a potential field (square well, potential barrier, harmonic oscillator, Kronig-Penney, Coulomb) and rigid rotator. The applicability of these potentials to atomic, molecular, nuclear, and solid state physics will be indicated.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 325 and 343 and Mathematics 311.
Notes:
Prior completion of or concurrent registration in Mathematics 367 or 377 is highly recommended.
back to top
Physics 449       Statistical Mechanics I
State-counting; classical distributions; origins and role of entropy; equilibrium; microcanonical, canonical, and grand canonical ensembles; concepts of work, heat, and temperature; equations of state; heat capacity; equipartition theorem; engines; laws of thermodynamics; non-equilibrium systems; Maxwell-Boltzmann distribution; enthalpy and free energies.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 325; and one of Applied Mathematics 219 or Mathematics 253 or 267 or 277.
Notes:
Prior completion of or concurrent registration in Physics 341 is highly recommended.
back to top
Physics 451       Statistical Mechanics II
Gibbs' paradox; bosons and fermions; quantum counting; classical-quantum transition; blackbody radiation; phase transitions; fluctuations and critical phenomena; complex systems; self-organized criticality; cellular automata.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 449.
back to top
Physics 455       Electromagnetic Theory II
Macroscopic Maxwell equations. Scalar and vector potentials. Electrostatics and magnetostatics. Dielectric and magnetic properties of materials. Superconductors.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 255 or 323; and Applied Mathematics 309 or Mathematics 353 or 377.
Antirequisite(s):
Credit for both Physics 455 and Electrical Engineering 475 will not be allowed.
Notes:
Prior completion of or concurrent registration in Applied Mathematics 433 is highly recommended.
back to top
Physics 457       Electromagnetic Theory III
Electromagnetic wave solutions to Maxwell's equations, in vacuum and in insulating and conducting media. Waveguides. Electromagnetic radiation from accelerated charges. Relativistic formulation of electrodynamics.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 455 and Applied Mathematics 433.
Antirequisite(s):
Credit for both Physics 457 and Electrical Engineering 476 will not be allowed.
back to top
Physics 481       Computational Physics II
Solution of problems associated with the analysis of physical systems, using digital computers, high level programming languages, and mathematical computation systems.
Course Hours:
H(3-3)
Prerequisite(s):
Physics 381;  and Physics 325 or Chemistry 373.
Notes:
Prior completion of or concurrent registration in Physics 443 is highly recommended.
back to top
Physics 497       Applied Physics Laboratory II
Intermediate laboratory electronics, vacuum systems, and optical devices. Computer automation of experimental control, data collection, and analysis, including error analysis and error propagation.
Course Hours:
H(2-6)
Prerequisite(s):
Physics 397.
back to top
Physics 501       Special Relativity
Lorentz transformations in classical mechanics; relativistic kinematics; spacetime diagrams; relativistic energy and momentum conservation; Geometrical interpretation; applications of relativistic kinematics; four-vector formalism and tensors; applications, primarily to relativistic electrodynamics.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 325 and 457; and one of Mathematics 353 or 377 or Applied Mathematics 309.
back to top
Physics 507       Solid State Physics
Crystal structure. Classification of solids and their bonding. Fermi surface. Elastic, electric and magnetic properties of solids.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 443 or Chemistry 373; and Physics 449 and 455.
back to top
Physics 509       Plasma Physics
Occurrence of plasmas in nature, single particle motion, plasmas as fluids, waves in plasmas, diffusion, resistivity, equilibrium and stability, kinetic theory of plasmas, non-linear effects.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 343 and 455.
back to top
Physics 521       Non-linear Dynamics and Chaos
Introduction to non-linear dynamical systems: Phase space representation, bifurcations, normal forms, non-linear oscillators, deterministic chaos, attractors, fractals, universality, renormalization, and synchronization.
Course Hours:
H(3-0)
Prerequisite(s):
Applied Mathematics 433 and Physics 381 and 449 or consent of the Department
back to top
Physics 543       Quantum Mechanics II
Theory of angular momentum and applications, perturbation theory and applications. Identical particles. Introduction to relativistic wave equations.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 443 or Chemistry 373.
back to top
Physics 561       Stable and Radioactive Isotope Studies, Fundamentals
A multidisciplinary course. Topics include nucleosynthesis, radioactive decay, isotope exchange phenomena, kinetic isotope effects, tracer techniques, molecular spectra and instrumentation.
Course Hours:
H(2-1)
Prerequisite(s):
Consent of the Department.
back to top
Physics 575       Optics
Geometrical Optics: lenses, mirrors, and other basic optical components. Matrix Methods. Physical Optics: Interference, Diffraction, and Polarization. Fourier Optics. Modern Optics: Lasers and Fibre Optics.
Course Hours:
H(3-3)
Prerequisite(s):
Physics 325 and 457 and Applied Mathematics 433.
Antirequisite(s):
Credit will not be allowed for both Physics 575 and 471.
back to top
Physics 581       Computational Physics III
Solution of problems associated with the analysis of physical systems, using digital computers, high level programming languages, and mathematical computation systems (e.g., Maple, Macsyma).
Course Hours:
H(3-3)
Prerequisite(s):
Physics 443 or Chemistry 373; and Physics 481 and 455.
Notes:
A knowledge of a high level programming language (C, C++, Fortran or Pascal) is highly recommended.
Also known as:
(formerly Physics 535)
back to top
Physics 593       Topics in Contemporary Physics
Topics will be from the research areas of staff members.

Course Hours:
H(3-0) or H(0-6)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
back to top
Physics 597       Senior Physics Laboratory
Selected advanced experiments. Where possible, students may choose those experiments most suited to their interests. Development of technical and computer-based skills, technical writing and presentation skills.
Course Hours:
H(1-6)
Prerequisite(s):
Physics 325 and 497.
back to top
Physics 598       Honours Research Thesis
Each student will be assigned a project in consultation with a supervisor. Written reports and oral presentations are required.
Course Hours:
F(0-9)
Prerequisite(s):
Physics 443 and 449 and 455 and consent of the Department.
back to top
Physics 599       Senior Research Thesis
Each student will be assigned a project in consultation with a supervisor. Written reports and oral presentations are required.
Course Hours:
H(0-9)
Prerequisite(s):
Consent of the Department.
Notes:
This course may be repeated once for credit.
back to top
Graduate Courses

Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.

Physics 603       Experimental Methods of Physics
Instrumentation for physical experiments. General philosophy of experimentation; signal processes; signal processing methods; instrument design and control; data acquisition and storage; specific detection methods.
Course Hours:
H(3-0)
back to top
Physics 605       Advanced Data Analysis
Methods of extraction of significant information from experimental data degraded by noise. Parametric and non-parametric statistical methods; curve fitting; spectral analysis; filtering, sampling, convolution and deconvolution techniques.
Course Hours:
H(3-0)
back to top
Physics 609       Advanced Classical Mechanics
Variational principles, Lagrange's equations, Noether's theorem. Hamilton's equations and canonical transformations. Hamilton-Jacobi theory, action-angle variables. Perturbation theory.
Course Hours:
H(3-0)
Notes:
It is expected that a student's background will include Physics 343 or equivalent.
back to top
Physics 611       Statistical Physics
Classical and quantum ensemble theory applied to interacting systems: real gases, spin lattices, phase transitions. Kinetic theory: Boltzmann equation, transport processes, irreversible processes and fluctuations.
Course Hours:
H(3-0)
Notes:
It is expected that a student's background will include Physics 449 or equivalent.
back to top
Physics 613       Electrodynamics
Interaction between charged particles and the electromagnetic field in relativistic formulation. Scattering and energy losses of charged particles. Radiation by charged particles.
Course Hours:
H(3-0)
Notes:
It is expected that a student's background will include Physics 457 and 501 or equivalents.
back to top
Physics 615       Advanced Quantum Mechanics I
Basic formalism of the theory and its interpretation, symmetry generators. Scattering theory. Bound states. Charged particles in electric and magnetic fields. Approximation methods.
Course Hours:
H(3-0)
Notes:
It is expected that a student's background will include Physics 543 or equivalent.
back to top
Physics 617       Advanced Quantum Mechanics II
Second quantized description of N-particle systems. Quantum theory of the electromagnetic field, coherent states. Relativistic quantum mechanics.
Course Hours:
H(3-0)
Notes:
It is expected that a student's background will include Physics 543 or equivalent.
back to top
Physics 619       Statistical Physics II
Topics Theories of equilibrium and non-equilibrium critical phenomena and methods to study fluctuating systems selected from the following list of topics: Percolation, scaling theory, phase transitions, Landau-Ginzburg theory, lattice models, Monte Carlo methods, renormalization group, self-organized criticality, theory of random graphs; Brownian motion, random walks and diffusion, Fokker-Planck-Equation, Markov processes, stochastic differential equations, first passage times.
Course Hours:
H(3-0)
Prerequisite(s):
Physics 611
Notes:
It is expected that a student's background will include Physics 481 or its equivalent.
back to top
Physics 621       Nonlinear Dynamics and Pattern Formation
Topics: Introduction to pattern formation and self-organization in nature: Reaction-diffusion systems, hydrodynamical systems, bistable media, excitable and oscillatory media, stability analysis, bifurcations, pattern selection, amplitude equations and normal forms, fronts, traveling waves, topological defects, spiral waves, spatiotemporal chaos, defect-mediated turbulence, spatiotemporal point processes
Course Hours:
H(3-0)
Notes:
It is expected that a student's background will include Physics 451, 481 and 521 or equivalents.
back to top
Physics 629       Gravitation
An introduction to Einstein's theory of gravitation. Applications to the solar system, black holes, and cosmology.
Course Hours:
H(3-0)
Notes:
It is expected that a student's background will include Physics 501 or equivalent.
back to top
Physics 663       Applications of Stable Isotopes
Application of stable isotope techniques with special focus on Hydrogeology, Geology and Environmental Sciences. The use of isotopes to understand the water, carbon, nitrogen and sulphur cycles is demonstrated. Topics include hydrology, paleoclimates, geothermometry, fossil fuels exploration and recovery, pollutant tracing, food webs, forensic investigations, among others.
Course Hours:
H(2-1)
Prerequisite(s):
Consent of the Department.
Also known as:
(Geology 663)
back to top
Physics 671       Atomic and Molecular Spectroscopy
Atomic structure and spectra. Rotational, vibrational and electronic spectra of diatomic molecules, including microwave, infrared, Raman and visible/ultraviolet spectroscopic techniques. Hund's coupling cases. Polyatomic molecular spectroscopy. Examples from astronomy and upper atmosphere/space physics.
Course Hours:
H(3-0)
back to top
Physics 673       Quantum and Non-linear Optics
Fundamentals of quantum and non-linear optics including atom-photon interactions, coherence, electromagnetically induced transparency, open systems and decoherence, and applications to quantum information technology.
Course Hours:
H(3-0)
back to top
Physics 675       Special Topics in Laser and Optical Sciences
Lectures by Physics and Astronomy, Chemistry, Engineering, and/or Medicine staff on current research topics in laser science and modern optical techniques.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
back to top
Physics 677       Implementations of Quantum Information
Proposals and realizations of quantum information tasks including quantum computation, quantum communication, and quantum cryptography in optical, atomic, molecular, and solid state systems.
Course Hours:
H(3-0)
Prerequisite(s):
Consent of the Department.
back to top
Physics 691       Scientific Communication Skills

Required, multi-component, program of courses for all graduate students in the Department of Physics and Astronomy designed to assist students in improving their scientific oral and written communication skills. Each student must complete a minimum of three terms of Physics 691 during each graduate course, although the normal load is four terms, and additional terms may be required of students on an as-need basis. The components of Physics 691 are:

691.11. Effective Scientific Speaking for MSc Students

691.12. Graduate Seminar for MSc Students I

691.13. Effective Scientific Writing for MSc Students

691.14. Graduate Seminar for MSc Students II

691.16. Graduate Seminar for MSc Students III

691.18. Graduate Seminar for MSc Students IV

691.21. Effective Scientific Speaking for PhD Students

691.22. Graduate Seminar for PhD Students I

691.23. Effective Scientific Writing for PhD Students

691.24. Graduate Seminar for PhD Students II

691.26. Graduate Seminar for PhD Students III

691.28. Graduate Seminar for PhD Students IV

Effective Scientific Speaking courses provide instruction on preparing and presenting quality scientific oral presentations, including discussions of the aspects of quality presentations and exercises aimed at improving student speaking skills, and will be taken by graduate students in their first fall terms in program. Effective Scientific Writing courses provide students with instruction on preparing quality scientific papers, as well as exercises aimed at improving students' writing skills, and will be taken during students' second fall term in program. The Graduate Seminar courses will be run each winter, and provide all students enrolled in each course the opportunity to present one or two scientific talks, as well as to provide peer feedback to other students in the course. At the end of each Graduate Seminar term, the course instructor(s) will identify those students who have reached an acceptable level of scientific speaking competency and exempt these students from any further Physics 691 Graduate Seminar courses for their current degrees.


Course Hours:
Q(2S-0)
MAY BE REPEATED FOR CREDIT
NOT INCLUDED IN GPA
back to top
Physics 697       Topics in Contemporary Physics
Topics will be from the research areas of staff members.
Course Hours:
H(3-0) or H(0-6)
MAY BE REPEATED FOR CREDIT
back to top
Physics 699       Project in Physics
Each student will select a project in consultation with a staff member. The project may be experimental or theoretical in nature. A written report and an oral presentation are required.
Course Hours:
H(0-9)
back to top
Physics 701       Independent Study
Each student will select a topic of study in consultation with a staff member. The topic will be in the research area of the staff member. This course may not be used to meet the regular course requirements in the MSc and PhD programs.
Course Hours:
H(0-9)
MAY BE REPEATED FOR CREDIT
back to top