Instruction offered by members of the Department of Chemistry in the Faculty of Science.
Department Head - P.G. Kusalik
Students interested in taking Chemistry courses are urged to read the advice in the Faculty of Science Program section of this Calendar. Students taking Chemistry courses which have a laboratory component are required to provide evidence that they have successfully completed the Chemical Laboratory Safety Course for Undergraduates prior to the first laboratory class. Students who have not completed this course at some time during their undergraduate program will not be allowed into the laboratory until they do so. Information about this course is available from the Chemistry Undergraduate Affairs Office (SA 109), email address: uginfo@chem.ucalgary.ca, or at http://www.ucalgary.ca/chem/.
|
|
Chemistry
201
|
General Chemistry: Structure and Bonding
|
|
An introduction to university chemistry from theoretical and practical perspectives, that focuses on an exploration of the fundamental links between electronic structure, chemical bonding, molecular structure and the interactions of molecules using inorganic and organic examples.
Course Hours:
H(3-3)
Prerequisite(s):
Chemistry 30 (or Continuing Education - Introduction to Chemistry) and one of Pure Mathematics 30 or Mathematics II (offered by Continuing Education). Mathematics 31 is strongly recommended.
Antirequisite(s):
Note: Credit for both Chemistry 201 and 209, 211 and 225 will not be allowed.
Notes:
Chemistry 201 is not a prerequisite for Chemistry 203. Chemistry 201 and Chemistry 203 may be taken in any order. Students who have completed the International Baccalaureate Higher Level examination in Chemistry may request advanced credit in Chemistry 201 and 203. Those who have completed the Subsidiary Level examination in Chemistry may apply to the Department of Chemistry for advanced placement in Chemistry 201 or 201 and 203.
|
back to top | |
|
Chemistry
203
|
General Chemistry : Change and Equilibrium
|
|
An introduction to university chemistry from theoretical and practical perspectives that focuses on an exploration of the fundamental links between kinetics, equilibria and thermodynamics and explores acidity/basicity and redox behaviour using inorganic and organic examples.
Course Hours:
H(3-3)
Prerequisite(s):
Chemistry 30 (or Continuing Education - Introduction to Chemistry) and one of Pure Mathematics 30 or Mathematics II (offered by Continuing Education). Mathematics 31 is strongly recommended.
Antirequisite(s):
Note: Credit for both Chemistry 203 and 209, 213 and 225 will not be allowed.
Notes:
Chemistry 201 is not a prerequisite for Chemistry 203. Chemistry 201 and 203 may be taken in any order. Students who have completed the International Baccalaureate Higher Level examination in Chemistry may request advanced credit in Chemistry 201 and 203. Those who have completed the Subsidiary Level examination in Chemistry may apply to the Department of Chemistry for advanced placement in Chemistry 201 or 201 and 203.
|
back to top | |
|
Chemistry
209
|
General Chemistry for Engineers
|
|
Basic chemical concepts. Atomic and molecular structure. Chemical bonding. Chemical kinetics and equilibria. Acid-base and solubility equilibria. Oxidation-reduction phenomena and electrochemistry. The chemistry of water. The chemistry of energy sources. Basic environmental issues.
Course Hours:
H(3-1T-3/2)
Prerequisite(s):
Chemistry 30 (or Continuing Education - Introduction to Chemistry) and one of Pure Mathematics 30 or Mathematics II (offered by Continuing Education). Mathematics 31 is strongly recommended.
Antirequisite(s):
Note: Credit for both Chemistry 209 and 201, 203, 211, 213 and 225 will not be allowed.
|
back to top | |
|
Chemistry
211
|
Foundations of Chemistry: Structure and Bonding
|
|
Same core topics as Chem 201 but taught with a greater emphasis on critical thinking, scientific observation and problem solving and the application of chemistry to topics such as drug design and environmental issues.
Course Hours:
H(3-3)
Prerequisite(s):
Chemistry 30 (or Continuing Education - Introduction to Chemistry) and one of Pure Mathematics 30 or Mathematics II (offered by Continuing Education). Mathematics 31 is strongly recommended.
Antirequisite(s):
Note: Credit for both Chemistry 211 and 201, 209 or 225 will not be allowed
Notes:
Strongly recommended for students majoring in Chemistry and other students with strong backgrounds in chemistry. Students who have completed the International Baccalaureate Higher Level examination in Chemistry may request advanced credit in Chemistry 211 and 213. Those who have completed the Subsidiary Level examination in Chemistry may apply to the Department of Chemistry for advanced placement in Chemistry 211 or 211 and 213.
|
back to top | |
|
Chemistry
213
|
Foundations of Chemistry : Change and Equilibrium
|
|
Same core topics as Chem 203 but taught with a greater emphasis on critical thinking, scientific observation and problem solving and the application of chemistry to topics such as materials, explosives and medicine.
Course Hours:
H(3-3)
Prerequisite(s):
Chemistry 201 or 211
Antirequisite(s):
Note: Credit for both Chemistry 213 and 203, 209 or 225 will not be allowed
Notes:
Strongly recommended for students majoring in Chemistry and other students with strong backgrounds in chemistry. Students who have completed the International Baccalaureate Higher Level examination in Chemistry may request advanced credit in Chemistry 211 and 213. Those who have completed the Subsidiary Level examination in Chemistry may apply to the Department of Chemistry for advanced placement in Chemistry 211 or 211 and 213.
|
back to top | |
|
Chemistry
225
|
The Chemical World
|
|
A one semester elective course. Focus on developing a general awareness and appreciation of the chemistry all around us, where the chemical principles are surveyed in a variety of current and everyday contexts.
Course Hours:
H(3-1T)
Antirequisite(s):
Note: Credit for both Chemistry 225 and 201 or 203 or 209 or 211 or 213 will not be allowed.
Notes:
Some previous exposure to chemistry, e.g. Chemistry 20, is strongly recommended. This course will not serve as a prerequisite for senior chemistry courses. Not open to students in Honours, Majors or Minors in Chemistry programs or to Natural Science students with a concentration in Chemistry.
|
back to top | |
|
Senior Courses
Note: In all senior courses in Chemistry with a laboratory component, a charge will be levied for excessive breakage of glassware or equipment.
|
Chemistry
311
|
Analytical Chemistry: Quantitative Analysis
|
|
Lectures: Principles and practice of precision measurement in chemistry; statistical treatment of data; acid-base and oxidation-reduction equilibria; complexometric analysis. Laboratory: Quantitative analysis of organic and inorganic materials.
Course Hours:
H(3-4)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213, and Mathematics 251 or 249 or Applied Mathematics 217.
|
back to top | |
|
Chemistry
315
|
Analytical Chemistry: Introductory Instrumental Analysis
|
|
Lectures: Principles and practice of instrumental measurements for the quantitative determination of substances. Spectroscopic analysis. Analytical separations; liquid-liquid extraction, solid phase extraction, chromatography. Electrochemical methods: potentiometry, voltammetry, coulometry. Automated methods of analysis. Laboratory: Quantitative analysis of organic and inorganic materials using simple instrumental techniques.
Course Hours:
H(3-4)
Prerequisite(s):
Chemistry 311.
|
back to top | |
|
Chemistry
331
|
Inorganic Chemistry: Main Group Elements
|
|
Lectures: The structure of many-electron atoms; bonding, stereochemistry and symmetry in inorganic compounds; solid-state science and aspects of inorganic solution chemistry. The chemistry of the main group elements. Laboratory: Applications of chemical principles to inorganic synthetic and qualitative analytical problems.
Course Hours:
H(3-3)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213
|
back to top | |
|
Chemistry
333
|
Inorganic Chemistry: Transition Metals
|
|
Lectures: Bonding models for metals and for transition metal compounds; interpretation of redox and thermodynamic properties based on ligand field theory; coordination and organometallic compounds of the transition metals; metal complexes as catalysts in industry and biology. Laboratory: Synthesis, analysis, and physical investigations of transition metal compounds which illustrate their important properties.
Course Hours:
H(3-3)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213
|
back to top | |
|
Chemistry
351
|
Organic Chemistry I
|
|
An introduction to Organic Chemistry from a mechanistic perspective. Structure, bonding, and function, e.g. physical properties and reactivity. Stereochemistry, kinetics and thermodynamics, spectroscopy (nuclear magnetic resonance, infrared, ultra-violet/visible, and mass spectrometric techniques). Substitution and elimination reactions of saturated functional groups - the chemistry of alkanes, alkyl halides, alcohols and their derivatives. Laboratory: Practical techniques.
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213
Antirequisite(s):
Note: Credit for both Chemistry 351 and 341 will not be allowed.
Notes:
Students are advised to take Chemistry 351 and 353 in consecutive terms.
|
back to top | |
|
Chemistry
353
|
Organic Chemistry II
|
|
The concept and implications of aromaticity. The reactions of unsaturated functional groups via substitution, elimination and addition mechanisms: the chemistry of alkenes, alkynes, aromatics, aldehydes, ketones and carboxylic acids and their derivatives. Laboratory: Characteristic functional group reactivity, synthesis, and qualitative organic analysis.
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 351.
Antirequisite(s):
Note: Credit for both Chemistry 353 and either 341 or 355 will not be allowed.
Notes:
Not open to students in Chemistry programs. Students are advised to take Chemistry 351 and 353 in consecutive terms.
|
back to top | |
|
Chemistry
355
|
Organic Chemistry II (for Chemists)
|
|
Mechanisms and synthetic applications of the reactions of alkenes, alkynes, aromatics, carbonyl compounds, carboxylic acids and derivatives, and conjugated systems such as 1,3-dienes and enones. The concept of aromaticity and its effect on chemical behaviour. Laboratory: Emphasis on organic synthesis and the methods of qualitative organic analysis.
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213 and 351.
Antirequisite(s):
Note: Credit for both Chemistry 355 and 353 will not be allowed.
Notes:
Open to students in Chemistry programs and to others by consent of the Department. Students are advised to take Chemistry 351 and 355 in consecutive terms.
|
back to top | |
|
Chemistry
357
|
Industrial Organic Chemistry for Engineers
|
|
The hybridization of the carbon atom and covalent bonding. Typical reactions of alkanes, alkenes, alkynes and industrial applications. Substitution; halogenation, nitration and oxidation of aromatic hydrocarbons; polymerization and industrial applications. Functional groups and their reactions; oxidation, reduction, addition and elimination reactions, industrial applications.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213, or 209.
Antirequisite(s):
Note: Credit for both Chemistry 357 and any of 351, 353 or 355 will not be allowed.
|
back to top | |
|
Chemistry
371
|
Physical Chemistry I
|
|
Lectures: A study of the states of matter. The basic laws of thermodynamics and their applications. Development of the concept of chemical potential. Changes of state and phase diagrams of pure substances and mixtures. Equilibrium electrochemistry. Laboratory: Experimental measurements, interpretations, and calculations relating to the topics discussed in lectures.
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213, Physics 213 or 223 or 255; Mathematics 253 or 263 or 283 or Applied Mathematics 219.
Antirequisite(s):
Note: Credit for both Chemistry 371 and any of Physics 347, 349, or 447 will not be allowed.
|
back to top | |
|
Chemistry
373
|
Physical Chemistry II
|
|
Lectures: Elementary quantum mechanical treatment of the energy levels of atoms and molecules. Atomic spectra. Symmetry elements, operations, and point groups. Laboratory: Experimental measurements, interpretations, and calculations relating to the topics discussed in lectures. (Prerequisite updated June 2009)
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213; Physics 213 or 223; Mathematics 253 or 263 or 283 or Applied Mathematics 219.
Antirequisite(s):
Note: Credit for both Chemistry 373 and Physics 443 will not be allowed.
|
back to top | |
|
Chemistry
409
|
Applied Chemistry and Chemical Pathways for Engineers
|
|
Analysis of industrial chemical processes based on reaction pathways to infer system performance including co-product formation and the role of catalysts. Examples from oil, gas, coal and petrochemical processing.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 209, 357.
|
back to top | |
|
Chemistry
417
|
Modern Chromatographic Analysis
|
|
Fundamental concepts and methods of chromatographic separation science: partition theory, sample preparation, chromatographic theory, gas and liquid chromatography, principles of detection. Emerging concepts such as micro-fluidic separation platforms, column technology and novel mobile phases.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 311 and 315.
|
back to top | |
|
Chemistry
421
|
Environmental Chemistry
|
|
A survey course of major aspects of environmental chemistry including the natural chemical cycles in the biosphere, geosphere, hydrosphere and atmosphere and the consequences of anthropogenic disturbances to these cycles. Topics discussed will include: Aquatic Chemistry and Water Pollution; Atmospheric Chemistry and Its Alteration; Soil Chemistry and the Fate of Pollutants; Hazardous Waste; Toxicological Chemistry.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 201 or 211, and 203 or 213, or 209.
|
back to top | |
|
Chemistry
425
|
Industrial Chemistry
|
|
Electrochemical processes and the applications of some of their products. Unit operations and reactor types in the chemical industry. Petroleum refining including heavy oil and bitumen. Industrial organic synthesis including monomers for subsequent polymerization. Design of specialized polymers.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 353 or 355.
|
back to top | |
|
Chemistry
453
|
Advanced Organic Chemistry
|
|
Introduction to MO theory. Pericyclic reactions, the Woodward-Hoffmann rules. Photochemistry. Elucidation of reaction mechanism, reactive intermediates. Laboratory: Multi step synthesis and computer modelling of organic reactions.
Course Hours:
H(3-4)
Prerequisite(s):
Chemistry 351; Chemistry 353 or 355.
|
back to top | |
|
Chemistry
471
|
Physical Chemistry III
|
|
Vibrational, electronic and magnetic resonance spectra. Reaction kinetics and transport properties in the gas phase and in solution. Catalysis. Laboratory: Experimental measurements, interpretations, and calculations relating to the topics discussed in lectures.
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 371 and 373.
|
back to top | |
|
Chemistry
502
|
Research in Chemistry
|
|
Comprehensive research project under the direction of a staff member. A research report must be presented on completion of the course, and attendance at a weekly research seminar is expected.
Course Hours:
F(0-9)
Prerequisite(s):
Consent of the Department.
Notes:
It is recommended that students have completed the third year of their program in Chemistry, Applied Chemistry or Chemical Physics.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
515
|
Advanced Instrumental Analysis
|
|
Lectures: Fundamental aspects of modern instrumental methods. Spectroscopic methods: UV-visible and atomic absorption spectroscopy, flame and plasma emission methods. Chromatographic methods; liquid and gas chromatography. Mass spectroscopy. Laboratory: Analysis of inorganic and organic samples using spectroscopic, electrochemical, and chromatographic instrumental methods.
Course Hours:
H(3-4)
Prerequisite(s):
Chemistry 311 and 315.
|
back to top | |
|
Chemistry
531
|
Advanced Inorganic Chemistry I
|
|
Coordination and organometallic chemistry of the transition elements, incorporating the lanthanoids and actinoids. Fundamental and applied aspects, including characterization techniques, reaction mechanisms, catalysis and bioinorganic chemistry.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 333 and 353 or 355.
|
back to top | |
|
Chemistry
533
|
Advanced Inorganic Chemistry II
|
|
Chemistry of the s- and p-block elements. Interpretation of nuclear magnetic resonance, electron paramagnetic resonance, vibrational and mass spectra. Fundamental concepts and industrial uses of inorganic heterocycles and polymers, electron-deficient and organometallic compounds. Solid-state chemistry.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 333 and 353 or 355.
|
back to top | |
|
Chemistry
535
|
Advanced Inorganic Laboratory
|
|
Advanced laboratory techniques for the synthesis and characterization of main group compounds, organometallics and solid-state materials using modern spectroscopic and structural methods. Includes a short project.
Course Hours:
H(1-8)
Prerequisite(s):
Chemistry 333 and 453.
Notes:
Open to students in Chemistry programs and to others by consent of the Department.
|
back to top | |
|
Chemistry
551
|
Organic Synthesis
|
|
Concepts and strategies of synthesizing molecules with emphasis on carbon-carbon bond-forming reactions, protecting groups, chemo-, regio- and stereoselectivity
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 453.
|
back to top | |
|
Chemistry
553
|
Bio-organic Chemistry
|
|
Organic chemistry applied to the understanding of biomolecules: selected topics from carbohydrate, peptide/protein, lipid and nucleoside chemistry, enzyme inhibition and drug design.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 453.
|
back to top | |
|
Chemistry
555
|
Advanced Organic Laboratory
|
|
Advanced laboratory techniques: methods of purification and identification of products, purification of reagents, experimental design, working with air/moisture sensitive reagents. Includes a short research project.
Course Hours:
H(1-8)
Prerequisite(s):
Chemistry 453.
Notes:
Open to students in Chemistry programs and to others by consent of the Department.
Also known as:
(formerly Chemistry 455)
|
back to top | |
|
Chemistry
557
|
Natural Product Chemistry
|
|
The organic chemistry of important classes of natural products such as polyketides, terpenoids, alkaloids, and antibiotics; illustrating the biosynthetic processes involved in their production, and selected chemical transformations, and syntheses.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 453.
|
back to top | |
|
Chemistry
559
|
Organic Spectroscopy
|
|
The instrumentation, theory and practical aspects of spectroscopy (e.g. UV/vis, MS, IR, 1H and 13C NMR including 2D-techniques). The emphasis will be on the application for structural elucidation through a problem solving approach.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 351; Chemistry 353 or 355.
|
back to top | |
|
Chemistry
571
|
Physical Chemistry of Interfaces
|
|
The chemical and electrical nature, as well as basic thermodynamics, of interfaces. Surface films and aqueous interfaces, including micelles and bilayers. Interfaces involving solids such as metals and semiconductors. Absorption phenomena and surface catalysis. Survey of experimental approaches for interfacial studies.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 371, 373 and consent of the Department.
|
back to top | |
|
Chemistry
573
|
Nature of the Condensed Phase in Chemistry
|
|
Theoretical models of liquids and solids. Dielectric continuum, polarizabilities and magnetism. Ionic crystal, insulators, conductors, semiconductors and super conductors. Some aspects of scattering techniques for structure determination.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 371, 373 and consent of the Department.
|
back to top | |
|
Chemistry
575
|
Advanced Electronic Structure Theory
|
|
A discussion of the theories of modern electronic structure illustrated by applications to molecular structure and bonding, electronic spectroscopy, as well as chemical reactivity and dynamics.
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 371 and 373.
|
back to top | |
|
Chemistry
579
|
Surface and Colloid Chemistry for Engineers
|
|
Introduces the fundamental and applied aspects of interfacial phenomena including capillarity, surface and interfacial tension, films, wetting and contact angles, adsorption, micellization, solubilization and emulsification. Examples drawn from colloids, foams, aerosols and macromolecules.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 209, 357 and Chemical Engineering 427.
|
back to top | |
|
Chemistry
599
|
Selected Topics in Chemistry
|
|
Selected topics are offered based on the interests of Chemistry faculty and students.
Course Hours:
H(3-0)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Graduate Courses
Advanced graduate level courses are listed below. Courses in certain areas are grouped under "Selected Topics" titles. The content and offering of these are decided annually by the Department to meet the requirements of graduate students in the program. A student may receive credit for several courses in a given selected topics area. Details of offerings and course outlines may be obtained from the Department on request.
Unless stated otherwise the prerequisite for entry to all courses at the 600 level and above is "consent of the Department." Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.
|
Chemistry
601
|
Research Seminar
|
|
Reports on studies of the literature or of current research. Required of all graduate students in Chemistry.
Course Hours:
H(2S-0)
NOT INCLUDED IN GPA
|
back to top | |
|
|
Chemistry
613
|
Electrochemical Fundamentals and Methodologies
|
|
Origin, significance, and thermodynamics of interfacial potential differences; structure of the double layer; basic principles of electron transfer at interfaces, Butler-Volmer equation; mass transport control of electro-chemical reactions; controlled potential methods as applied to electrode surface reactions and homogeneous reactions coupled to electron-transfer processes.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
615
|
Analytical Separations
|
|
Theory and practice of resolving mixtures into separate components for analysis. Basic theory; liquid-liquid extraction; high performance liquid chromatography; gas-liquid, open bed, ion exchange and exclusion chromatography; electrophoresis.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
617
|
Advanced Analytical Chemistry
|
|
Consideration of principles and equilibria pertaining to aqueous and nonaqueous neutralization, redox, complexation, precipitation and potentiometric methods employed in analyses. Statistical considerations of analytical data and analysis.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
619
|
Selected Topics in Analytical Chemistry
|
|
Topics of current interest such as: properties of synthetic polymer membranes, advanced instrumental methods, developments in chemical sensors, speciation studies, environmental analytical chemistry.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
621
|
Organometallic Chemistry
|
|
A detailed discussion of structure, bonding and preparative methods in organometallic chemistry including the industrial and synthetic applications of organometallic compounds.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
623
|
Chemistry of the Main Group Elements
|
|
The chemistry of electron-deficient, electron-precise, and electron-rich rings, inorganic polymers, and organometallic compounds of the main group elements; applications of spectroscopic techniques; industrial uses. Seminars on recent research developments.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
627
|
Theoretical Inorganic Chemistry
|
|
Aspects of theoretical inorganic and organometallic chemistry including: quantitative and qualitative molecular orbital theory; the bonding and structure of molecules, clusters, and extended arrays; the fragments of organometallic species; orbital correlation diagrams in inorganic reactions; spectroscopic methods and their interpretation.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
629
|
Selected Topics in Inorganic Chemistry
|
|
Courses are offered to cover topics of current interest, such as bioinorganic chemistry, inorganic solution phenomena, and the inorganic chemistry of the solid state.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
651
|
Advanced Organic Stereochemistry
|
|
Stereochemical principles in organic chemistry, including: geometry, bonding, symmetry, molecular isomerism, conformational analysis, asymmetric and stereocontrolled reactions.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
653
|
Advanced Organic Spectroscopy
|
|
Advanced spectroscopic techniques for the determination of organic molecular structure. Techniques include Nuclear Magnetic Resonance Spectroscopy (NMR), Infrared and Raman Spectroscopy, Ultraviolet and Visible Spectroscopy; (absorption, fluorescence, chiroptic), Mass Spectrometry, and an outline of the single-crystal X-ray diffraction method. Separation techniques will be covered, particularly those combining separations and spectroscopic analysis.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
655
|
Advanced Organic Synthesis
|
|
A review of modern synthetic reactions and methods in the field of organic chemistry with emphasis on the recent literature.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
657
|
Theoretical Organic Chemistry
|
|
Theoretical principles of organic chemistry including stereochemistry, molecular orbital calculations, pericyclic processes (Woodward-Hoffmann rules), and PMO theory.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
659
|
Selected Topics in Organic Chemistry
|
|
Courses are offered in major branches of organic chemistry, including: carbohydrate chemistry, steroids and terpenoids, semiochemistry, heterocyclic chemistry, biosynthesis of secondary metabolites, as well as other topics of current interest.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
669
|
Selected Topics in Applied Chemistry
|
|
Courses are offered in such topics as electrochemistry, industrial catalysis, chemistry of energy sources, colloid and surface chemistry and polymer chemistry.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
681
|
Crystallography
|
|
A general introduction to X-ray analysis of single crystals. Topics include: Geometry of the crystalline state; diffraction of X-rays; Fourier synthesis; methods of structure solution; accuracy and precision of derived parameters.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
689
|
Selected Topics in Physical Chemistry
|
|
Courses are offered in such topics as dielectric properties, kinetics, molecular vibrations, fluorescence spectroscopy, X-ray diffraction.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
701
|
Independent Study
|
|
Independent study outside a student's thesis area under the direction of a staff member and approved by the student's supervisor (or in the case of PhD students the supervisory committee) and Department Head. A report must be submitted on completion of the course.
|
back to top | |
|