|
Instruction offered by members of the Department of Biological Sciences in the Faculty of Science.
Department Head - R.M.R. Barclay
|
Biochemistry
543
|
Enzymology
|
|
The structure, mechanisms and biological interactions of enzymes. Binding, catalysis, rates and regulation will be discussed with regard to chemical principles of kinetics and reaction. The principles of enzyme action will be considered in the context of the biological role that enzymes play.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393 or 443, and Chemistry 353 or 355.
|
back to top | |
|
Biochemistry
547
|
Signal Transduction and Regulation of Metabolism
|
|
Principles of signal transduction with examples from prokaryotes and eukaryotes. Discussion of protein covalent modifications, inositol lipid signaling, structure and function of protein kinases and protein phosphatases and their role in regulating various aspects of cell function. Emphasis on metabolic pathways, cell cycle control, checkpoints, DNA damage response and epigenetics.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393 or 443.
|
back to top | |
|
Biochemistry
551
|
Structural Biology
|
|
Applications of modern methods to structural studies of proteins and nucleic acids by NMR and X-ray crystallography with a comparison of the structural information derived from the two methods. Crystallization of macromolecules. Experimental and theoretical foundations of X-ray and NMR structure determination, and ligand binding. Non-invasive NMR studies of metabolism, and magnetic resonance imaging.
Course Hours:
H(3-0)
Prerequisite(s):
One of Biochemistry 341 or 393, and one of Biochemistry 471 or Chemistry 371.
|
back to top | |
|
Biochemistry
553
|
Molecular Biophysics
|
|
A comprehensive survey of modern biophysics covering the flow and processing of matter, energy and information in living systems. Equilibrium and non-equilibrium thermodynamics in biology. Molecular motors and facilitated proton transport. An integrative approach connecting atomistic theories to cellular processes.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 341 or 393; and Biochemistry 471 or Chemistry 371.
Notes:
Prior completion of Biochemistry 555 is strongly recommended.
Also known as:
(formerly Biology 553)
|
back to top | |
|
Biochemistry
555
|
Biomembranes
|
|
The material examines the structure and function of biological membranes with a strong emphasis on the role of membrane proteins. Topics may include: the physical properties of lipid bilayers, isolation and purification of membrane proteins, preparation of membrane mimetic systems, ion and solute movement across membranes (transport and ion channels), membrane protein folding, assembly and structure, and protein secretion and translocation systems.
Course Hours:
H(3-1T-0)
Prerequisite(s):
Biochemistry 393 or 443.
Notes:
Prior or concurrent completion of Biochemistry 431 and 471 is strongly recommended.
|
back to top | |
|
Biochemistry
561
|
Applied Biochemistry and Biotechnology
|
|
An introduction to the language, materials, methods, concepts and commercial applications of biotechnology with emphasis on methodology, biocatalysts, and key concepts of genome sequencing, proteomics, and transcriptomics. Also, drug and antibiotic development, mechanisms of some drugs, and drug resistance will be introduced.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393.
Antirequisite(s):
Credit for both Biochemistry 561 and Biotechnology 561 will not be allowed.
Notes:
Prior completion of Cellular, Molecular and Microbial Biology 411 or Biochemistry 401 is strongly recommended.
|
back to top | |
|
|
Structure and function of lipids including phospholipids, sphingolipids, and steroids. Topics include properties of lipids and bilayers, lipid-lipid and lipid-protein interactions, technological applications, biosynthesis and regulation, lipids as second messengers, intracellular trafficking, and lipids in physiology and disease. Literature review and student seminars are significant components of this course.
Course Hours:
H(3-1T-0)
Prerequisite(s):
Biochemistry 393 or 443.
|
back to top | |
|
Biochemistry
577
|
Biomolecular Simulation
|
|
Introduction to simulation and computer modelling methods commonly used in biochemistry and biophysics, with a focus on physical models to understand the behaviour of biomolecules. Topics include simulation methods, dynamics of proteins, DNA, and lipids, calculation of binding constants, protein-drug interactions, properties of ion channels as well as a number of recent literature topics.
Course Hours:
H(3-4)
Prerequisite(s):
One of Biochemistry 341 or 393 and one of Biochemistry 471 or Chemistry 371.
|
back to top | |
|
Graduate Courses
Enrolment in any graduate course requires consent of the Department.
Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.
600-level courses are available with permission to undergraduate students in the final year of their programs.
See also the separate listing of graduate level Chemistry courses.
|
Biochemistry
641
|
Selected Topics in Biochemistry
|
|
Selected topics in Biochemistry such as those which appear annually in the serial publication Annual Review of Biochemistry.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Biochemistry
731
|
Current Topics in Biochemistry
|
|
A discussion of contemporary experimental and theoretical biochemical methods used for the study of drugs and diagnostics at a molecular level. Structural analysis, drug design and molecular dynamics methods will be described, as well as current practices for commercialization. Various modern 'omics' research approaches and current leading drug targets of the pharmaceutical industry will also be discussed.
Course Hours:
H(3-0)
|
back to top | |
|