|
Instruction offered by members of the Department of Mechanical and Manufacturing Engineering in the Schulich School of Engineering.
|
Mechanical Engineering
101
|
Mechanical and Manufacturing Engineering Block Course
|
|
Special topics in Mechanical and Manufacturing Engineering. Research and industry presentations, software training, informational sessions, and field trips as resources permit.
Course Hours:
3 units; H(32 hours)
Notes:
Presented during block week in the Fall Term over 4 days. All Mechanical and Manufacturing Engineering students must complete this course prior to entry to their third year of studies.
Also known as:
(formerly Mechanical Engineering 001)
NOT INCLUDED IN GPA
|
back to top | |
|
|
Mechanical Engineering
317
|
Mechanics of Deformable Solids I
|
|
Review of axial-force, shear-force, bending moment and torque diagrams. Review of vector and matrix algebra. Kinematics of deformation and strain. Concept of stress. Constitutive equations. The states of plane stress and plane strain. Solutions to elementary elasticity problems – axial force, torsion, bending, shear force. Deflection of beams. Euler buckling. Yield criteria.
Course Hours:
3 units; H(3-1.5T-3/2)
Prerequisite(s):
Engineering 202; and Mathematics 275 or Applied Mathematics 217.
Antirequisite(s):
Credit for Mechanical Engineering 317 and Engineering 317 will not be allowed.
|
back to top | |
|
Mechanical Engineering
337
|
Computing Tools for Engineering Design
|
|
Application of high-level software to the solution of design problems. Evaluation and validation of alternate solution approaches. Numeric and symbolic computation, visualization, data analysis, model-based analysis. Topics will be derived from real engineering problems.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Engineering 233.
|
back to top | |
|
Mechanical Engineering
339
|
Engineering Graphics and CAD
|
|
Technical sketching. Orthographic projections. Multiviews, auxiliary views and section views. Dimensions and tolerances. Working drawings. Design applications. Computer-Aided Design (CAD) software is used for 3D modelling and 2D drawing.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Engineering 233.
|
back to top | |
|
Mechanical Engineering
341
|
Fundamentals of Fluid Mechanics
|
|
Basic principles of mechanics of fluids. Fluid statics: forces on surfaces, buoyancy, stability. Continuity, energy and momentum equations applied to control-volume analysis. Dimensional analysis and physical similarity. Introduction to external flows and flow through pipes. Applications to a variety of problems in mechanical engineering.
Course Hours:
3 units; H(3-1.5T-3/2)
Prerequisite(s):
Engineering 201 and 349; and one of Mathematics 277 or Applied Mathematics 219.
|
back to top | |
|
Mechanical Engineering
421
|
Materials I
|
|
Fundamentals of materials science with emphasis on the structure of materials and structure/property relationships: atomistic models; equilibrium phase diagrams; kinetics and non-equilibrium transformation diagrams; thermal-mechanical processing; microstructure formation and control; ductility mechanisms; material selection; and an introduction to fracture.
Course Hours:
3 units; H(3-1T-3/2)
Prerequisite(s):
Engineering 311.
|
back to top | |
|
Mechanical Engineering
461
|
Foundations of Mechatronics
|
|
Modelling analysis and design of dynamic systems, including mechanical, electrical, electromechanical, fluidic, thermal, and mixed systems Response of linear time-invariant systems to time and frequency outputs. Performance analysis and design to meet performance specifications Analysis and design of sensors and actuators. Application to feedback control of dynamic systems.
Course Hours:
3 units; H(3-1T-3/2)
Prerequisite(s):
Engineering 225 and 349.
|
back to top | |
|
Mechanical Engineering
471
|
Heat Transfer
|
|
Modes of heat transfer; conduction, convection, radiation. Conduction in plane walls and cylinders. Conduction-convection systems, fins. Principles of convection. Empirical and practical relations for forced convection heat transfer. Natural convection. Condensation and boiling heat transfer. Heat exchangers. The log-mean temperature difference method.
Course Hours:
3 units; H(3-2/2)
Prerequisite(s):
Engineering 311; and one of Mechanical Engineering 341 or Energy Engineering 480.
|
back to top | |
|
Mechanical Engineering
473
|
Fundamentals of Kinematics and Dynamics of Machines
|
|
Basic mechanisms and linkages in machinery. Position, velocity, acceleration and dynamic forces in planar mechanisms. Cam design and dynamic analysis. Gears and gear trains. Planetary trains.
Course Hours:
3 units; H(3-1T)
Prerequisite(s):
Engineering 349.
|
back to top | |
|
Mechanical Engineering
479
|
Mechanics of Deformable Solids II
|
|
Review of stress and strain. Equilibrium and compatibility equations, and boundary conditions. Constitutive behaviour of materials. Solution to two-dimensional problems in elasticity. Failure criteria for ductile and brittle materials. Principle of virtual work and energy methods. The Rayleigh-Ritz and the finite element numerical methods in solid mechanics.
Course Hours:
3 units; H(3-1T-3/2)
Prerequisite(s):
Mechanical Engineering 317 or Engineering 317.
|
back to top | |
|
Mechanical Engineering
485
|
Mechanical Engineering Thermodynamics
|
|
Review of fundamentals; thermodynamic properties; flow and non-flow processes; Carnot cycle; Rankine cycle including reheat and regeneration. Engine gas cycles including simple gas turbines; gas turbines with reheat, intercooling and heat exchange. Reciprocating air compressors and expanders. Applications of humidity considerations; heat-pump and refrigeration cycles and their performance criteria. Combustion processes, chemical equilibrium, dissociation.
Course Hours:
3 units; H(3-3/2)
Prerequisite(s):
Engineering 311.
|
back to top | |
|
Mechanical Engineering
493
|
Machine Component Design
|
|
Introduction to the principles of machine component design. Design for stiffness, strength, and endurance. Surface contacts, wear, and lubrication. Tolerances and fits. Design and selection of mechanical elements such as shafts, bolted joints, welded joints, hydrodynamic bearings, ball and roller bearings, gears, belts, brakes, clutches, and springs.
Course Hours:
3 units; H(3-1T)
Prerequisite(s):
Mechanical Engineering 317 or Engineering 317.
|
back to top | |
|
Mechanical Engineering
495
|
Fluid Mechanics
|
|
Control volume methodology for multi-dimensional systems as applied to conservation principles (mass, linear and angular momentum); Navier-Stokes equations applied to pipe and boundary layer flows; basic principles of potential flow theory and aerodynamics and an introduction to compressible flow (convergent-divergent channels and normal shocks).
Course Hours:
3 units; H(3-1T-3/2)
Prerequisite(s):
Engineering 311 and Mechanical Engineering 341.
|
back to top | |
|
|
Mechanical Engineering
519
|
Special Topics in Mechanical Engineering
|
|
Advanced topics in Mechanical Engineering.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Mechanical Engineering
521
|
Materials II
|
|
Fundamentals and applications of materials science to engineering design: welding metallurgy; deformation and strength behaviour of real materials; failure analysis; fibre reinforced composites; fracture mechanics; fatigue; and creep.
Course Hours:
3 units; H(3-3/2)
Prerequisite(s):
Mechanical Engineering 421.
Notes:
Completion of Mechanical Engineering 479 and 493 prior to this course will be of definite advantage.
|
back to top | |
|
Mechanical Engineering
538
|
Mechanical Engineering Design Methodology and Application
|
|
Preliminary and detailed engineering design of a product or system with the emphasis on the design process as it is associated with mechanical and manufacturing engineering. Topics include design methodology and general design principles for engineers, project management, decision making processes, reliability and robust design, embodiment, detailed drawing and product life-cycle design. A team-based design project may be sponsored by industry or the Department. Also, an emphasis is given to project management and technical communication, including presentations to a committee from the Department and/or industry.
Course Hours:
6 units; F(1-4)
Prerequisite(s):
Mechanical Engineering 421, 461, 471, 473, 479, 485, 493, 495 and Manufacturing Engineering 417.
Notes:
Concurrent enrolment in Mechanical Engineering 538 and one or more of Internship 513.01, 513.02, 513.03, and 513.04 will not be allowed.
|
back to top | |
|
Mechanical Engineering
547
|
Finite Element Method
|
|
Review of basic concepts in the Theory of Elasticity. Stress, strain, equilibrium. Stress-strain relations. The principle of virtual work and its use in deriving exact and approximate equilibrium equations. Example: beam theory. Matrix analysis of framed structures. The stiffness method. The finite element method and other discretization procedures. The 4-node plane stress rectangular element. Shape functions. Derivation of stiffness matrix by means of the principle of virtual work. Isoparametric elements, completeness. Numerical integration of scheme. Programming Considerations. Solution of problems with the aid of a computer. Additional topics: Dynamics, heat transfer, fluid dynamics.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Mechanical Engineering 479.
|
back to top | |
|
Mechanical Engineering
560
|
Mechatronics Design Laboratory
|
|
A hands-on laboratory experience in the design and analysis of microprocessor-controlled electro-mechanical components. Emphasis will be on laboratory projects in which teams of students will configure, design, and implement mechatronic systems. Laboratories cover topics such as aliasing, quantization, electronic feedback, power amplifiers, digital logic, encoder interfacing, and motor control leading to prototyping and design of commercially viable products. Lectures will cover comparative surveys, operational principles, and integrated design issues associated with the spectrum of mechanism, electronics, and control components.
Course Hours:
6 units; F(1-3)
Prerequisite(s):
Mechanical Engineering 461.
|
back to top | |
|
Mechanical Engineering
583
|
Mechanical Systems in Buildings
|
|
Fundamentals of heating, ventilating, and air conditioning systems in buildings. Heating and cooling loads. Codes, regulations, and standards. System selection, generation equipment, heat exchangers, distribution and driving systems, terminal units, controls and accessories, and cost estimating. Energy efficiency and renewable energy applications. Elevators and escalators. Lifting devices. Sewage systems.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Mechanical Engineering 471; and one of Mechanical Engineering 485 or Energy Engineering 560.
|
back to top | |
|
Mechanical Engineering
585
|
Control Systems
|
|
Modelling of physical systems; feedback control; stability; performance specification in the time and frequency domains; root locus plots; Bode and Nyquist plots; Proportional/Integral/Derivative (PID) control and dynamic compensation.
Course Hours:
3 units; H(3-1T-3/2)
Prerequisite(s):
Mechanical Engineering 461.
|
back to top | |
|
Mechanical Engineering
587
|
Continuum Mechanics
|
|
Kinematics of deformation, concept of stress, balance of mass, linear momentum, angular momentum and energy. Thermodynamics of continua. Constitutive equations for viscous fluids and nonlinear elastic solids.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Mechanical Engineering 479 and 495.
Antirequisite(s):
Credit for Mechanical Engineering 587 and Mechanical Engineering 519.09 will not be allowed.
|
back to top | |
|
Mechanical Engineering
595
|
Gas Dynamics
|
|
Fundamentals of one-dimensional gas dynamics. Isentropic and non-isentropic flows, applications of dynamical similarity to shock waves. Oblique shocks, supersonic nozzles, flows with friction or heat transfer. Introduction to computational fluid dynamics (CFD).
Course Hours:
3 units; H(3-1T-3/2)
Prerequisite(s):
Mechanical Engineering 495.
|
back to top | |
|
Mechanical Engineering
597
|
Turbomachinery
|
|
Performance of turbomachines, machine selection, Reynolds number and scale effects. Two dimensional flow in turbomachines, degree of reaction and vector diagrams; flow irreversibilities and loss coefficients; pump, compressor and turbine efficiencies. Design of pumps, fans, centrifugal compressors, axial-flow compressors, and axial-flow turbines. Combination of machines with pipes or ducts.
Course Hours:
3 units; H(3-1T-3/2)
Prerequisite(s):
Mechanical Engineering 485 and 495.
|
back to top | |
|
Mechanical Engineering
599
|
Vibrations and Machine Dynamics
|
|
Linear vibration theory: free and forced vibration of single- and multi- degree-of-freedom systems; damping in machines; vibration absorbers; experimental modal analysis. Balance of rotating machinery: sources of unbalance, rigid rotors, flexible rotors, critical speeds, balancing principles. Lagrange equations: application to mechanical systems.
Course Hours:
3 units; H(3-2/2)
Prerequisite(s):
Mechanical Engineering 473 or Energy Engineering 460.
|
back to top | |
|
|
Mechanical Engineering
603
|
Physical Fluid Dynamics
|
|
Physical phenomena of incompressible fluid motion for a variety of flows, e.g. pipe and channel flow, flow past a cylinder, and convection in horizontal layers. The derivation of the basic equations of fluid mechanics using Cartesian tensor notation. High and low Reynolds number flows including some solutions of the viscous flow equations, inviscid flow, and elementary boundary layer theory. Thermal free convective flows.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
605
|
Combustion Processes
|
|
Review of thermodynamics and chemical kinetics of combustion. Fluid mechanics, heat and mass transfer in combustion phenomena. Autoignition and source ignition, flames and detonation. Quenching and explosion hazards, flammability and detonation limits. Heterogeneous combustion, combustion practical systems, combustion as affecting pollution and efficiency, some experimental combustion methods.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
607
|
Mechanics of Compressible Flow
|
|
One-dimensional steady and unsteady motion with application to the analysis of supersonic nozzles, diffusers, flow in conduits with friction, shock tubes. Two-dimensional flow of ideal fluid. Small perturbation theory, method of characteristics with application to design of supersonic nozzles. Waves in two-dimensional flow.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
613
|
Research Seminar I
|
|
Students will develop written and oral communication skills required to disseminate their technical research results and to receive formative feedback on performance.
Course Hours:
3 units; H(3S-0)
NOT INCLUDED IN GPA
|
back to top | |
|
Mechanical Engineering
615
|
Instrumentation
|
|
Basic principles relating to measurement systems. Static and dynamic characteristics of signals. Measurement system behaviour. Application of probability and statistics to measurement systems. Uncertainty analysis. Data acquisition and conversion, analog/digital signals and associated sampling theory. Application of theory to various measurement systems such as pressure, velocity, strain, concentration, and temperature.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
619
|
Special Problems
|
|
Designed to provide graduate students, especially at the PhD level, with the opportunity of pursuing advanced studies in particular areas under the direction of a faculty member. Students would be required to consider problems of an advanced nature.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Mechanical Engineering
620
|
Geomatics Engineering for Pipeline Systems
|
|
Provides both the classical basis to geomatics as a powerful tool in the design and management of pipelines as well as the cutting-edge view of the discipline as a digital technology.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 620 and 619.10 will not be allowed.
|
back to top | |
|
Mechanical Engineering
622
|
Pump and Compressor Stations
|
|
Provides a comprehensive overview of the design, performance and operation of pump and compressor stations for pipeline applications. Other topics consist of SCADA operation, station valve operation, asset management, condition monitoring and equipment reliability.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 622 and 619.11 will not be allowed.
|
back to top | |
|
Mechanical Engineering
624
|
Fundamentals of Pipeline Economics
|
|
Provides students with a fundamental understanding of engineering economics, including decision-making processes and life-cycle assessment in application to pipeline systems.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 624 and 619.12 will not be allowed.
|
back to top | |
|
Mechanical Engineering
626
|
Corrosion Science in the Pipelines Industry
|
|
Overview of corrosion in the pipeline industry with emphasis on the underlying science, including thermodynamics and kinetics of electrochemical processes, corrosion prevention and mitigation by materials selection, inhibition, coatings and cathodic protection. Implications for integrity management will also be discussed.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 626 and 619.12 will not be allowed.
|
back to top | |
|
Mechanical Engineering
628
|
Pipeline Coatings
|
|
Introduction to the fundamental properties and structure of coatings, as well as applications in the pipeline industry. Applications of coating technology in integrity maintenance of the various structural facilities. Computer assisted coatings project management programs will be introduced.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 628 and 619.27 will not be allowed
|
back to top | |
|
Mechanical Engineering
630
|
Fundamentals of Liquid Hydraulics in Pipeline Systems
|
|
Introduction to the fundamentals of liquid hydraulics in pipeline systems. Topics include petroleum fluids, design elements and economics, mechanical design, fluid mechanics fundamentals, pipeline hydraulics, isothermal flow, pumping requirements, centrifugal and reciprocating pumps, operations and maintenance design, and design optimization.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 630 and 619.49 will not be allowed.
|
back to top | |
|
Mechanical Engineering
631
|
Numerical Methods for Engineers
|
|
Introduction, mathematical modelling, sources of errors in the process of numerical analysis and solution methodology; Elements of numerical analysis, Taylor series, round-off error, truncation error, concept of stability, consistency and convergence; Linear algebra, normal forms, Gauss elimination method, LU-decomposition, tridiagonal systems of equations; iterative methods, Jacobi, Gauss-Seidel, SOR, SSOR methods, conjugate gradient methods and preconditioning and principles of the multi-grid methods; Elliptic "equilibrium" equation, Laplace and Poisson equations, finite difference and finite control volume concepts and stability analysis; Parabolic equations: explicit, implicit and Crank-Nicolson methods, time-splitting method, method of lines, Stability analysis; Hyperbolic equations; Introduction to other methods; future challenging problems.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
632
|
Fundamentals of Gas Hydraulics in Pipeline Systems
|
|
Applications of fundamental fluid mechanics concepts to pipelines conveying compressible media (gases). Strategies for describing the gas-dynamics of pipeline systems and networks are developed, as well as the influence of gas properties and pipeline operating characteristics on component selection and operating parameters.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 632 and 619.40 will not be allowed.
|
back to top | |
|
Mechanical Engineering
633
|
Mathematical Techniques for Engineers
|
|
Application of mathematical techniques to the solution of ordinary and partial differential equations arising in engineering problems. Methods that will be considered are: separation of variables, method of characteristics, transform methods and complex variable methods.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
634
|
Pipeline Geotechnical Engineering
|
|
Introduction to applications of geotechnical engineering in design and construction of oil and gas pipelines. Geohazard assessment and mitigation methods and issues around pipe/soil interaction will be discussed, as well as the relevant codes, standards and industry guidelines for pipelines.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 634 and 619.57 will not be allowed.
|
back to top | |
|
Mechanical Engineering
636
|
Structural Analysis of Buried Steel Pipeline Systems
|
|
An introduction to stress analysis of buried pipelines through hand calculations, spreadsheets, and stress analysis software. Pipeline code requirements are discussed. Individual practices and industry examples are used.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 636 and 619.67 will not be allowed.
|
back to top | |
|
Mechanical Engineering
637
|
Thermal Systems Analysis
|
|
Fundamentals of thermodynamics, fluid mechanics, heat transfer and combustion; Modelling of thermophysical properties; Second law of thermodynamics, concept of entropy generation and exergy analysis; Minimizing environmental impact; Advanced design and analysis of heat exchangers, co-generation, renewable energy systems, and propulsion systems.
Course Hours:
3 units; H(3-0)
Also known as:
(Environmental Engineering 673)
|
back to top | |
|
Mechanical Engineering
638
|
Failure and Fracture Mechanics in the Pipeline Industry
|
|
Covers the basic theory of failure and fracture mechanics in sufficient depth to allow its application to pipeline design, material requirements and integrity assessment. Overview of brittle and ductile fracture, fatigue and environmental processes, design basics, fracture mechanics theory, fracture mechanics testing, inspection issues, material issues, crack propagation and arrest, fitness for purpose methods, structural integrity assessment and material requirements.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 638 and 619.74 will not be allowed.
|
back to top | |
|
Mechanical Engineering
639
|
Numerical Methods for Computational Fluid Dynamics
|
|
Review of solution techniques for ordinary differential equations. Stability, consistency and convergence. Order of accuracy. Fourier methods for stability. Numerical techniques for one-, two- and three-dimensional linear parabolic problems. Courant condition. Implicit and semi-implicit schemes. Boundary conditions for parabolic problems. Techniques for linear hyperbolic problems. CFL condition. Characteristics, domain of dependence and domain of influence. Boundary conditions for hyperbolic problems. Non-linear conservation laws. The Burger's equation as a test problem. Strong and weak solutions. Conservative and integral forms. Conservative schemes. Entropy condition. Godunov theorem and flux limiters. Godunov, ENO and TVD schemes. Implementation in gas dynamics.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
640
|
Stress Corrosion Cracking of Materials
|
|
Fundamentals of stress corrosion cracking (SCC) of materials and the factors contributing to SCC from environmental, metallurgical and mechanical sources. Various testing techniques to study and/or evaluate SCC will also be discussed.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Mechanical Engineering 640 and 619.90 will not be allowed.
|
back to top | |
|
Mechanical Engineering
641
|
Advanced Control Systems
|
|
Introduction to multivariable systems; state space models; analysis of linear systems; stability; Cayley-Hamilton theorem; controllability and observability; state feedback control; pole placement designs; introduction to linear optimal control and estimation; Kalman filtering; separation theorem and duality; performance specifications; controller reduction concepts; introduction to robust control.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
643
|
Optimal and Adaptive Control
|
|
Discrete time and sampled-data system models and properties; discrete time domain controller design principles; system identification using least-squares analysis; self-tuning control; indirect adaptive control; model reference adaptive control; sliding mode control in continuous and discrete time; optimal design of sliding mode controllers; sensitivity functions and their role in control theoretic performance specification; robust stability and robust performance objectives; Kharitonov stability.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
650
|
Mobile Robotics
|
|
Overview of unmanned vehicles, mobile robot locomotion systems, wheeled rovers, walking machines, mobile-manipulators, mobile robot sensors and actuators, simulation, modelling and analysis of mobile robot behaviour, robot-environment interaction analysis, 2D navigation techniques and localization, mobile robot simulation tools.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Mechanical Engineering 505.
|
back to top | |
|
Mechanical Engineering
653
|
Advanced Continuum Mechanics
|
|
Review of linear algebra and tensor analysis; kinematics of the deformation; deformation and strain tensors; strain rates; balance equations and equations of motion; stress principle; stress power and conjugated stress-strain couples; stress rates; elements of Lagrangian and Hamiltonian Mechanics for discrete and continuum systems; thermomechanics and constitutive theory; isotropic and anisotropic hyperelasticity; composite materials.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
660
|
Mechatronics Design Laboratory
|
|
A hands-on laboratory experience in the design and analysis of microprocessor-controlled electro-mechanical components. Laboratory projects in which teams will configure, design, and implement mechatronic systems. Aliasing, quantization, electronic feedback, power amplifiers, digital logic, encoder interfacing, and motor control leading to prototyping and design of commercially viable products. Lectures will cover comparative surveys, operational principles, and integrated design issues associated with mechanical, electrical and control components.
Course Hours:
6 units; F(0-3)
Also known as:
(Mechanical Engineering 560)
|
back to top | |
|
Mechanical Engineering
663
|
Advanced Muscle Mechanics and Physiology
|
|
A look at problems associated within muscle mechanics and contractility. Also the use of muscle mechanics as a scientific discipline to critically learn and evaluate the scientific process. Basic anatomy and physiology of muscle contraction including the cross-bridge theory, and the force-length, force-velocity and force-time relationships of actively and passively contracting muscles will also be covered.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Consent of the Faculty.
Also known as:
(Medical Science 663)(Kinesiology 663)
|
back to top | |
|
Mechanical Engineering
665
|
Elements of Materials Engineering
|
|
Covers a variety of material aspects and provides a fundamental understanding of Materials Science and Engineering. Emphasizes the understanding of advanced dislocation theory and its application in illustration of diffusion, deformation and fracture of metals. Fundamentals of material strengthening mechanisms are covered. Practical aspects that are relevant to material uses and failures, such as environmental-induced cracking, creep, fatigue, strain aging and corrosion, are discussed. Typical surface analysis techniques for material characterization are introduced.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
667
|
Fracture Mechanics
|
|
Basic fracture theory, failure criteria, overview of fracture mechanics, brittle and ductile failure, crack tip parameters, geometric considerations, methods of analysis, fracture toughness and testing standards. Applications in design, fatigue subcritical crack growth, creep and impact.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
669
|
Fatigue of Materials
|
|
History and origin of fatigue. Stress life, strain life and fracture mechanics approaches. Low and high cycle fatigue. Low and high temperature fatigue. Combined stresses, initiation, and propagation of cracks. Environmental and statistical effects. Testing techniques and variables. Design and specific material behaviour. Mechanisms of fatigue.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
683
|
Applications of 3D Rigid Body Mechanics in Biomechanics
|
|
Applications of 3D motion analysis and rigid body mechanics to musculoskeletal system locomotion, and movement. Experimental, theoretical and numerical methods for optical motion imaging, 3D analysis of joint kinematics and kinetics, joint angle representations, prediction of joint forces, data analysis and filtering, error propagation, inverse and forward dynamics approaches, and applications to clinical and orthopaedic engineering.
Course Hours:
3 units; H(3-0)
|
back to top | |
|
Mechanical Engineering
685
|
Biomechanics of Human Movement
|
|
Introduction to the measuring methods (accelerometry, goniometry, film and film analysis, video systems) of biomechanical analysis of human movement (force and force distribution). Description of the mechanical properties of bone, tendon, ligaments, cartilage, muscles and soft tissues. The relation between structure and function of biomaterials. Introduction to descriptive analysis of human movement.
Course Hours:
3 units; H(3-3)
Prerequisite(s):
Consent of the Faculty.
Antirequisite(s):
Credit for Mechanical Engineering 685 and either Medical Science 685 and Kinesiology 685 will not be allowed.
Also known as:
(Medical Science 685)
|
back to top | |
|
Mechanical Engineering
698
|
Graduate Project
|
|
Individual project in the student's area of specialization under the guidance of the student's supervisor. A written proposal, one or more written progress reports, and a final written report are required. An oral presentation is required upon completion of the course. Open only to students in the MEng (courses only) program.
Course Hours:
6 units; F(0-4)
|
back to top | |
|
Mechanical Engineering
708
|
Turbulence
|
|
Provides an overview of turbulence in incompressible flows of Newtonian fluids. Topics include: the nature of turbulence; classical methods of analysis (Reynolds-averaging, spectral representations); the concept of scales; a review of isotropic and homogeneous turbulence; the energy cascade and the role of vorticity in turbulence canonical flows: boundary layers, jets, wakes and mixing layers; modern views of turbulence including coherent motions and inter-scale energy transfer.
Course Hours:
3 units; H(4-0)
Notes:
Students are expected to be familiar with basic mathematical concepts including vector calculus, Gauss’ theorem, Cartesian tensor notation, and basic fluid mechanical concepts, such as wakes, boundary layers, and jets. Basic knowledge in continuum mechanics is an asset.
|
back to top | |
|
Mechanical Engineering
713
|
Research Seminar II
|
|
Students will develop written and oral communication skills required to disseminate their technical research results and to receive formative feedback on performance.
Course Hours:
3 units; H(3S-0)
NOT INCLUDED IN GPA
|
back to top | |
|