Site Navigation
Welcome
Important Notice and Disclaimer
Academic Schedule
Types of Credentials and Sub-Degree Nomenclature
Undergraduate Degrees with a Major
Combined Degrees
Minor Programs
Student and Campus Services
Admissions
Academic Regulations
Co-operative Education/Internship
Tuition and General Fees
Awards and Financial Assistance
International Foundations Program
Faculty of Arts
Cumming School of Medicine
Faculty of Environmental Design
Faculty of Graduate Studies
Haskayne School of Business
Faculty of Kinesiology
Faculty of Law
Faculty of Nursing
Qatar Faculty
Schulich School of Engineering
Faculty of Science
Faculty of Social Work
Faculty of Veterinary Medicine
Werklund School of Education
Embedded Certificates
Continuing Education
COURSES OF INSTRUCTION
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
Biochemistry BCEM
Biology BIOL
Biomedical Engineering BMEN
Biostatistics BIST
Botany BOTA
Business and Environment BSEN
Business Technology Management BTMA
C
D
E
F
G
H
I
J, K
L
M
N, O
P
R
S
T, U
V, W, Z
About the University of Calgary
Who's Who
Glossary of Terms
Contact Us
Archives
University of Calgary Calendar 2018-2019 COURSES OF INSTRUCTION Course Descriptions B Biomedical Engineering BMEN
Biomedical Engineering BMEN

Instruction offered by members of the Schulich School of Engineering, Faculty of Kinesiology, and for graduate-level courses, other faculties involved in the multi-faculty Biomedical Engineering Graduate Program.

Senior Courses
Biomedical Engineering 301       Introduction to Biomedical Engineering
Fundamentals of biological systems and the application of engineering principles to solving problems in medicine. Topics include pharmaceuticals and drug delivery, instrumentation and devices, physiological and biological measurements, biomechanics, the Scientific Method and the Canadian health-care system. Applications may include cardiovascular, neural and musculo-skeletal systems.
Course Hours:
3 units; H(3-2)
back to top
Biomedical Engineering 309       Anatomy and Physiology for Engineers
Physiological terminology and anatomical planes of reference; cell biology and physiology; includes structure and function of musculoskeletal, cardiac, nervous, gastrointestinal and respiratory tissues and systems; diseases and disorders of those systems; design constraints for bioengineering products.
Course Hours:
3 units; H(3-3/2)
back to top
Biomedical Engineering 401       Fundamentals of Biomedical Device Design
An introduction to the development of biomedical devices. Topics may include identifying market needs, idea generation, biologically inspired deign, human factors related to design, regulatory issues, intellectual property protection, clinical trials, and commercialization considerations. Case studies may be drawn from cardiovascular, neural and musculoskeletal applications.
Course Hours:
3 units; H(3-1T)
Prerequisite(s):
Biomedical Engineering 301.
Antirequisite(s):
Biomedical Engineering 517 and 619.05.
back to top
Biomedical Engineering 500       Biomedical Engineering Research Thesis
A research project in an area of interest, directed by a project advisor/faculty member within the Schulich School of Engineering, Cumming School of Medicine, Faculty of Kinesiology, or Faculty of Science. Includes a lecture component covering the scientific process, ethics, review of literature, and writing scientific proposals and manuscripts. The course culminates with a written thesis and presentation. Projects may involve experimental, analytic or computer modelling studies.
Course Hours:
9 units; M(1-8)
Prerequisite(s):
Fourth- or fifth-year standing in the Engineering program of choice.
Notes:
Pre-term study is required.
back to top
Biomedical Engineering 501       Biomedical Engineering Project
A project in an area of interest, supervised by a project advisor/faculty member within the Schulich School of Engineering, Cumming School of Medicine, Faculty of Kinesiology, or Faculty of Science. Includes a lecture component covering topics including the scientific process, ethics, review of literature, patent searches, market analysis, and technology evaluation. The project involves choosing a particular product, process or theory relevant to biomedical engineering, researching it and justifying its selection. A final report and presentation are required.
Course Hours:
3 units; H(1-2)
Prerequisite(s):
Fourth- or fifth-year standing in the Engineering program of choice.
Notes:
Pre-term study is required.
back to top
Biomedical Engineering 509       Introduction to Biomedical Imaging and Applications
Principles of various imaging modalities used in Biomedical engineering applications, including CT, MRI, ultrasound, PET, SPECT. Image processing operations: filtering, enhancement, feature extraction, pattern recognition and image reconstruction. Image registration and integration of different imaging modalities.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Fourth- or fifth-year standing in the Engineering program of choice.
back to top
Biomedical Engineering 511       Biomaterials and Biocompatibility
Basic chemical and mechanical properties of biological and synthetic materials and their role in biological system health, dysfunction, and repair. Role of microstructure, material properties, and biocompatibility aspects in selection of biomaterials for medical or industrial applications. Incorporation of biomimetic concepts in material design. Topics may include artificial and tissue engineered products, implants, prostheses, biofilms, biosensors, and foreign body response.
Course Hours:
3 units; H(3-2/2)
Prerequisite(s):
Fourth- or fifth-year standing in the Engineering program of choice.
back to top
Biomedical Engineering 515       Bioengineering Methods in Systems Biology and Physiology
Concepts from systems theory, differential equations, and stochastic processes applied to physiological and biological systems. Experimental and computational approaches to the study of gene expression and gene networks. Use of quantitative model-based approaches for integrative analysis of physiological and biological functions. Case studies of applications to disease mechanisms and the drug discovery process.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Mathematics 375 or Applied Mathematics 307.
back to top
Biomedical Engineering 519       Special Topics in Biomedical Engineering
Current topics in Biomedical Engineering.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Consent of the BMES Director or designate.
MAY BE REPEATED FOR CREDIT
back to top
Biomedical Engineering 523       Biomechanics of Movement
Introduction to musculoskeletal biomechanics, including experimental and analytical approaches to the analysis of movement, experimental instrumentation and devices, and joint dynamics. Review of linear algebra. Introduction to three-dimensional rigid body mechanics. Determination of the joint forces and moments. Analysis of the contribution of external loading, forces generated by muscles and constraints provided by other musculoskeletal structures to predict forces in musculoskeletal joints and tissues. Numerical and modelling approaches, including inverse dynamics and optimization, and determination of segmental inertial properties. Applications in orthopaedic engineering, movement assessment, ergonomics and joint injury and replacements.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Engineering 349 and fourth-year standing in the Schulich School of Engineering.
Antirequisite(s):
Credit for Biomedical Engineering 523 and Mechanical Engineering 523 will not be allowed.
back to top
Biomedical Engineering 525       Biomechanics of Tissues
The structure and functional behaviour of complex tissues which make up the human musculoskeletal system (bone, cartilage, muscles, tendons, ligaments) and cardiovascular systems (heart, blood vessels) will be explained by applying basic principles of mechanics as well as continuum mechanics. Introductory topics include: review of linear and tensor algebra, kinematics of continua, deformation gradient, deformation and strain tensors, Cauchy stress tensor and equilibrium, conservation laws, stress power and measures of stress. Constitutive equations for solids and fluids will be introduced as they apply to the study of biological tissues; anisotropy and inhomogeneity, fibre-reinforced non-linear behaviour.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Engineering 317 and 349.
Antirequisite(s):
Credit for Biomedical Engineering 525 and 405 will not be allowed.
back to top
Biomedical Engineering 585       Molecular, Cellular and Tissue Engineering
Concepts, calculations, and methodologies in molecular, cellular and tissue engineering will be discussed and applied to solve problems in the areas of molecular diagnostics, pharmaceuticals, nanomedicine and regenerative medicine. Topics include cell biology and culture, stem cells, bioreactors, biomaterials, drug delivery, fluid dynamics, kinetics, and diffusion.
Course Hours:
3 units; H(3-2/2)
Prerequisite(s):
Fourth- or fifth-year standing in the Engineering program of choice.
Antirequisite(s):
Credit for Biomedical Engineering 585 and any of Biomedical Engineering 407, Biomedical Engineering 519.09, and Chemical Engineering 541 will not be allowed.
back to top
Graduate Courses
Biomedical Engineering 600       Biomedical Engineering Foundations
An introduction to core concepts of Biomedical Engineering including an introduction to biomedical engineering fundamentals. Course allows students to select between a biology focused or an engineering focused fundamental module to complement previous course work (with approval of course instructor).
Course Hours:
3 units; H(4-0)
Also known as:
(formerly Biomedical Engineering 611/612/613/614)
back to top
Biomedical Engineering 602       Biomedical Engineering Core I
Topics may include an introduction to a) biomedical engineering research, research integrity and ethics, b) career paths and progression in biomedical engineering and c) oral research communication skills.
Course Hours:
3 units; H(2-0)
Antirequisite(s):
Credit for Biomedical Engineering 602 and either 605 or 607 will not be allowed.
Also known as:
(formerly Biomedical Engineering 611/612/613/614)
NOT INCLUDED IN GPA
back to top
Biomedical Engineering 604       Biomedical Engineering Core II
Topics may include an introduction to a) research methodology, including experimental design and b) written research communication skills in biomedical engineering, and c) preparation and review of research proposals. Satisfactory completion of this course within one year of first registration will ensure that the Biomedical Engineering Graduate Program Research Proposal requirements are met.
Course Hours:
3 units; H(2-0)
Antirequisite(s):
Credit for Biomedical Engineering 604 and either 605 or 607 will not be allowed.
Also known as:
(formerly Biomedical Engineering 611/612/613/614)
NOT INCLUDED IN GPA
back to top
Biomedical Engineering 605       Research Seminars in Biomedical Engineering
Reports of studies of the literature or of current research.
Course Hours:
1.5 units; Q(1.5S-0)
NOT INCLUDED IN GPA
back to top
Biomedical Engineering 607       Research Seminars in Biomedical Engineering
Reports of studies of the literature or of current research.
Course Hours:
1.5 units; Q(1.5S-0)
NOT INCLUDED IN GPA
back to top
Biomedical Engineering 609       Anatomy and Physiology for Biomedical Engineers
Advanced instruction on human skeletal structure, types of connective tissues, structure of joints, muscle and organ structure and function, cardiac physiology, blood properties and flow, introduction to autonomous nervous system, and disorders of the musculoskeletal system. Other topics will be covered dependent on the interests of the instructor and students.
Course Hours:
3 units; H(3-3/2)
back to top
Biomedical Engineering 619       Special Problems in Biomedical Engineering
Designed to provide graduate students, especially at the PhD level, with the opportunity of pursuing advanced studies in particular areas under the direction of a faculty member.
Course Hours:
3 units; H(3-0)
MAY BE REPEATED FOR CREDIT
back to top