UofC " This Is Now

Search Calendar:


Site Navigation
Welcome
Important Notice and Disclaimer
Fee Payment Deadlines
Academic Schedule
Examinations Schedule
Undergraduate Degrees with a Major
Combined Degrees
Minor Programs
Student Services
Undergraduate Admissions
Academic Regulations
Tuition and General Fees
English for Academic Purposes Program
Faculty of Arts
Faculty of Education
Faculty of Environmental Design
Faculty of Graduate Studies
Haskayne School of Business
Faculty of Kinesiology
Faculty of Law
Faculty of Medicine
Faculty of Nursing
Qatar Faculty
Schulich School of Engineering
Faculty of Science
Faculty of Social Work
Faculty of Veterinary Medicine
Co-operative Education/Internship
Continuing Education
Awards and Financial Assistance
COURSES OF INSTRUCTION
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
C
D
E
F
G
H
I
J, K
L
M
Management Information Systems MGIS
Management Studies MGST
Manufacturing Engineering ENMF
Marine Science MRSC
Marketing MKTG
Mathematics MATH
Mechanical Engineering ENME
Medical Physics MDPH
Medical Science MDSC
Medicine MDCN
Museum and Heritage Studies MHST
Music MUSI
Music Education MUED
Music Performance MUPF
N, O
P
R
S
T, U
V, W, Z
About the University of Calgary
Where
Who's Who
Glossary of Terms
Contact Us
Archives
University of Calgary Calendar 2012-2013 COURSES OF INSTRUCTION Course Descriptions M Manufacturing Engineering ENMF
Manufacturing Engineering ENMF

Instruction offered by members of the Department of Mechanical and Manufacturing Engineering in the Schulich School of Engineering.

Department Head – R. Hugo

Director (Mechanical Engineering Program) – L. Sudak

Director (Graduate Program, Mechanical and Manufacturing Engineering) - A. Ramirez-Serrano

Senior Courses
Manufacturing Engineering 417       Manufacturing and Production Processes
The role and characterization of manufacturing technology within the manufacturing enterprise. Overview of deformation processes, joining processes, consolidation processes, material-removal processes, and material alteration processes. Process selection and planning.
Course Hours:
H(3-2)
Prerequisite(s):
Engineering 200 or Engineering 253.
back to top
Manufacturing Engineering 501       Modelling and Simulation of Manufacturing Systems
General modelling of production systems. Spreadsheet modelling for capacity analysis. Fundamentals of discrete-event simulation including: key concepts; simulation world views; the simulation study life cycle. Modelling and programming aspects of discrete-event simulation including: verification and validation; simulation animation; interfacing simulation software with other systems. Statistical aspects of discrete-event simulation including: random number and random variate generation; input process modelling; output analysis; variance reduction techniques. Applications of discrete-event simulation to the design and analysis of manufacturing systems.
Course Hours:
H(3-2)
Prerequisite(s):
Biomedical Engineering 319 or Engineering 319.
back to top
Manufacturing Engineering 503       Computer-Aided Design and Manufacturing
Hardware and software for computer-aided design and manufacturing (CAD/CAM) systems. Geometric modelling, transformation and visualization.  Modelling of freeform curves and surfaces. Programming for computer numerically controlled (CNC) machining. Integration of CAD/CAM systems, Applications in motion analysis, structure analysis, optimization, rapid prototyping, reverse engineering and virtual engineering.
Course Hours:
H(3-2)
Prerequisite(s):
Manufacturing Engineering 417 and Mechanical Engineering 337.
Antirequisite(s):
Credit for both Manufacturing Engineering 503 and 401 will not be allowed.
back to top
Manufacturing Engineering 505       Robotics
Kinematics, statics, dynamics and control of robot arms. Robot actuators, drives, sensors, and vision. Applications of robots. Laboratories: task planning and programming of industrial robots.
Course Hours:
H(3-3/2)
Prerequisite(s):
Manufacturing Engineering 473 or Mechanical Engineering 473.
back to top
Manufacturing Engineering 509       Advanced Manufacturing Systems
Manufacturing strategy and competitive manufacturing. Queuing theory and its application to manufacturing systems analysis (including rapid modelling tools). Linear programming and its application to manufacturing systems problems. Scheduling problems in manufacturing. Supply chain modelling and integration. Enterprise resource planning systems.
Course Hours:
H(3-2)
Prerequisite(s):
Manufacturing Engineering 415.
back to top
Manufacturing Engineering 514       Integrated Manufacturing Systems
Fundamentals of integrated and competitive manufacturing. Manufacturing and operations strategy. Topics in production and operations management including: production planning and control systems; inventory management systems; process analysis and improvement; quality management systems.
Course Hours:
H(3-2)
back to top
Manufacturing Engineering 517       Experimental Design and Analysis
Introduction to statistical Design of Experiments (DOE) techniques for efficient data collection, analysis and interpretation. Analysis of Variance (ANOVA), including blocking and nesting, in full and fractional factorial designs to understand sources of variation in performance. Robust design, including classical response surface and Taguchi techniques, to minimize effects of environmental factors on performance variability. Applications to product and process improvement.
Course Hours:
H(3-2)
Prerequisite(s):
Biomedical Engineering 319 or Engineering 319.
back to top
Manufacturing Engineering 527       Project Engineering
The project lifecycle. Project planning, scheduling, and control. Resource considerations. Cost estimating, planning, and performance. Project risk. Project personnel and organizational structures.
Course Hours:
H(3-2/2)
back to top
Manufacturing Engineering 529       Introduction to Microelectromechanical Systems
Microelectromechanical systems (MEMS) and devices including microsensors and microactuators. Principles of operation, material properties, fabrication techniques including surface and bulk micro­machining, IC-derived microfabrication techniques, sensing and actuation principles, sensor dynamics issues, circuit and system issues, packaging, calibration and testing. Illustrative examples include (1) micromachined inertial sensors and actuators for manufacturing processes, (2) microactuator arrays for "smart surfaces," (3) biosensors for medical applications, and (4) transducers for aerospace applications.
Course Hours:
H(3-2)
Prerequisite(s):
Mechanical Engineering 461.
back to top
Manufacturing Engineering 533       Computer-Based Control for Industrial Automation
Concepts of digital control. Digital circuits. Logic Controller architecture, programming using digital logic concepts, and interfacing. I/O devices sensors and actuators. Applications to work cells and production lines.
Course Hours:
H(3-2/2)
Antirequisite(s):
Credit for both Manufacturing Engineering 533 and 515 will not be allowed.
back to top
Graduate Courses
Manufacturing Engineering 601       Artificial Intelligence Applications in Manufacturing
Artificial intelligence; expert systems, system components and architecture, knowledge representation, search techniques, uncertainty; AI planning, problem representation, solution methods; programming languages and expert system shells for developing expert systems; introduction of neural networks, basic neuron model, multilayer perception, self organizing networks, adaptive resonance memory. Applications to design, manufacturing planning and robotics.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 605       Planning and Control of Computer Integrated Manufacturing
Advanced techniques for the design, planning, and control of integrated manufacturing systems. Course elements include: a framework for manufacturing planning and control; data flow and structured modelling methodologies; hierarchical models of manufacturing; cellular manufacturing organization; databases and communications; forecasting, demand management, capacity planning and master production scheduling; materials requirements planning, manufacturing resource planning, Just-in-Time manufacture, and Optimized Production Technology; control of independent demand inventory items; production activity control, shop floor control, scheduling, order release and dispatching; simulation in planning and control.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 607       Total Quality Management
Statistical Process Control (SPC) for discrete and continuous manufacturing processes. Acceptance Sampling. Process capability analysis. Introduction to design of experiments (DOE). Overview of quality economics, quality standards and management philosophy.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 609       Design and Analysis of Experiments
Statistical Design of Experiments (DOE) techniques for efficient data collection, analysis and interpretation. Analysis of Variance (ANOVA), including blocking and nesting, in full and fractional factorial designs. Robust design, including classical response surface and Taguchi techniques. Applications to product and process improvement.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 611       Multi-Agent Systems
Historical background; types and definitions of agents; knowledge representation and reasoning; agent theories, architectures and languages; possible world model and alternatives; symbolic, reactive and hybrid architectures; agent communication; coordination, cooperation, negotiation and planning; agent frameworks; example multi-agent systems are considered throughout the course.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 613       Research Seminar I
Reports on studies of the literature or of current research. This course is compulsory for all MSc and thesis-route MEng students and must be completed before the thesis defence.
Course Hours:
H(3S-0)
NOT INCLUDED IN GPA
back to top
Manufacturing Engineering 617       Real-time Distributed Control Systems
Shop floor control systems. Programmable logic controller (PLC) concepts, languages and models (e.g., IEC 61131-3). Real-time distributed control models (e.g., IEC 61499, RT-UML). Intelligent control: real-time distributed control system design; safety-critical system issues; reconfiguration issues.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 619       Special Problems in Manufacturing Engineering
Designed to provide graduate students, especially at the PhD level, with the opportunity of pursuing advanced studies in particular areas under the direction of a faculty member. Students would be required to consider problems of an advanced nature.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
back to top
Manufacturing Engineering 621       Optimization Methods with Robotics Applications
Designed for graduate and senior undergraduate students interested in advanced topics in robotics. Based on the students' research topics, contents may vary. These include: fundamental theory in robotics, mathematical toolbox for optimization, differential kinematics, kinematics and actuation redundancy, optimal control, cooperating manipulators, redundancy in force sensing and sensor fusion.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 623       CAD/CAM/CAE
Components of CAD/CAM/CAE systems. Geometric modelling. Development of customized CAD systems. Complex shape modelling. Computer-aided process planning. CNC machining. Rapid prototyping. Finite element analysis and motion analysis. Engineering optimization. Virtual design and manufacturing.
Course Hours:
H(3-0)
back to top
Manufacturing Engineering 698       Graduate Project
Individual project in the student's area of specialization under the guidance of the student's supervisor. A written proposal, one or more written progress reports, and a final written report are required. An oral presentation is required upon completion of the course. Open only to students in the MEng (courses only) program.
Course Hours:
F(0-4)
back to top
Manufacturing Engineering 713       Research Seminar II
Reports on studies of the literature or of current research. This course is compulsory for all PhD students and must be completed before the candidacy examination.
Course Hours:
H(3S-0)
NOT INCLUDED IN GPA
back to top