
Requirements 
absl-py==1.3.0 

astunparse==1.6.3 

cachetools==5.2.0 

certifi==2022.9.24 

charset-normalizer==2.1.1 

filelock==3.8.0 

flatbuffers==22.9.24 

gast==0.4.0 

google-auth==2.12.0 

google-auth-oauthlib==0.4.6 

google-pasta==0.2.0 

grpcio==1.49.1 

h5py==3.7.0 

huggingface-hub==0.10.1 

idna==3.4 

keras==2.10.0 

Keras-Preprocessing==1.1.2 

libclang==14.0.6 

Markdown==3.4.1 

MarkupSafe==2.1.1 

numpy==1.23.4 

oauthlib==3.2.1 

opt-einsum==3.3.0 

packaging==21.3 

protobuf==3.19.6 

pyasn1==0.4.8 

pyasn1-modules==0.2.8 

pyparsing==3.0.9 

PyYAML==6.0 

regex==2022.9.13 

requests==2.28.1 

requests-oauthlib==1.3.1 

rsa==4.9 

six==1.16.0 

tensorboard==2.10.1 

tensorboard-data-server==0.6.1 

tensorboard-plugin-wit==1.8.1 

tensorflow==2.10.0 

tensorflow-estimator==2.10.0 

tensorflow-io-gcs-filesystem==0.27.0 

termcolor==2.0.1 

tokenizers==0.13.1 

tqdm==4.64.1 

transformers==4.23.1 

typing_extensions==4.4.0 

urllib3==1.26.12 

Werkzeug==2.2.2 

wrapt==1.14.1 



BERT_Notes 
This Google AI Blog summarizes how BERT has been pre-trained using 

Wikipedia 

 

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-

pre.html 

 

# Text classification can be done by BERT; and also linear SVM,  

# Multinomial Naive Bayes, logistic regression, and Random Forest 

https://www.kaggle.com/selener/multi-class-text-classification-tfidf 

https://monkeylearn.com/text-classification/ 

 

# some recommendations on step-by-step guide in BERT 

https://stackoverflow.com/questions/69025750/how-to-fine-tune-

huggingface-bert-model-for-text-classification 

 

# multi-label, multi-class text classification, but I was blocked unless  

# I register or sign up with google. 

https://towardsdatascience.com/multi-label-multi-class-text-

classification-with-bert-transformer-and-keras-c6355eccb63a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



neuronet_workflow 
 

# Artificial neural networks workflow, published in 2012 in Neural 

# Computing and Applications by Al-Bulushi et al. 

# https://link.springer.com/article/10.1007/s00521-010-0501-6 

#  

# Also see https://www.tmwr.org/tuning.html for tuning parameters 

# and overfitting. This reminds me that the alpha in BNP is a  

# tuning parameter. This post shows that a poor choice of a tuning 

# parameter  can cause problems. 

# 

 

The key operation in the development of an ANN is the learning process, 

by which the free parameters (weight and bias) are modified through a 

continuous process of stimulation by the environment in which the network 

is embedded(Haykin, 1998). The learning process continues until a 

satisfactory error is reached. One complete presentation of the entire 

training data to the network during the training process is called an 

epoch or one training cycle (Haykin, 1998). The overall objective of the 

MLP learning is to optimize the performance function.  Optimizing means 

finding the minimum of the performance function(Hagan, Demuth, & Beale, 

1996). 

 

[....] 

 

Many learning algorithms, such as back-propagation (BP), BP with 

momentum,resilient propagation (PROP), conjugate gradient and Levenberg–

Marquardt (Hagan et al, 1996) are available to train the network. 

 

[....] 

 

The data in the neural network are divided into three main parts: 

training, validation, and testing subsets [13, 17]. The training data are 

used to train the network and to adapt its internal structure. The 

validation data are used during training along with the training data to 

monitor the performance of the network. They are not used to adapt the 

network. The testing data are kept aside until the whole training process 

has been completed. This set is used as a biased to investigate the 

generalization capability of the trained network on new data. It is 

basically used to test whether the network captured the general trend and 

did not memorize (fitted) the noise on the training data(over-training). 

 

There are two main modes for training [13, 20]: sequential (stochastic) 

and batch modes. In stochastic mode, the free parameter updating is 

performed after the presentation of each training example. In batch mode, 

the weight updating is performed after the presentation of all the 

training examples that constitute an epoch (one training cycle). The 

performance function is then the average sum of the square of the error 

(average of the whole training data samples). The sequential mode is much 

faster since it requires less local storage of connection weight [13, 

20]. On the other hand, the batch mode has the advantage that conditions 

of the convergence are well understood [20]. 

Furthermore, many advanced learning algorithms such as conjugate 

gradients operate only in batch mode.  Stopping criteria and 

generalization 



 

The aim of neural network model training is to obtain a low enough error 

solution for the problem under investigation. The learning network 

algorithm searches for the global lowest error. The main challenge in 

neural network modeling is how to set the criteria for network training 

termination. In other words, how can we stop the network from training 

before memorization (fitting the noise) takes place, where the lowest 

error found by the network might not be necessarily the best solution in 

order to generalize the model [13]. The ability of an ANN to execute well 

on hidden patterns (testing data subset) is called its ability to 

generalize [13, 16]. Besides the generalization issue, it is not always 

certain that the training error converges to a minimum or that it 

achieves it in a reasonable time. All these issues make the stopping 

criterion a complex issue in neural network modeling. 

 

Generalization is one of the critical issues in developing an ANN model. 

It is more significant than the network’s ability to map the training 

patterns correctly (finding the lowest error in the training subset), 

since the network objective is to solve the unknown case [16, 21]. The 

generalization is affected by three main factors: (1) the size of the 

data, (2) network size and (3) the complexity of the problem under 

investigation [13, 16]. The last factor though is out of our control. 

 

Specifying the network size is an important task. If the network is very 

small, then its ability to provide a good solution of the problem might 

be limited. On the other hand, if the network is too big, then the danger 

of memorizing the data (not being able to generalize) will be high [16, 

22]. Hush and Horne [16] pointed out that in general, it is not known 

what size of network works best for a problem under investigation. 

Furthermore, it is difficult to specify a network size for a general case 

since each problem will demand different capabilities. With little or no 

prior knowledge of the problem, the trial and error method can be used to 

determine the network size. 

 

There are several approaches that may be used as a trial and error 

procedure to determine network size. One approach is to start with the 

smallest possible network and gradually increase the size [16, 23]. The 

optimal network size is then that point at which the performance begins 

to level off. After this point, the network will begin to memorize the 

training data. Another approach is to start with an oversized network and 

then apply a pruning technique that removes weight/nodes, which end up 

contributing little or nothing to the solution [20]. 

In this approach, an idea of what size constitutes a large network needs 

to be known [16]. 

 

# About tuning parameters: https://www.tmwr.org/tuning.html 

 

In the classic single-layer artificial neural network (a.k.a. the 

multilayer perceptron), the predictors are combined using two or more 

hidden units. The hidden units are linear combinations of the predictors 

that are captured in an activation function (typically a nonlinear 

function, such as a sigmoid). The hidden units are then connected to the 

outcome units; one outcome unit is used for regression models and 

multiple outcome units are required for classification. The number of 

hidden units and the type of activation functionare important structural 

tuning parameters. 



 

Modern gradient descent methods are improved by finding the right 

optimization parameters. Examples are learning rates, momentum, and the 

number of optimization iterations/epochs (Goodfellow, Bengio, and 

Courville 2016). Neural networks and some ensemble models use gradient 

descent to estimate the model parameters. While the tuning parameters 

associated with gradient descent are not structural parameters, they 

often require tuning. 

 

Hagan M, Demuth HB, Beale M (1996) Neural network design. PWS Publishing 

Company, USA 

 

Haykin S (1998) neural networks, a comprehensive foundation. Prentice 

Hall PTR, 

2nd edn. USA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



README file 
[10/16/2022] 

You might want to create a working directory structure like this: 

 

python/ 

|-- data               # where to store data (if any) 

|-- deliver            # final analyses, code, and presentations 

|-- develop            # notebooks for explorary analyses 

|-- src                # scripts and local project modules 

 

Next, we install and setup python programming environment. 

 

1. Create a python virtual environment and name it "transformers_venv". 

 

$ /usr/local/bin/python3 -m venv transformers_venv 

 

[NOTE: my python3 is under /usr/local/bin, yours may be installed  

in a different directory] 

 

Afterwards ./transformers_venv is added to the current direcotry tree. 

 

python/ 

|-- data 

|-- deliver 

|-- develop 

|-- src 

|-- transformers_venv  # transformer packages installed here 

 

Activate the virtual environment 

$ source ./transformers_venv/bin/activate 

 

You will notice that the command prompt changes to something like: 

(transformers_venv) [z python]% 

 

After activating transformers_venv, install packages within it. 

[NOTE: Python uses virtual environments to keep things organized. 

Search "why use a python virtual environment" for explanations.] 

 

(transformers_venv) [z python]% pip install transformers 

(transformers_venv) [z python]% pip install tensorflow 

(transformers_venv) [z python]% pip install torch 

(transformers_venv) [z python]% pip install ktrain 

(transformers_venv) [z python]% pip install sklearn    # ML library 

(transformers_venv) [z python]% pip install ipython    # python IDE 

 

Use 'pip freeze > requirements.txt' to save the system requirements 

into a file, e.g., correct versions of Python and packages such as  

transformers and tensorlow, etc. that make everything work. 

The requirements.txt file can be used by others to duplicate the 

development environment. 

[See https://towardsdatascience.com/virtual-environments-104c62d48c54] 

 

This shows the actual version of Python used by this venv. 

$ ls -al ./transformers_venv/bin/python 

 



In an activated venv, a call to python places you in the right version. 

[NOTE: no need to call 'python3', a simple 'python' will give you 3.10] 

 

    (transformers_venv) [z python]% python 

    Python 3.10.7 (main, Sep 15 2022, 01:51:29) [Clang 14.0.0  

    (clang-1400.0.29.102)] on darwin 

    Type "help", "copyright", "credits" or "license" for more 

information. 

    >>> 

 

I use 'ipython' to work with Python interactively and to debug programs. 

 

    (transformers_venv) [z src]% ../transformers_venv/bin/ipython 

    Python 3.10.7 (main, Sep 15 2022, 01:51:29) [Clang 14.0.0 (clang-

1400.0.29.102)] 

    Type 'copyright', 'credits' or 'license' for more information 

    IPython 8.5.0 -- An enhanced Interactive Python. Type '?' for help. 

 

    [ins] In [1]: 

 

Finally, type deactivate to exit venv and return to regular OS. 

 

    (transformers_venv) [z python]% deactivate 

    [z python]% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


