Introduction to Machine-Learning Methods for Patient-Reported Outcomes Data

Yuelin Li

October 19, 2022

ISOQOL Conference, Prague

Machine Learning Methods for PRO Data

My goal is to provide a general overview of ML methods

- 1. Why use ML in PRO data?
- 2. What is a typical and basic ML workflow?
- 3. Examples to illustrate the ML workflow
 - Tree-based method
 - Text classification by BERT, a Natural Language Processing (NLP) method
- 4. How to avoid common pitfalls?

Why use ML in PRO Data?

ML: person-oriented approach ¹

Traditional, variable-oriented approach

1: Bergman & Magnusson (1997) Development and Psychopathology https://doi.org/10.1017/S095457949700206X

Machine Learning: What is it?

Figure 1. Machine learning techniques include both unsupervised and supervised learning.

https://www.mathworks.com/discovery/machine-learning.html

Sarker I. SN Computer Science (2021) 2:160 https://doi.org/10.1007/s42979-021-00592-x

Unsupervised Learning

- Unsupervised learning finds hidden patterns or intrinsic structures in input data
- Clustering
 - K-means
 - Finite mixture modeling
 - Bayesian nonparametric methods¹
 - NLP (e.g., Latent Dirichlet Allocation²)
 - Psychometric network models ⁴

Figure 1. Machine learning techniques include both unsupervised and supervised learning.

1: Li et al. (2019, PMID: 31217637); 2. Li et al. (2019, PMID: 30798421); 3. (2022, JMSS); 4. Sacha Epskamp (2020) *Psychometrika* https://doi.org/10.1007/s11336-020-09697-3

Supervised Learning

- Supervised machine learning builds a model that makes predictions based on evidence in the presence of uncertainty
 - Classification methods
 - Classification and Regression Trees (CART)¹
 - SVM (Support Vector Machine)
 - Random Forest
 - XGBoost (eXtreme Gradient Boosting)
 - Artificial neural networks²
 - NLP (e.g., BERT for Text Classification ³)
 - Regression and its cousins

Figure 1. Machine learning techniques include both unsupervised and supervised learning.

1: Li & Rapkin (2009, PMID: 19595576); 2. Pfob et al. (2021, PMID: 33914464); 3. Schwartz et al. (2022, JMSS)

What is a typical ML workflow?

- Model training: feed historical data (often large) to ML algorithms to build a predictive model (e.g., logistic regression)
- Model testing: new data (never seen before by predictive model) fed into the model to generate predictions
- Predictive accuracy in new data (e.g., sensitivity/specificity, ROC curves, mean squared error)
- Often, as part of phase 1 model training, you do *cross-validation* to select the desired model

Typical ML workflow

- Training sample, validation sample, and test sample
- Training sample to set the parameters of the predictive models ("train the models" in ML parlance)
- Validation to choose the best model among different models trained on the training sample
- How choose? By selecting (say) model that has the lowest empirical risk on the validation sample
- E.g., choice between a simple vs. a complex model using same training sample. We choose the model that has the lowest mean squared prediction error on the validation sample
- Test sample yields unbiased estimate of risk of model selected in the validation step
- Why test step? Because model selection can also make mistakes
- Sometimes tested by someone else on blinded data (ML competitions)
- Workflow is iterative (e.g., Train-Validation-Test1-Test2)

Cross validation types

• K-fold cross-validation

- Leave-One-Out (LOO) cross validation
 - N-fold cross validation

$$MSE = \frac{1}{N} \sum (y_i - f(x_i))^2$$

- N: Total number of observations
- y_i: Observed outcome value of the ith observation
- $f(x_i)$: Predicted response value of the ith observation

Cross-Validation Example

Why x-validation?

- For example, stock Kyphosis dataset
- Recursive partitioning divides 2D space between Age and Start into subgroups
- However, individuals falling near the boundaries can be misclassified by chance
- Cross-validation error provides a measure of this problem by running the same model K times
- Now, we will do this in RStudio

Prune rpart tree

- On the previous slide, rpart() grows a tree with 5 terminal nodes
- rpart() does a 10-fold cross-validation under the hood
- The plotcp() command plots the size of tree and its corresponding relative error to help prune the tree
- Like a traditional scree plot
- Splitting sample to 2 nodes reduces relative error (good)
- Further into 5 nodes not much worse than 2
- Rationale for a 5-node model

Natural Language Processing

Natural Language Processing by BERT

- BERT stands for 'Bidirectional Encoder Representations from Transformers'
- Unlike earlier NLP models, BERT's artificial neural nets take the order of words into account
- E.g., 'work to live' and 'live to work' are semantic opposites
- In late 2018, Google released BERT¹
- Other technology companies such as Facebook and OpenAI have also joined forces to pre-train BERT using 3.3 billion words total with 2.5 billion words from Wikipedia and 0.8 billion from BooksCorpus.
- As a result, this "pre-trained" BERT has learned how the English language is structured and how the words are typically arranged in the context of sentences
- Learn more in their blog post ²
- Carolyn Schwartz and I tested BERT in coding interview transcripts (close to the performance of a human coder)³
- BERT is now an integral part of Google search
- You might have noticed that you get better Google search results by complete sentences

Text Classification by BERT

 Next, we turn to Python to show you how to do text classification using a "pre-trained" BERT you can download

To Summarize This Part of Workshop

- Countless other points on ML not covered here
- But I hope I have given you a fundamental intuition on ML
- Importance of cross-validation and NLP parameter tuning as an integral part of data analysis in writing a paper
- You must interrogate your models (e.g., cross-validation), not just to accept ML defaults
- Make you feel more confident and efficient in learning more on your own
- Potentially rediscover finer details of ML yourself