

Machine-Learning Methods for Differential Item Functioning in Patient-Reported Outcomes

Facilitators

Dr. Yuelin Li
Attending,
Memorial Sloan Kettering Cancer Center
New York, USA
e-mail: liy12@mskcc.org

Dr. Lisa M. Lix

Professor and Canada Research Chair
University of Manitoba
Winnipeg, Canada
e-mail: lisa.lix@umanitoba.ca

Dr. Tolulope T. Sajobi
Associate Professor of Biostatistics
University of Calgary
Calgary, Canada
e-mail: ttsajobi@ucalgary.ca

The facilitators have no conflicts of interest with respect to the material that is presented in this workshop

Acknowledgements

We Gratefully Acknowledge the Assistance of our Trainees:

Olawale Ayilara, Olayinka Arimoro, Muditha Lakmali Bodawatte Gedara

Purpose and Objectives

• **Purpose:** To introduce data-driven methods to detect differential item functioning in patient-reported outcomes

Objectives:

- To examine machine-learning models to explore and detect differential item functioning in high-dimensional data.
- 2. To describe the types of data and research problems that will benefit from the application of machine-learning models for detection of differential item functioning.
- 3. To demonstrate the implementation of machine-learning methods using existing software packages, with a particular emphasis on R software.

Time	Торіс	Facilitator	
9:00 – 9:15	Welcome and Overview	Lisa Lix	
9:15 – 9:40	Machine-Learning Methods for Patient-Reported Outcomes Data	Yuelin Li	
9:40 – 10:05	Item Response Theory Methods for Detection of Differential Item Functioning	Tolulope Sajobi	
10:05 – 10:25	Item-Focused Machine-Learning Models for Detection of Differential Item Functioning	Lisa Lix	
10:25 – 10:40	Break		
10:40 – 10:55	Continued: Item-Focused Machine-Learning Models for Detection of Differential Item Functioning	Lisa Lix	
10:55 – 11:20	Person-Centered Polytomous IRT for Detection of Differential Item Functioning	Tolulope Sajobi	
11:20 – 11:45	Extending Machine-Learning Methods to Detect Response Shift in Patient-Reported Outcomes Data	Tolulope Sajobi & Yuelin Li	
11:45 – 12:00	Concluding Remarks Q&A	Lisa Lix	

Workshop Materials

https://www.ucalgary.ca/research/person-centered-methods-lab/research/resources/isoqol

Content:

- Lecture notes with list of relevant references
- R scripts
- Dataset for case example

Dataset for Case Example

- Regional joint replacement registry from Canada;
- 1391 patients having a total hip replacement
- Patients had complete responses on the SF-12 (version 2) physical health (PH) and mental health (MH) component items
- Females: 51.5%
- Age: 17 years to 92 years; mean of 64.7 years (SD 11.3)

Physical Health Component Items

Item: Label	Response options, n (%)					
	Excellent	Very Good	Good	Fair	Poor	
P1: General health	24 (1.7)	138 (9.9)	602 (43.3)	512 (36.8)	115 (8.3)	
	Limited a lot	Limited a little	Not limited at all			
P2: Limited in moderate	960 (69.0)	354 (25.4)	77 (5.5)			
activity						
P3: Climbing several	1014 (72.9)	308 (22.1)	69 (5.0)			
flights						
	All of the time	Most of the time	Some of the time	A little of the time	None of the time	
P4: Accomplished less	543 (39.0)	482 (34.7)	237 (17.0)	89 (6.4)	40 (2.9)	
(physical health)						
P5: Limited in work and	555 (39.9)	495 (35.6)	258 (17.1)	71 (5.1)	32 (2.3)	
other activities						
P6: Pain interference with	18 (1.3)	95 (6.8)	261 (18.8)	632 (45.4)	385 (27.7)	
normal work						

Mental Health Component Items

Item: Label	Response options, n (%)				
	All of the time	Most of the time	Some of the time	A little of the time	None of the time
M1: Accomplished less	145 (10.4)	248 (17.8)	325 (23.4)	283 (20.3)	390 (28.0)
(emotional problems)					
M2: Did work or other	135 (9.7)	212 (15.2)	313 (22.5)	301 (21.6)	430 (30.9)
activities less carefully					
than usual (as a result of					
any emotional problems)					
M3: Felt calm and peaceful	74 (5.3)	229 (16.5)	401 (28.8)	605 (43.5)	82 (5.9)
M4: Energy level	195 (14.0)	394 (28.3)	484 (34.8)	281 (20.2)	37 (2.7)
M5: Felt downhearted and	35 (2.5)	94 (6.8)	389 (28.0)	466 (33.5)	407 (29.3)
depressed					
M6: Physical health or	136 (9.8)	239 (17.2)	434 (31.2)	278 (20.0)	304 (21.9)
emotional problems					
interfered with social					
activities					

DIFFERENTIAL ITEM FUNCTIONING

Is it reasonable to assume that all people, regardless of their life context, will interpret and respond to items in the same way?

A difference between people in the meaning of one's selfevaluation of a target construct

Scalar invariance

Internal standards of measurement

Metric invariance

Relative importance of domains or items

Configural invariance

Definition of the target construct

between different people

Differential item functioning

Differences in how people interpret and respond to questions
Threatens the comparability of scores across individuals or groups

over time

Response shift

An individual's frame of reference may change over time Threatens the comparability of scores over time

WHY IS ADDRESSING MEASUREMENT INVARIANCE IMPORTANT?

Fairness and equity in PRO measurement for:

- assessing diverse patients
- comparing different groups
- evaluating change over time