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Qualitative methods can enhance our understanding of constructs that have not been well 
portrayed and enable nuanced depiction of experience from study participants who have 
not been broadly studied. However, qualitative data require time and effort to train raters 
to achieve validity and reliability. This study compares recent advances in Natural 
Language Processing (NLP) models with human coding. This web-based study (N=1,253; 
3,046 free-text entries, averaging 64 characters per entry) included people with Duchenne 
Muscular Dystrophy (DMD), their siblings, and a representative comparison group. 
Human raters (n=6) were trained over multiple sessions in content analysis as per a 
comprehensive codebook. Three prompts addressed distinct aspects of participants’ 
aspirations. Unsupervised NLP was implemented using Latent Dirichlet Allocation (LDA), 
which extracts latent topics across all the free-text entries. Supervised NLP was done using 
a Bidirectional Encoder Representations from Transformers (BERT) model, which 
requires training the algorithm to recognize relevant human-coded themes across free-text 
entries. We compared the human-, LDA-, and BERT-coded themes. Study sample 
contained 286 people with DMD, 355 DMD siblings, and 997 comparison participants, age 
8-69. Human coders generated 95 codes across the three prompts and had an average 
inter-rater reliability (Fleiss’s kappa) of 0.77, with minimal rater-effect (pseudo R2=4%). 
Compared to human coders, LDA does not yield easily interpretable themes. BERT 
correctly classified only 61-70% of the validation set. LDA and BERT required technical 
expertise to program and took approximately 1.15 minutes per open-text entry, compared 
to 1.18 minutes for human raters including training time. LDA and BERT provide 
potentially viable approaches to analyzing large-scale qualitative data, but both have 
limitations. When text entries are short, LDA yields latent topics that are hard to interpret. 
BERT accurately identified only about two thirds of new statements. Humans provided 
reliable and cost-effective coding in the web-based context. The upfront training enables 
BERT to process enormous quantities of text data in future work, which should examine 
NLP’s predictive accuracy given different quantities of training data. 
 
 
Key words: natural language processing, qualitative data, human, efficiency 
 
 



HUMANS VS. NLP 

 

While qualitative data collection is often used in the development of 
theory or conceptual models for new measures (Cappelleri et al., 2013; 
Ferrans, 2005), many qualitative studies utilize small sample sizes 
(Schwartz & Revicki, 2012), perhaps related to different logical, theoretical, 
and epistemological differences from quantitative research (Trotter II, 
2012). There are, however, increasingly low-effort ways to collect qualitative 
data due to online survey engines, social media platforms, and other ways 
that people are asked to provide input in their clinical care. These 
developments dovetail with the growing interest in patient-centered 
measurement and care (Barry & Edgman-Levitan, 2012; Kebede, 2016), 
providing further motivation for expanding the feasibility and use of 
qualitative data in outcome research. Moreover, advances in the capability 
of Natural Language Processing (NLP) algorithms over the past decade have 
expanded their applications in medical and social science research 
(Agaronnik, Lindvall, El-Jawahri, He, & Iezzoni, 2020; Parker, 2020; 
Skaljic et al., 2019). 

Early NLP algorithms extracted themes by tallying word frequencies 
across responses. One of the most widely used instances of this basic type 
of NLP software is Linguistic Inquiry and Word Count (LIWC) (Pennebaker, 
Francis, & Booth, 2001). LIWC compares words to a pre-determined 
dictionary file of various linguistic and psychological categories, allowing 
researchers to observe categorical associations between linguistic patterns 
and psychological state (Dönges, 2009; Pennebaker et al., 2001; Receptiviti, 
2021). A 2011 study, for example, used LIWC to analyze transcripts of 
potential romantic partners on four-minute speed dates to measure how 
closely their speech matched in order to predict whether the couples would 
stay together after the first date (Ireland et al., 2011). 

The major limitation of word-count algorithms such as LIWC is the 
requirement for investigators to predict words and categories relevant to 
the research topic for use in the algorithm’s “dictionary” in order to be 
counted for analysis. Topic modelling algorithms from the mid-2000’s such 
as Latent Dirichlet Analysis (LDA) and Hierarchical Latent Tree Analysis 
solved this problem by generating lists of abstract topics from text without 
the need for a “warmup” or “training” data set. Though researchers may use 
topics to extract information such as patient priorities and goals, the topics 
produced by LDA and Hierarchical Latent Tree Analysis are often 
unpolished and may not be relevant to the research question (Atkinson, 
2019; Li, Rapkin, Atkinson, Schofield & Bochner, 2019). 

Technology companies such as Facebook, Google, and OpenAI have 
recently developed deep learning neural network tools and made many of 
them open source and free to download. In this article, we applied a 
Bidirectional Encoder Representations from Transformers (BERT) model 
to classify free-text goal statements to themes (Devlin, Chang, Lee, & 
Toutanova, 2018). Transformers first appeared in 2017 (Vaswani et al., 
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2017), when engineers at Google published a paper to address challenges in 
processing word sequences. For example, the two phrases “live to eat” and 
“eat to live” are semantic opposites due to how the words are ordered from 
left to right. Transformers use an attention-based structure to retain a 
memory of word sequences in hidden layers. This attention mechanism 
overcomes the limitations of LDA, which has no built-in mechanisms to 
distinguish word sequences (except in n-grams, sequences of words treated 
as unique entities, but it is a flawed approach). Word order is also ignored 
in machine-learning techniques such as naive bayes, Support Vector 
Machines (SVM), and random forest (Reyes, 2019). 

In late 2018, Google released BERT (Devlin et al., 2018) which added 
enhancements to the attention mechanisms of Transformers. Given that 
generally the larger the quantities of data used to train a neural network, 
the more the predictive power, the immense network of data available to 
research groups at the technology companies have allowed for the 
development of these NLP techniques that more accurately assess nuanced 
contexts and motives in individuals’ writing and speech (Mikolov, Chen, 
Corrado, & Dean, 2013; Tenney, Das, & Pavlick, 2019). Notably, this 
improved accuracy has allowed for the development of NLP systems capable 
of deriving clinical decisions based on automated electronic medical record 
analysis (Chen, Zafar, Galperin-Aizenberg, & Cook, 2018; Gonzalez-
Hernandez, Sarker, O'Connor, & Savova, 2017). The primary use of NLP in 
social science and medical research, however, is to supersede the use of 
humans in assigning topic “codes” to open-text survey responses, 
interviews, and social media posts (Guetterman et al., 2018; Leeson, 
Resnick, Alexander, & Rovers, 2019). 

Early articles comparing NLP to human coding were optimistic about its 
potential; Andrew Perrin postulated that NLP could expand the scope of 
qualitative studies by eliminating the need to pay and train coders and could 
potentially even eliminate issues regarding inter-rater reliability, though 
computer processing power at the time did not yet allow NLP to outpace 
human coders and thus limited its applications (Perrin, 2001). Accordingly, 
newer computing technologies have yielded promising results in certain 
fields; for instance, LDA topic modeling analysis of open-ended survey 
questions can allow for thematic information outside of a predefined coding 
rubric to be detected in survey responses, which serves to augment, rather 
than replace, the manual coding of data (Finch, Hernández Finch, 
McIntosh, & Braun, 2018). 

Counseling psychology studies comparing NLP analysis to human 
coding of counselor-client conversations/motivational interviews have also 
found evidence that NLP techniques may be able to accurately apply a 
behavioral coding system on a large body of unstructured text. This may 
save significant time and money over a manual approach, which can range 
on average from 90 to 120 minutes per 20 minute interview segment, not 
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including the 40 or so hours required for coder training (Can et al., 2016; 
Moyers, Martin, Catley, Harris, & Ahluwalia, 2003). Some non-topic 
models lagged behind human reliability when coding certain highly 
contextual statements in motivational interviews; in one example, the 
Discrete Sentence Feature (DSF) and Recursive Neural Network (RNN) 
models struggled with coding isolated sentences discussing substance use. 
Those sentences could either be coded as favoring change in the client’s 
habits or as the opposite (favoring maintenance of current habits), 
depending on subtle context clues from the preceding conversation, which 
human raters found easier to discern (Tanana, Hallgren, Imel, Atkins, & 
Srikumar, 2016). A number of these studies express optimism about the 
potential speed advantage of NLP over human coders.  

Baumer and colleagues compared LDA and human coding by grounded 
theory (Baumer, Mimno, Guha, Quan, & Gay, 2017). BERT was not yet 
available at the time of their application. They analyzed free-text data on 
reasons why individuals returned to social media after a brief (up to 99 
days) and voluntary absence. Baumer et al. (2017) report good agreement, 
that LDA extracts themes that generally reflect the same content as the 
human-extracted themes.  

In response to a dearth of literature (Raffel et al., 2019), the present 
study directly compared human coding to two NLP methods: the un-
supervised LDA and the supervised BERT. One of the co-authors (YL) has 
previously applied LDA to summarize cancer patients’ free-text goal 
statements as they undergo bladder cancer surgery (Landis & Koch, 1977). 
Thus, the main rationale for these two specific NLP methods is to go beyond 
LDA to capitalize on the latest NLP analytics.  
 

Methods 
 
Sample and Procedure 
 

This secondary analysis utilized data from a study of Duchenne 
Muscular Dystrophy (DMD) patients, their siblings, and a comparison-
group. The sample and methods are fully described in the two primary 
papers from this project ( Schwartz, Biletch, Stuart, & Rapkin, 2022a, 
2022b) and will only briefly summarized herein. These primary papers 
examine differences in aspirations for patients versus comparison 
participants, and siblings versus comparison participants. Accordingly, for 
the purpose of the present work, data were combined across groups, 
although demographic characteristics will be described by group. Eligible 
participants were age 8 or older and able to complete an online 
questionnaire. 

The web-based survey was administered October through December 
2020 through the Health Insurance Portability and Accountability Act of 
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1996 (HIPAA)-compliant, secure Alchemer engine (www.alchemer.com). 
Participants were paid honoraria to compensate them for their time. The 
protocol was reviewed and approved by the New England Independent 
Review Board (NEIRB #20203038), and all participants provided informed 
consent before beginning the survey. 
 
Measures 
 

Life aspirations was measured using the following open-ended prompts: 
(1) Three Wishes (Nereo & Hinton, 2003), in which participants were asked, 
“If you could make three wishes, any three wishes in the whole world, what 
would they be?”; (2) Goals: “What are the main things you want to 
accomplish?”; (3) Quality of Life (QOL) Definition: “In a sentence, what 
does the phrase "Quality of Life" mean to you at this time?” The latter two 
are part of the QOL Appraisal Profilev1(QOLAP) (Rapkin & Schwartz, 2004).  

Demographic Characteristics included year of birth, gender, and 
whether anyone in the household was or had been infected with the novel 
coronavirus-2019, and whether they received help completing the survey 
(all participants). Teens and adults were asked about comorbidities from a 
list selected on the basis of documented higher prevalence in people with 
DMD (Ciafaloni et al., 2009; Pane et al., 2012). Adult participants were 
asked about race, ethnicity, education, marital status, weight, height, with 
whom the person lives, difficulty paying bills, and employment status.  
 
Statistical Analysis 
 

Coding open-text data. The open-ended data were coded by six trained 
raters (EB, RBB, AD, JBL, EK, MCF), according to a standardized protocol 
and comprehensive codebook originally derived from an extensive sorting 
procedure (Li & Rapkin, 2009). [The interested reader can contact the 
corresponding author for the QOLAP coding manual which describes the 
theme definitions in detail.] 

Themes were coded as ‘‘0’’ if they were not reflected in the individual’s 
written text response, and ‘‘1’’ if they were reflected there. As the goal-
delineation themes were originally developed with a Human 
Immunodeficiency Virus sample (Li & Rapkin, 2009), which generally has 
different sociodemographic characteristics than the current study sample, 
some themes were not as prevalent among the present sample. For example, 
themes related to drug and alcohol, immigration, and racism were prevalent 
among the Human Immunodeficiency Virus sample, but were not found at 
all in the current study sample. Themes were added as needed, resulting in 
a set of 40 themes for the Wishes and Goals prompts and 17 for the QOL 
Definition prompt. For each prompt, a theme of ‘‘no direct answer’’ was 
used if the respondent did not provide an answer or answering a different 

http://www.alchemer.com/
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question than was asked. For example, in response to the question ‘‘What 
are the main things you want to accomplish?’’ exemplary No-Direct-Answer 
responses ‘‘seems rather great’’ or ‘‘nothing idk lol.” 

Each text entry could be coded for as many themes as there. Thus, one 
goal could elicit one theme or more than one depending on how the 
individual worded it. For example, one individual’s Accomplish goal was 
‘‘My bills paid, my family healthy and happy, and family go to church’’. It 
was coded as reflecting family welfare, financial concerns, health issues, 
mental health/mood state, and religious/spiritual concerns. In contrast, 
another individual’s Accomplish goal was ‘‘Move to a different state,” Which 
was coded only as living situation. In this method of working with the 
aspirations data, we assumed that the relevant factor was the themes, not 
the different wishes, goals, or QOL definitions themselves. 

Training took place in two multi-hour sessions to understand the 
protocol and to utilize fully the codebook where themes were described fully 
and exemplified. Raters coded an initial set of ten participants’ data (all 
prompts), followed by a discussion of differences across raters. They then 
coded the next ten participants’ data (all prompts), and comparison and 
discussion revealed almost no differences across raters. Raters then coded 
data from 40 more responses (all prompts), from which inter-rater 
reliability was computed in two ways on the 240 test responses (6 raters * 
40 participant entries). 

Inter-Rater Reliability. Fleiss’s kappa (Fleiss, 1971) assessed degree of 
agreement over and above what would be expected by chance. This variant 
on the more familiar Cohen’s kappa (Cohen, 1960) is used in cases of more 
than two raters. While there are no generally accepted rules of thumb for a 
desirable level of either form of kappa, some healthcare researchers have 
proposed values from 0.41-0.60 as “moderate,” 0.61-0.80 as “good,” and 
0.81-1.00 as “very good.”(Altman, 1999; Landis & Koch, 1977). 

Logistic regression assessed level of agreement among raters, with each 
of 240 “0” or “1” values regressed on the Rater variable, with its six rater-
categories. High inter-rater reliability (IRR) for any given theme would be 
indicated by a nonsignificant rater effect, and one that explained a low 
fraction of the variance in ratings (e.g., a pseudo-R-squared in the low single 
digits). 
 
NLP Methods Tested 
 

Two NLP methods were tested in this study: LDA and BERT. The main 
difference between these methods is that LDA is unsupervised, and BERT 
is supervised machine learning, in the sense that LDA is able to extract 
topics without human intervention while BERT (in text classification 
specifically) requires that topics be previously established. A crude but 
useful analogy may be that LDA behaves more like Exploratory Factor 
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Analysis, where the underlying factors are unknown, while BERT behaves 
more like Confirmatory Factor Analysis, where those factors are specified in 
advance. 

LDA. The LDA analytic plan was similar to the one described in detail in 
a previous article on patients’ free-text goal statements as they undergo 
bladder cancer surgery.(Li, et al., 2019) Separate LDA analyses were 
conducted for responses to each of three prompts: Wishes, QOL Definitions, 
and Goals. We followed the commonly-used steps in preprocessing (e.g., 
plotting ‘word clouds’, setting ‘stop words’ aside, and adding two-
consecutive-word phrases as ‘bigrams’ for contextual information). We then 
determined the best number of topics as specified by LDA and fitted the 
final LDA model for each analysis. The LDA computation was primarily 
done by the scikit-learn tools written in the Python programming language 
(Pedregosa et al., 2011). The number of topics per analysis was evaluated by 
the R package ldatuning (Nikita, 2016) and the four supported metrics 
(Arun, Suresh, Veni Madhavan, & Murthy, 2010; Cao, Xia, Li, Zhang, & 
Tang, 2009; Deveaud, SanJuan, & Bellot, 2014; Griffiths & Steyvers, 2004), 
using all available text entries. The LDA analysis, unlike that for BERT, 
involved no evaluation of accuracy, as in use of a training set versus 
validation set. 

Model selection was done using the four metrics provided in the 
ldatuning package (Nikita, 2016) to estimate the desired number of topics. 
Both the Arun et al. (2010) and Cao et al. ( 2009) metrics are akin to the 
scree plot in an exploratory factor analysis, where the location of the elbow 
indicates the desired number of topics. The Griffiths and Steyvers’ ( 2004) 
and the Deveaud ( 2014) metric are based on the fit between words within 
topics, where the location of a plateau reflects the desired number of topics. 

All subsequent analyses were fixed at this number of topics to make a 
consistent and streamlined presentation, including separate LDA models 
for patients, siblings, and comparison-group participants. 

Bidirectional Encoder Representations from Transformers (BERT). 
BERT is widely viewed as a state-of-the-art, supervised deep-learning 
neural network. It was developed by scientists at Google (Devlin, Chang, 
Lee, & Toutanova, 2019) to address enduring challenges in NLP. 
Transformers such as BERT use an attention-based structure to retain a 
memory of word sequences in hidden layers of a neural network such that 
the network registers or “intuitively understands” their opposite semantic 
meaning. This property overcomes certain limitations of LDA, which has no 
built-in mechanisms to distinguish word sequences (except in n-grams, 
such as the bigram in the current LDA approach, an unsatisfactory 
workaround nevertheless). 

To classify text using BERT. we used a publicly accessible, off-the-shelf 
machine-learning tool called the “huggingface transformers” (Hugging 
Face, 2021). The specific tool we used was the DistillBERT tool within the 
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huggingface transformers library. This a scaled-down version of the full 
BERT was designed to work more quickly due to fewer layers and hidden 
nodes. It is one of several alternative algorithms derived from the full BERT 
technology (see ("List of alternative algorithms derived from the full BERT 
technology,")). DistillBERT is what is known as a pre-trained model, in 
which technology companies have already trained it using the enormous 
amounts of unannotated text on the internet so that it learns a general-
purpose language representation model (Devlin & Chang, 2018). After pre-
training, an analyst can then fine-tune DistillBERT for specific tasks. 
Henceforth, for simplicity and readability we use the more generic term 
BERT to represent DistillBERT. 

From a user’s perspective, an application of BERT is divided into two 
components, known in the literature as pre-training and fine-tuning. This 
two-step approach is at the core of the concept of Transfer 
Learning(Vaswani et al., 2017). Once pre-trained, BERT and its variants can 
be reused for many downstream machine-learning tasks, including the 
current text classification. There are many pre-trained libraries available for 
download, for tasks such as next-sentence prediction (e.g., instant 
autocomplete suggestions in a search engine), named-entity recognition 
(e.g., a trained network knows that the Empire State Building is near 
Manhattan), and language translation (e.g., English to French). 

The fine-tuning in this study proceeded as follows. Wishes, goals and 
definitions were analyzed separately. For example, the 1,613 entries of 
wishes were randomly divided into the training set (n=399), the validation 
set (n=76 for tuning configuration parameters), and a blinded test set 
(remaining n=1,214 that BERT had never encountered previously and 
blinded to the analyst who trained BERT). 

Configuration Parameters for BERT. The training set entries were 
entered into BERT as the predictors and the corresponding human-coded 
categories were the target outcomes. Learning was achieved by optimizing 
network connections by the Adaptive Moment Estimation algorithm 
(Kingma & Ba, 2014). It is known that optimized network configurations are 
affected by hyperparameters such as the learning rate (the rate with which 
model weights are updated in response to the estimated error, where a 
learning rate too small may run slowly but a learning rate too large may lead 
to suboptimal weights), batch size (number of samples that are passed to 
the network at once, where smaller batch size facilitates learning but tends 
to run slower), and the number of epochs (one complete presentation of the 
entire training data to the network during the training process is called an 
epoch, an iteration, or one training cycle (Hakin, 1998)). We explored 
configuration settings by varying combinations of batch size (16 vs. 32), 
learning rate (5e-5, 3e-5, and 2e-5), and number of epochs (10 vs. 20) and 
used the validation set to tune the optimal hyperparameter settings that 
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yielded the best overall validation accuracy, which produced the final 
settings of a batch size of 16, a learning rate of 3e-5, and 10 epochs.  

The trained model was then evaluated by the blinded test set (e.g., 1,214 
blinded wishes) that the trained BERT model had never encountered 
before. BERT was analyzed using the Python programming language 
version 3.8.10 to call the transformers library version 4.11.3 and tensorflow 
2.6.0 (details on software platform are available upon request). 

Performance of BERT by Predictive Accuracy. Accuracy was evaluated 
using both improper scoring (the percentage of cases correctly classified) 
and proper scoring (the average point-biserial correlation [rpb] between a 
given human-rated theme’ binary value and the BERT-generated 
probability of a text entry fitting that theme). In the latter case, the average 
rpb was obtained via Fisher’s Zr statistics (Harrell, 2010; "Scoring rule," 
2021). For each prompt, there was a subset of themes with nonzero 
probabilities generated by BERT and that thus could be tested for their 
point-biserial correlations with the corresponding binary theme variable as 
rated by the human coders. Compared to Correct Classification Rate, this 
correlation constitutes a more finely grained method of evaluating BERT’s 
performance. Even when correct classifications were not made, it would be 
evidence in BERT’s favor if there were a systematic tendency for the 
probability of being rated with a given theme to be higher in the presence of 
that theme. 
 

Results 
 
Participant characteristics 
 

The sample included 1253 participants: 285 patients, 349 of their 
siblings, and 619 in the comparison group (mean age 17, 18, and 19, 
respectively). The patients were all male, while males made up 48% and 47% 
of the other 2 groups. Participants resided in a broad cross-section of the 
United States. One percent of patients, 5% of the siblings and 23% of the 
comparison group were married. Percentages of Hispanics or Latinos were 
9%, 8%, and 20%; percentages of Blacks, 8%, 6%, and 20%. Among 
patients, 5% were employed, and the rest were unemployed or disabled; in 
contrast, 42% of the siblings and 61% of the comparison group were 
employed. Educational levels were varied, with the comparison group 
having the highest fraction (37%) educated at the bachelor’s level or higher. 
Only 1% of patients or of siblings, but 19% of the comparison group, 
reported that they or a family member had contracted COVID-19. 
Comparatively large numbers of participants in all groups reported having 
help completing the survey: by group, 49%, 26%, and 19%, respectively. 
Further information is available in the primary publications from this study 
(Schwartz et al., submitted for publication a, submitted for publication b) 
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Qualitative Coding Reliability 
 

As reported in the primary papers from this project (Schwartz et al., 
under review a, b), the mean kappa was 0.77 (SD=0.17, range 0.51 to 0.98), 
reflecting a good level of agreement(Altman, 1999; Landis & Koch, 1977). 
The best estimated pseudo-R2 for rater was 0.042 (p=0.24), suggesting that 
the rater effect in coded themes was negligible. Descriptive statistics on 
proportion of participants whose open-text data reflected various themes 
are provided in the primary papers from this project. 
 
Examples of Participants’ Wishes 
 
Table 1  
Illustrative Examples of Free-Text Entries 
Role Wishes Definitions Goals 

Patient Always have a dog, 
No disease in 
world, peace 

Living life 
without pain 

Going to every 
baseball 
stadium. And 
making a lot of 
friends 

Sibling I want to be an 
English teacher.  I 
want to live in a big 
city.  I want to find 
a partner who loves 
me very much 

Money was 
plentiful 

Doing a degree 

Comparison One wish would be 
go to Taylor swift 
next tour. The 
second, be a 
millionaire. And 
the third, have all 
of taylor swift’s 
merch. 

Quality of life to 
me means having 
lived your life in 
a way that you 
are proud and 
know that 
everything in it 
was worth it even 
though it did not 
seem like it. Also 
allow yourself to 
make mistakes 
and learn and 
always come 
back stronger 
than a 90's 
trend!  

The main things 
i want to 
accomplish is 
get a bachelor's 
degree in 
science. Go to 
the next taylor 
swift tour, and 
finally travel the 
world and see 
as many of my 
favorite artists 
live. 
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Table 1 provides illustrative examples of free-text entries on what 
participants wished for, from the combined total of 1214 unique wishes, 480 
goals, and 243 definitions randomized into the validation set. 
 
Human Coding Results 
 

Table 2 provides information about the prevalence across the whole 
sample of Wishes, Goals, and QOL Definition themes. Figure 1 shows the 
five most prevalent themes by prompt. Financial concerns were prominent 
across all three  
 
Figure 1. Top five human-coded themes by prompt. The three prompts 
generated relatively distinct sets of themes, although financial concerns 
were prominent across all three prompts, and health across two of the 
three. 
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Table 2 
Descriptive statistics for human coded themes from open-text prompts, 
listed from most to least prevalent 
Theme Proportion of sample 
Wishes - Family Welfare .29 

Wishes - Health Issues .29 

Wishes - Financial Concerns .28 

Wishes - Material Acquisitions .26 

Wishes - Interpersonal Relationships .21 

Wishes - Travel .18 

Wishes - Work and Unemployment .17 

Wishes - Achievement .16 

Wishes - DMD-Related Goals .16 

Wishes - Societal and Altruistic Concerns .16 

Wishes - Fantasy .13 

Wishes - Leisure Activities .13 

Wishes - Self-Image and Personality .09 

Wishes - Mental Health and Mood State .09 

Wishes - Education .09 

Wishes - COVID-Specific .08 

Wishes - Living Situation, Housing, Neighborhood .06 

Wishes - Health Welfare (Societal) .06 

Wishes - Independent Functioning .05 

Wishes - No Direct Answer .05 

Wishes - Existential Concerns .03 

Wishes - Political Welfare .02 

Wishes - Religious and Spiritual Concerns .02 

Wishes - Accomplishing Chores and Tasks .02 

Wishes - Financial Welfare (Societal) .02 

Wishes - Provider- and Treatment- Related Concerns .01 

Wishes - Problem Resolution .01 

Wishes - Racism .01 

Wishes - Prevention .01 

Wishes - Environmental Welfare .01 

Wishes - Living Situation (Societal) .01 

Wishes - Community Involvement and Voluntarism .01 

Wishes - Disengagement .00 

Wishes - Maintenance .00 

Wishes - Legal and Crime / Safety Concerns .00 

Wishes - Legal and Crime (Societal) .00 

Wishes - Acceptance .00 

Wishes - Drug and Alcohol Use .00 

Wishes - Immigration and Citizenship .00 
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Theme Proportion of sample 

Wishes - Involvement in Community Outreach .00 

Goals - Education .30 

Goals - Work and Unemployment .27 

Goals - Achievement .23 

Goals - Financial Concerns .23 

Goals - Interpersonal Relationships .20 

Goals - No Direct Answer .19 

Goals - Family Welfare .11 

Goals - Mental Health and Mood State .09 

Goals - Living Situation, Housing, Neighborhood .09 

Goals - Health Issues .07 

Goals - Independent Functioning .07 

Goals - Material Acquisitions .06 

Goals - Self-Image and Personality .06 

Goals - Provider- and Treatment- Related Concerns .04 

Goals - Travel .04 

Goals - Societal and Altruistic Concerns .03 

Goals - Community Involvement and Voluntarism .02 

Goals - Accomplishing Chores and Tasks .02 

Goals - Leisure Activities .02 

Goals - Religious and Spiritual Concerns .02 

Goals - Existential Concerns .02 

Goals - DMD-Related Goals .02 

Goals - Acceptance .01 

Goals - Environmental Welfare .01 

Goals - Fantasy .01 

Goals - Health Welfare (Societal) .01 

Goals - Maintenance .01 

Goals - COVID-Specific .00 

Goals - Drug and Alcohol Use .00 

Goals - Prevention .00 

Goals - Disengagement .00 

Goals - Financial Welfare (Societal) .00 

Goals - Immigration and Citizenship .00 

Goals - Involvement in Community Outreach .00 

Goals - Legal and Crime (Societal) .00 

Goals - Legal and Crime / Safety Concerns .00 

Goals - Living Situation (Societal) .00 

Goals - Political Welfare .00 

Goals - Problem Resolution .00 

Goals - Racism .00 
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Theme Proportion of sample 

Definition - Circumstances .44 

Definition - Contentment .35 

Definition - Positive Attitude (mental health) .26 

Definition - No Direct Answer .22 

Definition - Health .20 

Definition - Independence .10 

Definition - Personal Growth .09 

Definition - Family / friends .08 

Definition - Contribution .02 

Definition - Treatment-related .02 

Definition - Balance .01 

Definition - Survival .01 

Definition - Problems .01 

Definition - Provider-related .01 

Definition - Reminiscence .00 

 
LDA Results 
 

How many topics in LDA?. Figure 2 plots the four model-selection 
metrics by the number of extracted topics. These four metrics provided 
limited guidance because of their inconsistency. Among the two metrics for 
which lower score indicates best fit, the Cao et al. ( 2009) metric suggested 
either 2 or 9  topics, and the Arun et al. ( 2010) suggested 10 to15.  Among 
the metrics for which higher score indicates best fit, the Griffiths and 
Steyvers (2004) metric indicated a model with approximately 8 topics, and 
the Deveaud et al. (2014) clearly indicated two. We opted to retain 8 as a 
compromise between the 2 extremes. 
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Figure 2. Model-selection metrics by the number of extracted topics. Model 
selection metrics were used to estimate the desired number of topics, using 
the combined 1,253 statements of validation-set wishes. The top panel plots 
two metrics that theoretically should behave like a scree plot in an 
exploratory factor analysis, where the location of the elbow indicates the 
desired number of topics. Among the two metrics for which lower score 
indicates best fit, the Cao et al. metric suggested either 2 or 9 topics, and the 
Arun et al. suggested 10 to15.  Among the metrics for which higher score 
indicates best fit, the Griffiths and Steyvers metric indicated a model with 
approximately 8 topics, and the Deveaud et al. clearly indicated two.  
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Topics. Table 3 summarizes the 3 words most strongly associated with 
each latent topic derived from LDA analysis of respondents’ wishes, goals, 
and QOL definitions. These words inform the interpretation of those topics.  
 
Table 3 
Top 3 Words per Latent Topic Derived from LDA Analysis of Respondents' 
Wishes, Goals and QOL Definitions 

Topic       

Wishes Word1 
Preva-
lence Word2 

Preva
-lence Word3 

Preva-
lence 

1 like .08 animals .04 Walk .04 
2 live .03 Life .02 long .02 
3 health .08 family .04 love .03 
4 money .04 DMD .03 lots .02 
5 world .07 peace .04 end .04 
6 travel .04 brother .03 money .02 
7 new .07 house .05 buy .03 
8 money .06 healthy .06 happy .05 

Goals Word1 
Preva
-lence Word2 

Preva
-lence Word3 

Preva-
lence 

1 job .08 business .04 married .04 
2 debt .09 Pay .04 live .03 
3 house .06 Like .04 school .04 

4 doctor .04 
Arrange-
ment .03 

doctor 
arrange-
ment .03 

5 financially .06 things .05 stable .05 
6 life .07 good .05 family .03 
7 money .07 happy .05 make .05 
8 work .09 degree .05 study .04 
QOL 
Defini-
tion Word1 

Preva
-lence Word2 

Preva
-lence Word3 

Preva-
lence 

1 work .07 balance .06 know .05 

2 good .18 quality .03 
good 
health .03 

3 happy .12 Day .06 healthy .05 
4 material .11 spiritual .07 satisfaction .05 
5 able .09 want .08 rich .07 
6 living .13 Live .11 fullest .03 
7 healthy .12 happiness .06 body .06 
8 quality .08 things .04 family .04 
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For example, Wishes topic 1 includes “like”, “animals”, and “walk”. This 
topic does not lend itself to easy summary. Topic 2 seems to be related 
chiefly to living a long life; topic 3, to good health, family, and love; topic 4, 
to wealth and (finding a cure for) DMD; topic 5, to world peace;   and topic 
6, to travel, their brother, and money; topic 7, to worldly possessions; and 
topic 8 to money, health, and happiness. The fact that even these top three 
words by topic represent at most 8% of the corresponding text entries, and 
typically only 4%, makes most of these characterizations tenuous. 

For respondents’ goals and QOL definition, the topics do lend 
themselves to more easy summary. For goals, the eight topics may be loosely 
characterized, respectively, as ‘finishing school and starting life’, ‘resolving 
financial debt’, ‘good housing and school’, ‘managing healthcare’, 
‘financially stable’, ‘family happiness’, ‘career success’, and ‘college and job 
prospects’. These top three words by topic represent at most 9% of the 
corresponding text entries, and on average about 5%. 

For QOL definitions, the eight topics may be summarized as ‘work-
family balance’, ‘having good health’, ‘happiness & health’, ‘material & 
spiritual satisfaction’, ‘material wealth’, ‘living life to the fullest’, ‘healthy 
body’, and ‘provision for family’. These top three words by topic represent 
at most 18% of the corresponding text entries, and on average about 7%. 
 
BERT Results 
 

Improper Scoring: Correct Classification Rate. Table 4 provides 
example texts for the goals prompt and shows BERT probabilities for 
assigning the top five human-coded themes. Grey shading indicates that 
BERT correctly  classified the statement as matching the  indicated theme.  
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Table 4 
Examples of BERT’s Probabilities that a Given Statement Will Match a 
Given Theme 

Example 
Text, Goals 
Prompt  

Educa-
tion 

Work & 
Unemploy-
ment 

Achieve-
ment 

Finan-
cial 
Con-
cerns 

Inter-
personal 
Relation-
ships 

Raising my 
children to 
be 
respectful.   
Spend as 
much time 
with family 
as possible. .001 .002 .003 .002 .950 a 
Live well 
make a lot of 
money and 
retire in asia .005 .609 a .007 .030 .009 
Making a 
difference, 
leaving a 
mark, and 
achieving 
my goals .009 .009 .047 .011 .091 
Strive to 
learn new 
knowledge .450 .050 .114 .008 .052 
a Gray shading that BERT correctly classified the statement as matching the 
indicated theme. 
 
While BERT correctly identified two themes, it missed others that would 
have been recognizable as related to one or more themes. For example, 
“achieving my goals” would have been coded as Achievement by humans 
but only had a 4.7% probability of such by BERT. Similarly, “strive to learn 
new knowledge” would have been coded as Education by humans but only 
had a 45% probability of such by BERT. 

Table 5 summarizes the overall accuracy in BERT’s predictions for text 
entries in the validation set, i.e., data that the model had never encountered 
previously. In the blinded validation set the theme identified by BERT was 
also identified by humans for 70% of Wishes, 68% of Goals, and 61% of QOL 
Definition entries, with an overall correct classification rate of 67%. This is 
despite the fact that BERT could be described as having in most cases “more 
than one chance." That is, the average statement was rated by human coders 
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as fitting 2.9 themes for Wishes, 2.2 for Goals, and 1.6 for Definitions. BERT 
thus typically had multiple ways, an average of 2.6, in which its 
classification could conceivably match some human-coded theme. 
 
Table 5 
DistillBERT’s Predictive Accuracy 

Prompt 
n 

codes 

Training Set Blinded Validation Set 

n entries Accuracy n entries Accuracy 

Wishes 40 399 100% 1214 70% 

Goals 40 160 100% 480 68% 
QOL 
Definition 15 139 100% 545 61% 

 
Proper Scoring: Human-BERT Correlation. Table 6 shows the average 

correlations among themes coded by humans and BERT, separately by 
prompt. For themes within all three prompts, the algorithm’s probabilities 
generally correlated only moderately with the binary theme variable, with 
average rpb per prompt in the 0.3-0.4 range and an overall rpb of 0.34 (Table 
6). These correlations reflect a relatively low overall explained variance of 
0.12, with more variance explained for Goals (R2=0.14) than for Wishes 
(R2=0.11) or QOL Definition (R2=0.10). 
 
Table 6 
Correlations Among Themes Coded by Humans vs. BERT 

Prompt 
n 

Comparisons 
Mean  
rpb* 

Minimum  
rpb* 

Maximum 
rpb* 

Wishes (n =1,207) 30 0.33 -0.01 0.85 
Goals (n = 478) 21 0.37 -0.01 0.70 
Definitions (n = 243) 11 0.32 0.06 0.57 
Total (weighted by n 
Comparisons) 62 0.34 -0.01 0.85 

Note. rpb = point-biserial correlation coefficient 
 

Relative Efficiency. Considering all of the time needed for training and 
scoring the open-text data, the three methods took very similar amounts of 
time. LDA and BERT took approximately 1.15 minutes per training sample 
(on a 64-bit workstation with a 6-core Intel Xeon CPU at 2.40 GHz and 32 
GiB of memory running Ubuntu Linux version 20.04, no GPU was utilized). 
By comparison, human raters can code one entry at an average rate of 1.18 
minutes. After removing time for training and programming, LDA took 
about 8 seconds per entry, and BERT took 4. After removing time for 
training, the human raters took about 52 seconds per entry. 
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Discussion 

 
The present study is, to our knowledge, the first to compare human 

coding to two NLP methods - LDA and BERT - for analyzing large-scale 
qualitative data. Table 7 summarizes the features of the three methods. 
Compared to human coders, LDA in this study did not yield easily 
interpretable themes. LDA output is difficult to summarize in meaningful 
ways, partially because the same word, phrase, or theme can appear 
multiple times across latent topics. BERT has the potential to be more useful 
because it can be trained to recognize topics or themes already deemed 
meaningful by humans. Nonetheless, BERT accurately identified only about 
two thirds of statements that it had never encountered previously in 
training, despite having on average 2.6 themes that humans had coded for 
any given text entry. Moreover, the more sensitive point-biserial correlation 
showed an average explained variance of 12% per theme. Because LDA and 
BERT require specialized knowledge and software, their feasibility and 
accessibility may be limited for researchers without such access. 
 
Table 7 
Summary of Text-Analysis Methods 
  Method 

Feature Humans LDA BERT 

Yields interpretable themes √ 
  

Training required √ 
 

√ 
High hourly cost 

 
√ √ 

Specialized knowledge required (√) √ √ 
Special Software required (√) √ √ 
Scalable to big data (n>100K) 

 
√ √ 

 
Our findings on LDA are different from Baumer et al.’s (2017) results 

and from the impressive results found in the wider literature on LDA, in 
which LDA is able to extract coherent and meaningful themes. The seminal 
paper on LDA (Blei, Ng, & Jordan, 2003) showed that LDA extracted 
meaningful and unique topics from over 16 thousand newswire articles. 
LDA also successfully found themes from over 40 thousand entries of 
chapter-length reading materials for students (Steyvers & Griffiths, 2007) 
or scientific abstracts ( Griffiths & Steyvers, 2004). Like any statistical 
procedure, LDA’s performance depends on the contents in the input data. 
Our findings suggest that LDA does not perform well in the context of 
relatively brief open-text entries. 

Other researchers may get different results if BERT is applied after a 
much larger training set (i.e., longer open-text entries, far fewer themes, 
and many more entries per theme). For example, Murarka, Radhakrishnan, 
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& Ravichandran (2020) analyzed 17,000 social-media posts and achieved 
80% accuracy in classifying posts into one of five specific mental-health 
outcomes. In contrast, our data derived from three relatively broad prompts 
about wishes, QOL definition, and goals, and were human-coded into 95 
themes. This is a more complex task that may draw on empathy and life 
experience. One other limitation of BERT in text classification is that it 
requires training of human coders to generate coded data that can be used 
to train BERT. Thus, the highest cost of human coders (i.e., the training and 
adjudication period) would need to be included in the overall cost of BERT. 

It is worth noting that any successful implementation of BERT could be 
reused once trained. In our case, for example, if it had a greater accuracy 
(e.g., > 80% similar to (Murarka et al., 2020)), our BERT model could have 
been applied to classify the wishes and aspirations of people who post online 
about Muscular Dystrophy. Also, because our data include a comparison 
group, the neural-network weights devised might be applied to understand 
the aspirations of individuals from the general population. This reusability 
may offset the initial cost of training BERT. 

Humans provided reliable, valid, and cost-effective coding in the web-
based context with relatively short text entries. On average, they took only 
two seconds longer than LDA or BERT per open-text entry. Of note, the 
present study included coding of approximately 3,000 open-text entries. 
Thus, scaling up to larger data sets and longer text entries might be feasible 
for motivated and compensated human coders. We have not evaluated the 
three methods in processing other qualitative data such as interview 
transcripts. Future research might compare the three methods in the 
context of hour-long interview transcripts, where BERT’s advantages may 
be more apparent.  

This study has many advantages, including a robust sample with good 
quality data on multiple prompts. Nonetheless, the limitations of the study 
must be acknowledged. First, there is considerable uncertainty in the LDA 
results, as seen in the unexpected patterns in two of the four model-
selection metrics. Also, the current BERT model only predicts one code at a 
time, even though it is capable of predicting multiple categories. This was a 
crude but reasonable and practical beginning of this line of inquiry. Future 
research should examine LDA’s results and interpretability to provide 
guidance as to when the method is most appropriate. Future BERT 
modeling can go onto multi-class task. Another limitation of the present 
work is that the computed correlations between BERT and humans are 
likely attenuated by the continuous-binary pairing. BERT’s average rpb of 
0.34 would thus likely be somewhat larger, and would translate to more 
than our documented 12% explained variance. However, even if that 12% 
were tripled, it would not seem enough to justify replacing human raters 
with this algorithm. 
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Conclusions 
 

In summary, LDA and BERT provide potentially viable approaches to 
analyzing large-scale qualitative data, but both have limitations. When text 
entries are short, LDA yields latent topics that are hard to interpret. BERT 
accurately identified only about two thirds of new statements even given 
multiple opportunities. Moreover, the probabilities it assigned showed 
unsatisfactory correlations with the binary theme variables in question. 
Humans provided reliable and cost-effective coding in the web-based 
context. Future research should examine NLP’s predictive accuracy given 
different contexts and quantities of training data. 
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Abstract
In the current age of the Fourth Industrial Revolution (4IR or Industry 4.0), the digital world has a wealth of data, such as 
Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intel-
ligently analyze these data and develop the corresponding smart and automated applications, the knowledge of artificial 
intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as 
supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning, which 
is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we 
present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the 
capabilities of an application. Thus, this study’s key contribution is explaining the principles of different machine learning 
techniques and their applicability in various real-world application domains, such as cybersecurity systems, smart cities, 
healthcare, e-commerce, agriculture, and many more. We also highlight the challenges and potential research directions 
based on our study. Overall, this paper aims to serve as a reference point for both academia and industry professionals as well 
as for decision-makers in various real-world situations and application areas, particularly from the technical point of view.

Keywords  Machine learning · Deep learning · Artificial intelligence · Data science · Data-driven decision-making · 
Predictive analytics · Intelligent applications

Introduction

We live in the age of data, where everything around us is 
connected to a data source, and everything in our lives is 
digitally recorded [21, 103]. For instance, the current elec-
tronic world has a wealth of various kinds of data, such as 
the Internet of Things (IoT) data, cybersecurity data, smart 
city data, business data, smartphone data, social media data, 
health data, COVID-19 data, and many more. The data can 

be structured, semi-structured, or unstructured, discussed 
briefly in Sect. “Types of Real-World Data and Machine 
Learning Techniques”, which is increasing day-by-day. 
Extracting insights from these data can be used to build 
various intelligent applications in the relevant domains. For 
instance, to build a data-driven automated and intelligent 
cybersecurity system, the relevant cybersecurity data can 
be used [105]; to build personalized context-aware smart 
mobile applications, the relevant mobile data can be used 
[103], and so on. Thus, the data management tools and tech-
niques having the capability of extracting insights or useful 
knowledge from the data in a timely and intelligent way is 
urgently needed, on which the real-world applications are 
based.

Artificial intelligence (AI), particularly, machine learning 
(ML) have grown rapidly in recent years in the context of 
data analysis and computing that typically allows the appli-
cations to function in an intelligent manner [95]. ML usually 
provides systems with the ability to learn and enhance from 
experience automatically without being specifically pro-
grammed and is generally referred to as the most popular 
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latest technologies in the fourth industrial revolution (4IR 
or Industry 4.0) [103, 105]. “Industry 4.0” [114] is typically 
the ongoing automation of conventional manufacturing and 
industrial practices, including exploratory data processing, 
using new smart technologies such as machine learning 
automation. Thus, to intelligently analyze these data and to 
develop the corresponding real-world applications, machine 
learning algorithms is the key. The learning algorithms can 
be categorized into four major types, such as supervised, 
unsupervised, semi-supervised, and reinforcement learn-
ing in the area [75], discussed briefly in Sect. “Types of 
Real-World Data and MachineLearning Techniques”. The 
popularity of these approaches to learning is increasing 
day-by-day, which is shown in Fig. 1, based on data col-
lected from Google Trends [4] over the last five years. The 
x-axis of the figure indicates the specific dates and the cor-
responding popularity score within the range of 0 (minimum) 
to 100 (maximum) has been shown in y-axis. According to 
Fig. 1, the popularity indication values for these learning 
types are low in 2015 and are increasing day by day. These 
statistics motivate us to study on machine learning in this 
paper, which can play an important role in the real-world 
through Industry 4.0 automation.

In general, the effectiveness and the efficiency of a 
machine learning solution depend on the nature and char-
acteristics of data and the performance of the learning 
algorithms. In the area of machine learning algorithms, 
classification analysis, regression, data clustering, fea-
ture engineering and dimensionality reduction, associa-
tion rule learning, or reinforcement learning techniques 
exist to effectively build data-driven systems [41, 125]. 
Besides, deep learning originated from the artificial 
neural network that can be used to intelligently analyze 
data, which is known as part of a wider family of machine 
learning approaches [96]. Thus, selecting a proper learn-
ing algorithm that is suitable for the target application in 

a particular domain is challenging. The reason is that the 
purpose of different learning algorithms is different, even 
the outcome of different learning algorithms in a similar 
category may vary depending on the data characteristics 
[106]. Thus, it is important to understand the principles 
of various machine learning algorithms and their appli-
cability to apply in various real-world application areas, 
such as IoT systems, cybersecurity services, business and 
recommendation systems, smart cities, healthcare and 
COVID-19, context-aware systems, sustainable agricul-
ture, and many more that are explained briefly in Sect. 
“Applications of Machine Learning”.

Based on the importance and potentiality of “Machine 
Learning” to analyze the data mentioned above, in this 
paper, we provide a comprehensive view on various types 
of machine learning algorithms that can be applied to 
enhance the intelligence and the capabilities of an appli-
cation. Thus, the key contribution of this study is explain-
ing the principles and potentiality of different machine 
learning techniques, and their applicability in various real-
world application areas mentioned earlier. The purpose 
of this paper is, therefore, to provide a basic guide for 
those academia and industry people who want to study, 
research, and develop data-driven automated and intelli-
gent systems in the relevant areas based on machine learn-
ing techniques.

The key contributions of this paper are listed as follows:

–	 To define the scope of our study by taking into account 
the nature and characteristics of various types of real-
world data and the capabilities of various learning tech-
niques.

–	 To provide a comprehensive view on machine learning 
algorithms that can be applied to enhance the intelligence 
and capabilities of a data-driven application.

Fig. 1   The worldwide popularity score of various types of ML algorithms (supervised, unsupervised, semi-supervised, and reinforcement) in a 
range of 0 (min) to 100 (max) over time where x-axis represents the timestamp information and y-axis represents the corresponding score
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–	 To discuss the applicability of machine learning-based 
solutions in various real-world application domains.

–	 To highlight and summarize the potential research direc-
tions within the scope of our study for intelligent data 
analysis and services.

The rest of the paper is organized as follows. The next sec-
tion presents the types of data and machine learning algo-
rithms in a broader sense and defines the scope of our study. 
We briefly discuss and explain different machine learning 
algorithms in the subsequent section followed by which 
various real-world application areas based on machine 
learning algorithms are discussed and summarized. In the 
penultimate section, we highlight several research issues and 
potential future directions, and the final section concludes 
this paper.

Types of Real‑World Data and Machine 
Learning Techniques

Machine learning algorithms typically consume and process 
data to learn the related patterns about individuals, business 
processes, transactions, events, and so on. In the following, 
we discuss various types of real-world data as well as cat-
egories of machine learning algorithms.

Types of Real‑World Data

Usually, the availability of data is considered as the key to 
construct a machine learning model or data-driven real-
world systems [103, 105]. Data can be of various forms, 
such as structured, semi-structured, or unstructured [41, 72]. 
Besides, the “metadata” is another type that typically repre-
sents data about the data. In the following, we briefly discuss 
these types of data.

–	 Structured: It has a well-defined structure, conforms to 
a data model following a standard order, which is highly 
organized and easily accessed, and used by an entity or a 
computer program. In well-defined schemes, such as rela-
tional databases, structured data are typically stored, i.e., 
in a tabular format. For instance, names, dates, addresses, 
credit card numbers, stock information, geolocation, etc. 
are examples of structured data.

–	 Unstructured: On the other hand, there is no pre-defined 
format or organization for unstructured data, making it 
much more difficult to capture, process, and analyze, 
mostly containing text and multimedia material. For 
example, sensor data, emails, blog entries, wikis, and 
word processing documents, PDF files, audio files, 
videos, images, presentations, web pages, and many 

other types of business documents can be considered as 
unstructured data.

–	 Semi-structured: Semi-structured data are not stored in 
a relational database like the structured data mentioned 
above, but it does have certain organizational proper-
ties that make it easier to analyze. HTML, XML, JSON 
documents, NoSQL databases, etc., are some examples 
of semi-structured data.

–	 Metadata: It is not the normal form of data, but “data 
about data”. The primary difference between “data” and 
“metadata” is that data are simply the material that can 
classify, measure, or even document something relative 
to an organization’s data properties. On the other hand, 
metadata describes the relevant data information, giving 
it more significance for data users. A basic example of a 
document’s metadata might be the author, file size, date 
generated by the document, keywords to define the docu-
ment, etc.

In the area of machine learning and data science, research-
ers use various widely used datasets for different purposes. 
These are, for example, cybersecurity datasets such as 
NSL-KDD [119], UNSW-NB15 [76], ISCX’12 [1], CIC-
DDoS2019 [2], Bot-IoT [59], etc., smartphone datasets such 
as phone call logs [84, 101], SMS Log [29], mobile applica-
tion usages logs [137] [117], mobile phone notification logs 
[73] etc., IoT data [16, 57, 62], agriculture and e-commerce 
data [120, 138], health data such as heart disease [92], dia-
betes mellitus [83, 134], COVID-19 [43, 74], etc., and many 
more in various application domains. The data can be in dif-
ferent types discussed above, which may vary from applica-
tion to application in the real world. To analyze such data in 
a particular problem domain, and to extract the insights or 
useful knowledge from the data for building the real-world 
intelligent applications, different types of machine learning 
techniques can be used according to their learning capabili-
ties, which is discussed in the following.

Types of Machine Learning Techniques

Machine Learning algorithms are mainly divided into four 
categories: Supervised learning, Unsupervised learning, 
Semi-supervised learning, and Reinforcement learning [75], 
as shown in Fig. 2. In the following, we briefly discuss each 
type of learning technique with the scope of their applicabil-
ity to solve real-world problems.

–	 Supervised: Supervised learning is typically the task of 
machine learning to learn a function that maps an input 
to an output based on sample input-output pairs [41]. It 
uses labeled training data and a collection of training 
examples to infer a function. Supervised learning is car-
ried out when certain goals are identified to be accom-
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plished from a certain set of inputs [105], i.e., a task-
driven approach. The most common supervised tasks are 
“classification” that separates the data, and “regression” 
that fits the data. For instance, predicting the class label 
or sentiment of a piece of text, like a tweet or a product 
review, i.e., text classification, is an example of super-
vised learning.

–	 Unsupervised: Unsupervised learning analyzes unla-
beled datasets without the need for human interference, 
i.e., a data-driven process [41]. This is widely used for 
extracting generative features, identifying meaningful 
trends and structures, groupings in results, and explora-
tory purposes. The most common unsupervised learning 
tasks are clustering, density estimation, feature learn-
ing, dimensionality reduction, finding association rules, 
anomaly detection, etc.

–	 Semi-supervised: Semi-supervised learning can be 
defined as a hybridization of the above-mentioned 
supervised and unsupervised methods, as it operates 
on both labeled and unlabeled data [41, 105]. Thus, it 
falls between learning “without supervision” and learn-
ing “with supervision”. In the real world, labeled data 
could be rare in several contexts, and unlabeled data are 
numerous, where semi-supervised learning is useful [75]. 
The ultimate goal of a semi-supervised learning model 
is to provide a better outcome for prediction than that 
produced using the labeled data alone from the model. 
Some application areas where semi-supervised learning 
is used include machine translation, fraud detection, labe-
ling data and text classification.

–	 Reinforcement: Reinforcement learning is a type of 
machine learning algorithm that enables software 
agents and machines to automatically evaluate the opti-
mal behavior in a particular context or environment to 
improve its efficiency [52], i.e., an environment-driven 
approach. This type of learning is based on reward or 
penalty, and its ultimate goal is to use insights obtained 
from environmental activists to take action to increase 
the reward or minimize the risk [75]. It is a powerful tool 
for training AI models that can help increase automation 
or optimize the operational efficiency of sophisticated 
systems such as robotics, autonomous driving tasks, 
manufacturing and supply chain logistics, however, not 
preferable to use it for solving the basic or straightfor-
ward problems.

Thus, to build effective models in various application areas 
different types of machine learning techniques can play 
a significant role according to their learning capabilities, 
depending on the nature of the data discussed earlier, and the 
target outcome. In Table 1, we summarize various types of 
machine learning techniques with examples. In the follow-
ing, we provide a comprehensive view of machine learning 
algorithms that can be applied to enhance the intelligence 
and capabilities of a data-driven application.

Fig. 2   Various types of machine 
learning techniques

Table 1   Various types of machine learning techniques with examples

Learning type Model building Examples

Supervised Algorithms or models learn from labeled data (task-driven approach) Classification, regression
Unsupervised Algorithms or models learn from unlabeled data (Data-Driven Approach) Clustering, associa-

tions, dimensionality 
reduction

Semi-supervised Models are built using combined data (labeled + unlabeled) Classification, clustering
Reinforcement Models are based on reward or penalty (environment-driven approach) Classification, control
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Machine Learning Tasks and Algorithms

In this section, we discuss various machine learning algo-
rithms that include classification analysis, regression 
analysis, data clustering, association rule learning, feature 
engineering for dimensionality reduction, as well as deep 
learning methods. A general structure of a machine learning-
based predictive model has been shown in Fig. 3, where 
the model is trained from historical data in phase 1 and the 
outcome is generated in phase 2 for the new test data.

Classification Analysis

Classification is regarded as a supervised learning method 
in machine learning, referring to a problem of predictive 
modeling as well, where a class label is predicted for a given 
example [41]. Mathematically, it maps a function (f) from 
input variables (X) to output variables (Y) as target, label or 
categories. To predict the class of given data points, it can be 
carried out on structured or unstructured data. For example, 
spam detection such as “spam” and “not spam” in email 
service providers can be a classification problem. In the fol-
lowing, we summarize the common classification problems.

•	 Binary classification: It refers to the classification tasks 
having two class labels such as “true and false” or “yes 
and no” [41]. In such binary classification tasks, one 
class could be the normal state, while the abnormal 
state could be another class. For instance, “cancer not 
detected” is the normal state of a task that involves a 
medical test, and “cancer detected” could be considered 
as the abnormal state. Similarly, “spam” and “not spam” 
in the above example of email service providers are con-
sidered as binary classification.

•	 Multiclass classification: Traditionally, this refers to 
those classification tasks having more than two class 

labels [41]. The multiclass classification does not have 
the principle of normal and abnormal outcomes, unlike 
binary classification tasks. Instead, within a range of 
specified classes, examples are classified as belonging 
to one. For example, it can be a multiclass classification 
task to classify various types of network attacks in the 
NSL-KDD [119] dataset, where the attack categories 
are classified into four class labels, such as DoS (Denial 
of Service Attack), U2R (User to Root Attack), R2L 
(Root to Local Attack), and Probing Attack.

•	 Multi-label classification: In machine learning, multi-
label classification is an important consideration where 
an example is associated with several classes or labels. 
Thus, it is a generalization of multiclass classification, 
where the classes involved in the problem are hierar-
chically structured, and each example may simultane-
ously belong to more than one class in each hierarchical 
level, e.g., multi-level text classification. For instance, 
Google news can be presented under the categories of a 
“city name”, “technology”, or “latest news”, etc. Multi-
label classification includes advanced machine learn-
ing algorithms that support predicting various mutually 
non-exclusive classes or labels, unlike traditional clas-
sification tasks where class labels are mutually exclu-
sive [82].

Many classification algorithms have been proposed in the 
machine learning and data science literature [41, 125]. In 
the following, we summarize the most common and popular 
methods that are used widely in various application areas.

–	 Naive Bayes (NB): The naive Bayes algorithm is based 
on the Bayes’ theorem with the assumption of independ-
ence between each pair of features [51]. It works well and 
can be used for both binary and multi-class categories 
in many real-world situations, such as document or text 
classification, spam filtering, etc. To effectively classify 
the noisy instances in the data and to construct a robust 
prediction model, the NB classifier can be used [94]. 
The key benefit is that, compared to more sophisticated 
approaches, it needs a small amount of training data 
to estimate the necessary parameters and quickly [82]. 
However, its performance may affect due to its strong 
assumptions on features independence. Gaussian, Multi-
nomial, Complement, Bernoulli, and Categorical are the 
common variants of NB classifier [82].

–	 Linear Discriminant Analysis (LDA): Linear Discrimi-
nant Analysis (LDA) is a linear decision boundary clas-
sifier created by fitting class conditional densities to data 
and applying Bayes’ rule [51, 82]. This method is also 
known as a generalization of Fisher’s linear discriminant, 
which projects a given dataset into a lower-dimensional 
space, i.e., a reduction of dimensionality that minimizes 

Fig. 3   A general structure of a machine learning based predictive 
model considering both the training and testing phase
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the complexity of the model or reduces the resulting 
model’s computational costs. The standard LDA model 
usually suits each class with a Gaussian density, assum-
ing that all classes share the same covariance matrix 
[82]. LDA is closely related to ANOVA (analysis of 
variance) and regression analysis, which seek to express 
one dependent variable as a linear combination of other 
features or measurements.

–	 Logistic regression (LR): Another common probabilistic 
based statistical model used to solve classification issues 
in machine learning is Logistic Regression (LR) [64]. 
Logistic regression typically uses a logistic function to 
estimate the probabilities, which is also referred to as 
the mathematically defined sigmoid function in Eq. 1. 
It can overfit high-dimensional datasets and works well 
when the dataset can be separated linearly. The regulari-
zation (L1 and L2) techniques [82] can be used to avoid 
over-fitting in such scenarios. The assumption of linear-
ity between the dependent and independent variables is 
considered as a major drawback of Logistic Regression. 
It can be used for both classification and regression prob-
lems, but it is more commonly used for classification. 

–	 K-nearest neighbors (KNN): K-Nearest Neighbors 
(KNN) [9] is an “instance-based learning” or non-gen-
eralizing learning, also known as a “lazy learning” algo-
rithm. It does not focus on constructing a general internal 
model; instead, it stores all instances corresponding to 
training data in n-dimensional space. KNN uses data and 
classifies new data points based on similarity measures 
(e.g., Euclidean distance function) [82]. Classification is 
computed from a simple majority vote of the k nearest 
neighbors of each point. It is quite robust to noisy train-
ing data, and accuracy depends on the data quality. The 
biggest issue with KNN is to choose the optimal number 
of neighbors to be considered. KNN can be used both for 
classification as well as regression.

–	 Support vector machine (SVM): In machine learning, 
another common technique that can be used for classi-
fication, regression, or other tasks is a support vector 
machine (SVM) [56]. In high- or infinite-dimensional 
space, a support vector machine constructs a hyper-plane 
or set of hyper-planes. Intuitively, the hyper-plane, which 
has the greatest distance from the nearest training data 
points in any class, achieves a strong separation since, in 
general, the greater the margin, the lower the classifier’s 
generalization error. It is effective in high-dimensional 
spaces and can behave differently based on different 
mathematical functions known as the kernel. Linear, 
polynomial, radial basis function (RBF), sigmoid, etc., 

(1)g(z) =
1

1 + exp(−z)
.

are the popular kernel functions used in SVM classifier 
[82]. However, when the data set contains more noise, 
such as overlapping target classes, SVM does not per-
form well.

–	 Decision tree (DT): Decision tree (DT) [88] is a well-
known non-parametric supervised learning method. 
DT learning methods are used for both the classifica-
tion and regression tasks [82]. ID3 [87], C4.5 [88], and 
CART [20] are well known for DT algorithms. Moreover, 
recently proposed BehavDT [100], and IntrudTree [97] 
by Sarker et al. are effective in the relevant application 
domains, such as user behavior analytics and cyberse-
curity analytics, respectively. By sorting down the tree 
from the root to some leaf nodes, as shown in Fig. 4, DT 
classifies the instances. Instances are classified by check-
ing the attribute defined by that node, starting at the root 
node of the tree, and then moving down the tree branch 
corresponding to the attribute value. For splitting, the 
most popular criteria are “gini” for the Gini impurity and 
“entropy” for the information gain that can be expressed 
mathematically as [82]. 

–	 Random forest (RF): A random forest classifier [19] 
is well known as an ensemble classification technique 
that is used in the field of machine learning and data 
science in various application areas. This method uses 

(2)Entropy ∶ H(x) = −

n
∑

i=1

p(xi) log2 p(xi)

(3)Gini(E) =1 −

c
∑

i=1

pi
2.

Fig. 4   An example of a decision tree structure
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“parallel ensembling” which fits several decision tree 
classifiers in parallel, as shown in Fig. 5, on different 
data set sub-samples and uses majority voting or aver-
ages for the outcome or final result. It thus minimizes 
the over-fitting problem and increases the prediction 
accuracy and control [82]. Therefore, the RF learning 
model with multiple decision trees is typically more 
accurate than a single decision tree based model [106]. 
To build a series of decision trees with controlled vari-
ation, it combines bootstrap aggregation (bagging) [18] 
and random feature selection [11]. It is adaptable to 
both classification and regression problems and fits 
well for both categorical and continuous values.

–	 Adaptive Boosting (AdaBoost): Adaptive Boost-
ing (AdaBoost) is an ensemble learning process that 
employs an iterative approach to improve poor classi-
fiers by learning from their errors. This is developed 
by Yoav Freund et al. [35] and also known as “meta-
learning”. Unlike the random forest that uses parallel 
ensembling, Adaboost uses “sequential ensembling”. 
It creates a powerful classifier by combining many 
poorly performing classifiers to obtain a good classi-
fier of high accuracy. In that sense, AdaBoost is called 
an adaptive classifier by significantly improving the 
efficiency of the classifier, but in some instances, it 
can trigger overfits. AdaBoost is best used to boost the 
performance of decision trees, base estimator [82], on 
binary classification problems, however, is sensitive to 
noisy data and outliers.

–	 Extreme gradient boosting (XGBoost): Gradient Boost-
ing, like Random Forests [19] above, is an ensemble 
learning algorithm that generates a final model based 
on a series of individual models, typically decision 
trees. The gradient is used to minimize the loss func-
tion, similar to how neural networks [41] use gradient 
descent to optimize weights. Extreme Gradient Boosting 

(XGBoost) is a form of gradient boosting that takes more 
detailed approximations into account when determining 
the best model [82]. It computes second-order gradients 
of the loss function to minimize loss and advanced regu-
larization (L1 and L2) [82], which reduces over-fitting, 
and improves model generalization and performance. 
XGBoost is fast to interpret and can handle large-sized 
datasets well.

–	 Stochastic gradient descent (SGD): Stochastic gradient 
descent (SGD) [41] is an iterative method for optimiz-
ing an objective function with appropriate smoothness 
properties, where the word ‘stochastic’ refers to random 
probability. This reduces the computational burden, par-
ticularly in high-dimensional optimization problems, 
allowing for faster iterations in exchange for a lower 
convergence rate. A gradient is the slope of a function 
that calculates a variable’s degree of change in response 
to another variable’s changes. Mathematically, the Gradi-
ent Descent is a convex function whose output is a partial 
derivative of a set of its input parameters. Let, � is the 
learning rate, and Ji is the training example cost of ith , 
then Eq. (4) represents the stochastic gradient descent 
weight update method at the jth iteration. In large-scale 
and sparse machine learning, SGD has been successfully 
applied to problems often encountered in text classifi-
cation and natural language processing [82]. However, 
SGD is sensitive to feature scaling and needs a range of 
hyperparameters, such as the regularization parameter 
and the number of iterations. 

–	 Rule-based classification: The term rule-based classifi-
cation can be used to refer to any classification scheme 
that makes use of IF-THEN rules for class prediction. 
Several classification algorithms such as Zero-R [125], 
One-R [47], decision trees [87, 88], DTNB [110], Ripple 
Down Rule learner (RIDOR) [125], Repeated Incremen-
tal Pruning to Produce Error Reduction (RIPPER) [126] 
exist with the ability of rule generation. The decision 
tree is one of the most common rule-based classifica-
tion algorithms among these techniques because it has 
several advantages, such as being easier to interpret; the 
ability to handle high-dimensional data; simplicity and 
speed; good accuracy; and the capability to produce rules 
for human clear and understandable classification [127] 
[128]. The decision tree-based rules also provide signifi-
cant accuracy in a prediction model for unseen test cases 
[106]. Since the rules are easily interpretable, these rule-
based classifiers are often used to produce descriptive 
models that can describe a system including the entities 
and their relationships.

(4)wj ∶= wj − �
�Ji

�wj

.

Fig. 5   An example of a random forest structure considering multiple 
decision trees
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Regression Analysis

Regression analysis includes several methods of machine 
learning that allow to predict a continuous (y) result variable 
based on the value of one or more (x) predictor variables 
[41]. The most significant distinction between classification 
and regression is that classification predicts distinct class 
labels, while regression facilitates the prediction of a con-
tinuous quantity. Figure 6 shows an example of how classifi-
cation is different with regression models. Some overlaps are 
often found between the two types of machine learning algo-
rithms. Regression models are now widely used in a variety 
of fields, including financial forecasting or prediction, cost 
estimation, trend analysis, marketing, time series estimation, 
drug response modeling, and many more. Some of the famil-
iar types of regression algorithms are linear, polynomial, 
lasso and ridge regression, etc., which are explained briefly 
in the following.

•	 Simple and multiple linear regression: This is one of 
the most popular ML modeling techniques as well as 
a well-known regression technique. In this technique, 
the dependent variable is continuous, the independent 
variable(s) can be continuous or discrete, and the form 
of the regression line is linear. Linear regression creates 
a relationship between the dependent variable (Y) and 
one or more independent variables (X) (also known as 
regression line) using the best fit straight line [41]. It is 
defined by the following equations: 

 where a is the intercept, b is the slope of the line, and e 
is the error term. This equation can be used to predict the 

(5)y =a + bx + e

(6)y =a + b1x1 + b2x2 +⋯ + bnxn + e,

value of the target variable based on the given predictor 
variable(s). Multiple linear regression is an extension of 
simple linear regression that allows two or more predic-
tor variables to model a response variable, y, as a linear 
function [41] defined in Eq. 6, whereas simple linear 
regression has only 1 independent variable, defined in 
Eq. 5.

•	 Polynomial regression: Polynomial regression is a form 
of regression analysis in which the relationship between 
the independent variable x and the dependent variable y 
is not linear, but is the polynomial degree of nth in x [82]. 
The equation for polynomial regression is also derived 
from linear regression (polynomial regression of degree 
1) equation, which is defined as below: 

 Here, y is the predicted/target output, b0, b1, ...bn are the 
regression coefficients, x is an independent/ input vari-
able. In simple words, we can say that if data are not dis-
tributed linearly, instead it is nth degree of polynomial 
then we use polynomial regression to get desired output.

•	 LASSO and ridge regression: LASSO and Ridge regres-
sion are well known as powerful techniques which are 
typically used for building learning models in presence 
of a large number of features, due to their capability to 
preventing over-fitting and reducing the complexity of 
the model. The LASSO (least absolute shrinkage and 
selection operator) regression model uses L1 regulariza-
tion technique [82] that uses shrinkage, which penalizes 
“absolute value of magnitude of coefficients” (L1 pen-
alty). As a result, LASSO appears to render coefficients 
to absolute zero. Thus, LASSO regression aims to find 
the subset of predictors that minimizes the prediction 
error for a quantitative response variable. On the other 
hand, ridge regression uses L2 regularization [82], which 
is the “squared magnitude of coefficients” (L2 penalty). 
Thus, ridge regression forces the weights to be small but 
never sets the coefficient value to zero, and does a non-
sparse solution. Overall, LASSO regression is useful to 
obtain a subset of predictors by eliminating less impor-
tant features, and ridge regression is useful when a data 
set has “multicollinearity” which refers to the predictors 
that are correlated with other predictors.

Cluster Analysis

Cluster analysis, also known as clustering, is an unsuper-
vised machine learning technique for identifying and group-
ing related data points in large datasets without concern for 
the specific outcome. It does grouping a collection of objects 
in such a way that objects in the same category, called a 
cluster, are in some sense more similar to each other than 

(7)y = b0 + b1x + b2x
2 + b3x

3 +⋯ + bnx
n + e.

Fig. 6   Classification vs. regression. In classification the dotted line 
represents a linear boundary that separates the two classes; in regres-
sion, the dotted line models the linear relationship between the two 
variables
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objects in other groups [41]. It is often used as a data analy-
sis technique to discover interesting trends or patterns in 
data, e.g., groups of consumers based on their behavior. In 
a broad range of application areas, such as cybersecurity, 
e-commerce, mobile data processing, health analytics, user 
modeling and behavioral analytics, clustering can be used. 
In the following, we briefly discuss and summarize various 
types of clustering methods.

–	 Partitioning methods: Based on the features and simi-
larities in the data, this clustering approach categorizes 
the data into multiple groups or clusters. The data sci-
entists or analysts typically determine the number of 
clusters either dynamically or statically depending on 
the nature of the target applications, to produce for the 
methods of clustering. The most common clustering 
algorithms based on partitioning methods are K-means 
[69], K-Mediods [80], CLARA [55] etc.

–	 Density-based methods: To identify distinct groups or 
clusters, it uses the concept that a cluster in the data 
space is a contiguous region of high point density iso-
lated from other such clusters by contiguous regions of 
low point density. Points that are not part of a cluster are 
considered as noise. The typical clustering algorithms 
based on density are DBSCAN [32], OPTICS [12] etc. 
The density-based methods typically struggle with clus-
ters of similar density and high dimensionality data.

–	 Hierarchical-based methods: Hierarchical clustering 
typically seeks to construct a hierarchy of clusters, i.e., 
the tree structure. Strategies for hierarchical cluster-
ing generally fall into two types: (i) Agglomerative—a 
“bottom-up” approach in which each observation begins 
in its cluster and pairs of clusters are combined as one, 
moves up the hierarchy, and (ii) Divisive—a “top-down” 
approach in which all observations begin in one cluster 
and splits are performed recursively, moves down the 
hierarchy, as shown in Fig 7. Our earlier proposed BOTS 
technique, Sarker et al. [102] is an example of a hierar-
chical, particularly, bottom-up clustering algorithm.

–	 Grid-based methods: To deal with massive datasets, grid-
based clustering is especially suitable. To obtain clusters, 
the principle is first to summarize the dataset with a grid 
representation and then to combine grid cells. STING 
[122], CLIQUE [6], etc. are the standard algorithms of 
grid-based clustering.

–	 Model-based methods: There are mainly two types of 
model-based clustering algorithms: one that uses statisti-
cal learning, and the other based on a method of neural 
network learning [130]. For instance, GMM [89] is an 
example of a statistical learning method, and SOM [22] 
[96] is an example of a neural network learning method.

–	 Constraint-based methods: Constrained-based clustering 
is a semi-supervised approach to data clustering that uses 

constraints to incorporate domain knowledge. Applica-
tion or user-oriented constraints are incorporated to per-
form the clustering. The typical algorithms of this kind 
of clustering are COP K-means [121], CMWK-Means 
[27], etc.

Many clustering algorithms have been proposed with the 
ability to grouping data in machine learning and data sci-
ence literature [41, 125]. In the following, we summarize the 
popular methods that are used widely in various application 
areas.

–	 K-means clustering: K-means clustering [69] is a fast, 
robust, and simple algorithm that provides reliable results 
when data sets are well-separated from each other. The 
data points are allocated to a cluster in this algorithm 
in such a way that the amount of the squared distance 
between the data points and the centroid is as small as 
possible. In other words, the K-means algorithm identi-
fies the k number of centroids and then assigns each data 
point to the nearest cluster while keeping the centroids as 
small as possible. Since it begins with a random selection 
of cluster centers, the results can be inconsistent. Since 
extreme values can easily affect a mean, the K-means 
clustering algorithm is sensitive to outliers. K-medoids 
clustering [91] is a variant of K-means that is more robust 
to noises and outliers.

–	 Mean-shift clustering: Mean-shift clustering [37] is 
a nonparametric clustering technique that does not 
require prior knowledge of the number of clusters or 
constraints on cluster shape. Mean-shift clustering 
aims to discover “blobs” in a smooth distribution or 

Fig. 7   A graphical interpretation of the widely-used hierarchical clus-
tering (Bottom-up and top-down) technique
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density of samples [82]. It is a centroid-based algo-
rithm that works by updating centroid candidates to be 
the mean of the points in a given region. To form the 
final set of centroids, these candidates are filtered in a 
post-processing stage to remove near-duplicates. Clus-
ter analysis in computer vision and image processing 
are examples of application domains. Mean Shift has 
the disadvantage of being computationally expensive. 
Moreover, in cases of high dimension, where the num-
ber of clusters shifts abruptly, the mean-shift algorithm 
does not work well.

–	 DBSCAN: Density-based spatial clustering of applica-
tions with noise (DBSCAN) [32] is a base algorithm for 
density-based clustering which is widely used in data 
mining and machine learning. This is known as a non-
parametric density-based clustering technique for sepa-
rating high-density clusters from low-density clusters 
that are used in model building. DBSCAN’s main idea 
is that a point belongs to a cluster if it is close to many 
points from that cluster. It can find clusters of various 
shapes and sizes in a vast volume of data that is noisy 
and contains outliers. DBSCAN, unlike k-means, does 
not require a priori specification of the number of clus-
ters in the data and can find arbitrarily shaped clusters. 
Although k-means is much faster than DBSCAN, it is 
efficient at finding high-density regions and outliers, i.e., 
is robust to outliers.

–	 GMM clustering: Gaussian mixture models (GMMs) are 
often used for data clustering, which is a distribution-
based clustering algorithm. A Gaussian mixture model 
is a probabilistic model in which all the data points are 
produced by a mixture of a finite number of Gaussian 
distributions with unknown parameters [82]. To find the 
Gaussian parameters for each cluster, an optimization 
algorithm called expectation-maximization (EM) [82] 
can be used. EM is an iterative method that uses a sta-
tistical model to estimate the parameters. In contrast to 
k-means, Gaussian mixture models account for uncer-
tainty and return the likelihood that a data point belongs 
to one of the k clusters. GMM clustering is more robust 
than k-means and works well even with non-linear data 
distributions.

–	 Agglomerative hierarchical clustering: The most com-
mon method of hierarchical clustering used to group 
objects in clusters based on their similarity is agglom-
erative clustering. This technique uses a bottom-up 
approach, where each object is first treated as a singleton 
cluster by the algorithm. Following that, pairs of clus-
ters are merged one by one until all clusters have been 
merged into a single large cluster containing all objects. 
The result is a dendrogram, which is a tree-based repre-
sentation of the elements. Single linkage [115], Complete 
linkage [116], BOTS [102] etc. are some examples of 

such techniques. The main advantage of agglomerative 
hierarchical clustering over k-means is that the tree-struc-
ture hierarchy generated by agglomerative clustering is 
more informative than the unstructured collection of flat 
clusters returned by k-means, which can help to make 
better decisions in the relevant application areas.

Dimensionality Reduction and Feature Learning

In machine learning and data science, high-dimensional 
data processing is a challenging task for both researchers 
and application developers. Thus, dimensionality reduc-
tion which is an unsupervised learning technique, is impor-
tant because it leads to better human interpretations, lower 
computational costs, and avoids overfitting and redundancy 
by simplifying models. Both the process of feature selec-
tion and feature extraction can be used for dimensionality 
reduction. The primary distinction between the selection and 
extraction of features is that the “feature selection” keeps a 
subset of the original features [97], while “feature extrac-
tion” creates brand new ones [98]. In the following, we 
briefly discuss these techniques.

–	 Feature selection: The selection of features, also known 
as the selection of variables or attributes in the data, is 
the process of choosing a subset of unique features (vari-
ables, predictors) to use in building machine learning and 
data science model. It decreases a model’s complexity by 
eliminating the irrelevant or less important features and 
allows for faster training of machine learning algorithms. 
A right and optimal subset of the selected features in a 
problem domain is capable to minimize the overfitting 
problem through simplifying and generalizing the model 
as well as increases the model’s accuracy [97]. Thus, 
“feature selection” [66, 99] is considered as one of the 
primary concepts in machine learning that greatly affects 
the effectiveness and efficiency of the target machine 
learning model. Chi-squared test, Analysis of variance 
(ANOVA) test, Pearson’s correlation coefficient, recur-
sive feature elimination, are some popular techniques that 
can be used for feature selection.

–	 Feature extraction: In a machine learning-based model 
or system, feature extraction techniques usually provide 
a better understanding of the data, a way to improve pre-
diction accuracy, and to reduce computational cost or 
training time. The aim of “feature extraction” [66, 99] is 
to reduce the number of features in a dataset by generat-
ing new ones from the existing ones and then discarding 
the original features. The majority of the information 
found in the original set of features can then be summa-
rized using this new reduced set of features. For instance, 
principal components analysis (PCA) is often used as a 
dimensionality-reduction technique to extract a lower-
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dimensional space creating new brand components from 
the existing features in a dataset [98].

Many algorithms have been proposed to reduce data dimen-
sions in the machine learning and data science literature [41, 
125]. In the following, we summarize the popular methods 
that are used widely in various application areas.

•	 Variance threshold: A simple basic approach to feature 
selection is the variance threshold [82]. This excludes all 
features of low variance, i.e., all features whose variance 
does not exceed the threshold. It eliminates all zero-var-
iance characteristics by default, i.e., characteristics that 
have the same value in all samples. This feature selection 
algorithm looks only at the (X) features, not the (y) out-
puts needed, and can, therefore, be used for unsupervised 
learning.

•	 Pearson correlation: Pearson’s correlation is another 
method to understand a feature’s relation to the response 
variable and can be used for feature selection [99]. This 
method is also used for finding the association between 
the features in a dataset. The resulting value is [−1, 1] , 
where −1 means perfect negative correlation, +1 means 
perfect positive correlation, and 0 means that the two 
variables do not have a linear correlation. If two random 
variables represent X and Y, then the correlation coef-
ficient between X and Y is defined as [41] 

•	 ANOVA: Analysis of variance (ANOVA) is a statisti-
cal tool used to verify the mean values of two or more 
groups that differ significantly from each other. ANOVA 
assumes a linear relationship between the variables and 
the target and the variables’ normal distribution. To sta-
tistically test the equality of means, the ANOVA method 

(8)r(X, Y) =

∑n

i=1
(Xi − X̄)(Yi − Ȳ)

�

∑n

i=1
(Xi − X̄)2

�

∑n

i=1
(Yi − Ȳ)2

.

utilizes F tests. For feature selection, the results ‘ANOVA 
F value’ [82] of this test can be used where certain fea-
tures independent of the goal variable can be omitted.

•	 Chi square: The chi-square �2 [82] statistic is an esti-
mate of the difference between the effects of a series of 
events or variables observed and expected frequencies. 
The magnitude of the difference between the real and 
observed values, the degrees of freedom, and the sample 
size depends on �2 . The chi-square �2 is commonly used 
for testing relationships between categorical variables. If 
Oi represents observed value and Ei represents expected 
value, then 

•	 Recursive feature elimination (RFE): Recursive Feature 
Elimination (RFE) is a brute force approach to feature 
selection. RFE [82] fits the model and removes the 
weakest feature before it meets the specified number 
of features. Features are ranked by the coefficients or 
feature significance of the model. RFE aims to remove 
dependencies and collinearity in the model by recursively 
removing a small number of features per iteration.

•	 Model-based selection: To reduce the dimensionality of 
the data, linear models penalized with the L1 regulariza-
tion can be used. Least absolute shrinkage and selection 
operator (Lasso) regression is a type of linear regression 
that has the property of shrinking some of the coefficients 
to zero [82]. Therefore, that feature can be removed from 
the model. Thus, the penalized lasso regression method, 
often used in machine learning to select the subset of 
variables. Extra Trees Classifier [82] is an example of a 
tree-based estimator that can be used to compute impu-
rity-based function importance, which can then be used 
to discard irrelevant features.

•	 Principal component analysis (PCA): Principal compo-
nent analysis (PCA) is a well-known unsupervised learn-

(9)�2 =

n
∑

i=1

(Oi − Ei)
2

Ei

.

Fig. 8   An example of a principal component analysis (PCA) and created principal components PC1 and PC2 in different dimension space
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ing approach in the field of machine learning and data 
science. PCA is a mathematical technique that transforms 
a set of correlated variables into a set of uncorrelated 
variables known as principal components [48, 81]. Fig-
ure 8 shows an example of the effect of PCA on various 
dimensions space, where Fig. 8a shows the original fea-
tures in 3D space, and Fig. 8b shows the created prin-
cipal components PC1 and PC2 onto a 2D plane, and 
1D line with the principal component PC1 respectively. 
Thus, PCA can be used as a feature extraction technique 
that reduces the dimensionality of the datasets, and to 
build an effective machine learning model [98]. Techni-
cally, PCA identifies the completely transformed with the 
highest eigenvalues of a covariance matrix and then uses 
those to project the data into a new subspace of equal or 
fewer dimensions [82].

Association Rule Learning

Association rule learning is a rule-based machine learn-
ing approach to discover interesting relationships, “IF-
THEN” statements, in large datasets between variables 
[7]. One example is that “if a customer buys a computer or 
laptop (an item), s/he is likely to also buy anti-virus soft-
ware (another item) at the same time”. Association rules 
are employed today in many application areas, including 
IoT services, medical diagnosis, usage behavior analytics, 
web usage mining, smartphone applications, cybersecurity 
applications, and bioinformatics. In comparison to sequence 
mining, association rule learning does not usually take into 
account the order of things within or across transactions. 
A common way of measuring the usefulness of association 
rules is to use its parameter, the ‘support’ and ‘confidence’, 
which is introduced in [7].

In the data mining literature, many association rule learn-
ing methods have been proposed, such as logic dependent 
[34], frequent pattern based [8, 49, 68], and tree-based [42]. 
The most popular association rule learning algorithms are 
summarized below.

–	 AIS and SETM: AIS is the first algorithm proposed by 
Agrawal et al. [7] for association rule mining. The AIS 
algorithm’s main downside is that too many candidate 
itemsets are generated, requiring more space and wasting 
a lot of effort. This algorithm calls for too many passes 
over the entire dataset to produce the rules. Another 
approach SETM [49] exhibits good performance and 
stable behavior with execution time; however, it suffers 
from the same flaw as the AIS algorithm.

–	 Apriori: For generating association rules for a given data-
set, Agrawal et al. [8] proposed the Apriori, Apriori-TID, 
and Apriori-Hybrid algorithms. These later algorithms 
outperform the AIS and SETM mentioned above due to 

the Apriori property of frequent itemset [8]. The term 
‘Apriori’ usually refers to having prior knowledge of 
frequent itemset properties. Apriori uses a “bottom-up” 
approach, where it generates the candidate itemsets. To 
reduce the search space, Apriori uses the property “all 
subsets of a frequent itemset must be frequent; and if an 
itemset is infrequent, then all its supersets must also be 
infrequent”. Another approach predictive Apriori [108] 
can also generate rules; however, it receives unexpected 
results as it combines both the support and confidence. 
The Apriori [8] is the widely applicable techniques in 
mining association rules.

–	 ECLAT: This technique was proposed by Zaki et al. [131] 
and stands for Equivalence Class Clustering and bottom-
up Lattice Traversal. ECLAT uses a depth-first search to 
find frequent itemsets. In contrast to the Apriori [8] algo-
rithm, which represents data in a horizontal pattern, it 
represents data vertically. Hence, the ECLAT algorithm 
is more efficient and scalable in the area of association 
rule learning. This algorithm is better suited for small 
and medium datasets whereas the Apriori algorithm is 
used for large datasets.

–	 FP-Growth: Another common association rule learning 
technique based on the frequent-pattern tree (FP-tree) 
proposed by Han et al. [42] is Frequent Pattern Growth, 
known as FP-Growth. The key difference with Apriori 
is that while generating rules, the Apriori algorithm [8] 
generates frequent candidate itemsets; on the other hand, 
the FP-growth algorithm [42] prevents candidate genera-
tion and thus produces a tree by the successful strategy of 
‘divide and conquer’ approach. Due to its sophistication, 
however, FP-Tree is challenging to use in an interactive 
mining environment [133]. Thus, the FP-Tree would not 
fit into memory for massive data sets, making it chal-
lenging to process big data as well. Another solution is 
RARM (Rapid Association Rule Mining) proposed by 
Das et al. [26] but faces a related FP-tree issue [133].

–	 ABC-RuleMiner: A rule-based machine learning method, 
recently proposed in our earlier paper, by Sarker et al. 
[104], to discover the interesting non-redundant rules to 
provide real-world intelligent services. This algorithm 
effectively identifies the redundancy in associations 
by taking into account the impact or precedence of the 
related contextual features and discovers a set of non-
redundant association rules. This algorithm first con-
structs an association generation tree (AGT), a top-down 
approach, and then extracts the association rules through 
traversing the tree. Thus, ABC-RuleMiner is more potent 
than traditional rule-based methods in terms of both 
non-redundant rule generation and intelligent decision-
making, particularly in a context-aware smart comput-
ing environment, where human or user preferences are 
involved.
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Among the association rule learning techniques discussed 
above, Apriori [8] is the most widely used algorithm for 
discovering association rules from a given dataset [133]. 
The main strength of the association learning technique is 
its comprehensiveness, as it generates all associations that 
satisfy the user-specified constraints, such as minimum sup-
port and confidence value. The ABC-RuleMiner approach 
[104] discussed earlier could give significant results in terms 
of non-redundant rule generation and intelligent decision-
making for the relevant application areas in the real world.

Reinforcement Learning

Reinforcement learning (RL) is a machine learning tech-
nique that allows an agent to learn by trial and error in an 
interactive environment using input from its actions and 
experiences. Unlike supervised learning, which is based on 
given sample data or examples, the RL method is based on 
interacting with the environment. The problem to be solved 
in reinforcement learning (RL) is defined as a Markov Deci-
sion Process (MDP) [86], i.e., all about sequentially making 
decisions. An RL problem typically includes four elements 
such as Agent, Environment, Rewards, and Policy.

RL can be split roughly into Model-based and Model-
free techniques. Model-based RL is the process of infer-
ring optimal behavior from a model of the environment 
by performing actions and observing the results, which 
include the next state and the immediate reward [85]. Alp-
haZero, AlphaGo [113] are examples of the model-based 
approaches. On the other hand, a model-free approach 
does not use the distribution of the transition probability 
and the reward function associated with MDP. Q-learn-
ing, Deep Q Network, Monte Carlo Control, SARSA 
(State–Action–Reward–State–Action), etc. are some exam-
ples of model-free algorithms [52]. The policy network, 
which is required for model-based RL but not for model-
free, is the key difference between model-free and model-
based learning. In the following, we discuss the popular RL 
algorithms.

–	 Monte Carlo methods: Monte Carlo techniques, or Monte 
Carlo experiments, are a wide category of computational 
algorithms that rely on repeated random sampling to 
obtain numerical results [52]. The underlying concept is 
to use randomness to solve problems that are determinis-
tic in principle. Optimization, numerical integration, and 
making drawings from the probability distribution are the 
three problem classes where Monte Carlo techniques are 
most commonly used.

–	 Q-learning: Q-learning is a model-free reinforcement 
learning algorithm for learning the quality of behaviors 
that tell an agent what action to take under what condi-
tions [52]. It does not need a model of the environment 

(hence the term “model-free”), and it can deal with sto-
chastic transitions and rewards without the need for adap-
tations. The ‘Q’ in Q-learning usually stands for qual-
ity, as the algorithm calculates the maximum expected 
rewards for a given behavior in a given state.

–	 Deep Q-learning: The basic working step in Deep 
Q-Learning [52] is that the initial state is fed into the 
neural network, which returns the Q-value of all pos-
sible actions as an output. Still, when we have a reason-
ably simple setting to overcome, Q-learning works well. 
However, when the number of states and actions becomes 
more complicated, deep learning can be used as a func-
tion approximator.

Reinforcement learning, along with supervised and unsu-
pervised learning, is one of the basic machine learning para-
digms. RL can be used to solve numerous real-world prob-
lems in various fields, such as game theory, control theory, 
operations analysis, information theory, simulation-based 
optimization, manufacturing, supply chain logistics, multi-
agent systems, swarm intelligence, aircraft control, robot 
motion control, and many more.

Artificial Neural Network and Deep Learning

Deep learning is part of a wider family of artificial neural 
networks (ANN)-based machine learning approaches with 
representation learning. Deep learning provides a computa-
tional architecture by combining several processing layers, 
such as input, hidden, and output layers, to learn from data 
[41]. The main advantage of deep learning over traditional 
machine learning methods is its better performance in sev-
eral cases, particularly learning from large datasets [105, 
129]. Figure 9 shows a general performance of deep learning 
over machine learning considering the increasing amount of 
data. However, it may vary depending on the data character-
istics and experimental set up.

The most common deep learning algorithms are: Multi-
layer Perceptron (MLP), Convolutional Neural Network 

Fig. 9   Machine learning and deep learning performance in general 
with the amount of data
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(CNN, or ConvNet), Long Short-Term Memory Recurrent 
Neural Network (LSTM-RNN) [96]. In the following, we 
discuss various types of deep learning methods that can 
be used to build effective data-driven models for various 
purposes.

–	 MLP: The base architecture of deep learning, which is 
also known as the feed-forward artificial neural network, 
is called a multilayer perceptron (MLP) [82]. A typical 
MLP is a fully connected network consisting of an input 
layer, one or more hidden layers, and an output layer, 
as shown in Fig. 10. Each node in one layer connects 
to each node in the following layer at a certain weight. 
MLP utilizes the “Backpropagation” technique [41], the 
most “fundamental building block” in a neural network, 
to adjust the weight values internally while building the 
model. MLP is sensitive to scaling features and allows 
a variety of hyperparameters to be tuned, such as the 
number of hidden layers, neurons, and iterations, which 
can result in a computationally costly model.

–	 CNN or ConvNet: The convolution neural network 
(CNN) [65] enhances the design of the standard ANN, 
consisting of convolutional layers, pooling layers, as 
well as fully connected layers, as shown in Fig. 11. 

As it takes the advantage of the two-dimensional (2D) 
structure of the input data, it is typically broadly used 
in several areas such as image and video recognition, 
image processing and classification, medical image 
analysis, natural language processing, etc. While 
CNN has a greater computational burden, without any 
manual intervention, it has the advantage of automati-
cally detecting the important features, and hence CNN 
is considered to be more powerful than conventional 
ANN. A number of advanced deep learning models 
based on CNN can be used in the field, such as AlexNet 
[60], Xception [24], Inception [118], Visual Geometry 
Group (VGG) [44], ResNet [45], etc.

–	 LSTM-RNN: Long short-term memory (LSTM) is an 
artificial recurrent neural network (RNN) architec-
ture used in the area of deep learning [38]. LSTM has 
feedback links, unlike normal feed-forward neural 
networks. LSTM networks are well-suited for analyz-
ing and learning sequential data, such as classifying, 
processing, and predicting data based on time series 
data, which differentiates it from other conventional 
networks. Thus, LSTM can be used when the data are 
in a sequential format, such as time, sentence, etc., and 
commonly applied in the area of time-series analysis, 
natural language processing, speech recognition, etc.

In addition to these most common deep learning 
methods discussed above, several other deep learning 
approaches [96] exist in the area for various purposes. For 
instance, the self-organizing map (SOM) [58] uses unsu-
pervised learning to represent the high-dimensional data 
by a 2D grid map, thus achieving dimensionality reduc-
tion. The autoencoder (AE) [15] is another learning tech-
nique that is widely used for dimensionality reduction as 
well and feature extraction in unsupervised learning tasks. 
Restricted Boltzmann machines (RBM) [46] can be used 
for dimensionality reduction, classification, regression, 
collaborative filtering, feature learning, and topic mod-
eling. A deep belief network (DBN) is typically composed 
of simple, unsupervised networks such as restricted Boltz-
mann machines (RBMs) or autoencoders, and a backprop-
agation neural network (BPNN) [123]. A generative adver-
sarial network (GAN) [39] is a form of the network for 
deep learning that can generate data with characteristics 
close to the actual data input. Transfer learning is currently 
very common because it can train deep neural networks 
with comparatively low data, which is typically the re-use 
of a new problem with a pre-trained model [124]. A brief 
discussion of these artificial neural networks (ANN) and 
deep learning (DL) models are summarized in our earlier 
paper Sarker et al. [96].

Overall, based on the learning techniques discussed 
above, we can conclude that various types of machine 

Fig. 10   A structure of an artificial neural network modeling with 
multiple processing layers

Fig. 11   An example of a convolutional neural network (CNN or Con-
vNet) including multiple convolution and pooling layers
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learning techniques, such as classification analysis, regres-
sion, data clustering, feature selection and extraction, and 
dimensionality reduction, association rule learning, rein-
forcement learning, or deep learning techniques, can play 
a significant role for various purposes according to their 
capabilities. In the following section, we discuss several 
application areas based on machine learning algorithms.

Applications of Machine Learning

In the current age of the Fourth Industrial Revolution 
(4IR), machine learning becomes popular in various appli-
cation areas, because of its learning capabilities from the 
past and making intelligent decisions. In the following, 
we summarize and discuss ten popular application areas 
of machine learning technology.

–	 Predictive analytics and intelligent decision-making: A 
major application field of machine learning is intelli-
gent decision-making by data-driven predictive analyt-
ics [21, 70]. The basis of predictive analytics is captur-
ing and exploiting relationships between explanatory 
variables and predicted variables from previous events 
to predict the unknown outcome [41]. For instance, 
identifying suspects or criminals after a crime has 
been committed, or detecting credit card fraud as it 
happens. Another application, where machine learn-
ing algorithms can assist retailers in better understand-
ing consumer preferences and behavior, better manage 
inventory, avoiding out-of-stock situations, and opti-
mizing logistics and warehousing in e-commerce. Vari-
ous machine learning algorithms such as decision trees, 
support vector machines, artificial neural networks, etc. 
[106, 125] are commonly used in the area. Since accu-
rate predictions provide insight into the unknown, they 
can improve the decisions of industries, businesses, and 
almost any organization, including government agen-
cies, e-commerce, telecommunications, banking and 
financial services, healthcare, sales and marketing, 
transportation, social networking, and many others.

–	 Cybersecurity and threat intelligence: Cybersecurity is 
one of the most essential areas of Industry 4.0. [114], 
which is typically the practice of protecting networks, 
systems, hardware, and data from digital attacks [114]. 
Machine learning has become a crucial cybersecurity 
technology that constantly learns by analyzing data to 
identify patterns, better detect malware in encrypted 
traffic, find insider threats, predict where bad neigh-
borhoods are online, keep people safe while browsing, 
or secure data in the cloud by uncovering suspicious 
activity. For instance, clustering techniques can be 
used to identify cyber-anomalies, policy violations, etc. 

To detect various types of cyber-attacks or intrusions 
machine learning classification models by taking into 
account the impact of security features are useful [97]. 
Various deep learning-based security models can also 
be used on the large scale of security datasets [96, 129]. 
Moreover, security policy rules generated by associa-
tion rule learning techniques can play a significant role 
to build a rule-based security system [105]. Thus, we 
can say that various learning techniques discussed in 
Sect. Machine Learning Tasks and Algorithms, can 
enable cybersecurity professionals to be more proac-
tive inefficiently preventing threats and cyber-attacks.

–	 Internet of things (IoT) and smart cities: Internet of 
Things (IoT) is another essential area of Industry 4.0. 
[114], which turns everyday objects into smart objects 
by allowing them to transmit data and automate tasks 
without the need for human interaction. IoT is, therefore, 
considered to be the big frontier that can enhance almost 
all activities in our lives, such as smart governance, smart 
home, education, communication, transportation, retail, 
agriculture, health care, business, and many more [70]. 
Smart city is one of IoT’s core fields of application, using 
technologies to enhance city services and residents’ liv-
ing experiences [132, 135]. As machine learning utilizes 
experience to recognize trends and create models that 
help predict future behavior and events, it has become a 
crucial technology for IoT applications [103]. For exam-
ple, to predict traffic in smart cities, parking availabil-
ity prediction, estimate the total usage of energy of the 
citizens for a particular period, make context-aware and 
timely decisions for the people, etc. are some tasks that 
can be solved using machine learning techniques accord-
ing to the current needs of the people.

–	 Traffic prediction and transportation: Transportation 
systems have become a crucial component of every 
country’s economic development. Nonetheless, several 
cities around the world are experiencing an excessive 
rise in traffic volume, resulting in serious issues such as 
delays, traffic congestion, higher fuel prices, increased 
CO2 pollution, accidents, emergencies, and a decline in 
modern society’s quality of life [40]. Thus, an intelligent 
transportation system through predicting future traffic 
is important, which is an indispensable part of a smart 
city. Accurate traffic prediction based on machine and 
deep learning modeling can help to minimize the issues 
[17, 30, 31]. For example, based on the travel history 
and trend of traveling through various routes, machine 
learning can assist transportation companies in predict-
ing possible issues that may occur on specific routes and 
recommending their customers to take a different path. 
Ultimately, these learning-based data-driven models help 
improve traffic flow, increase the usage and efficiency of 
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sustainable modes of transportation, and limit real-world 
disruption by modeling and visualizing future changes.

–	 Healthcare and COVID-19 pandemic: Machine learning 
can help to solve diagnostic and prognostic problems in 
a variety of medical domains, such as disease prediction, 
medical knowledge extraction, detecting regularities in 
data, patient management, etc. [33, 77, 112]. Coronavirus 
disease (COVID-19) is an infectious disease caused by 
a newly discovered coronavirus, according to the World 
Health Organization (WHO) [3]. Recently, the learning 
techniques have become popular in the battle against 
COVID-19 [61, 63]. For the COVID-19 pandemic, the 
learning techniques are used to classify patients at high 
risk, their mortality rate, and other anomalies [61]. It 
can also be used to better understand the virus’s ori-
gin, COVID-19 outbreak prediction, as well as for dis-
ease diagnosis and treatment [14, 50]. With the help of 
machine learning, researchers can forecast where and 
when, the COVID-19 is likely to spread, and notify those 
regions to match the required arrangements. Deep learn-
ing also provides exciting solutions to the problems of 
medical image processing and is seen as a crucial tech-
nique for potential applications, particularly for COVID-
19 pandemic [10, 78, 111]. Overall, machine and deep 
learning techniques can help to fight the COVID-19 virus 
and the pandemic as well as intelligent clinical decisions 
making in the domain of healthcare.

–	 E-commerce and product recommendations: Product rec-
ommendation is one of the most well known and widely 
used applications of machine learning, and it is one of 
the most prominent features of almost any e-commerce 
website today. Machine learning technology can assist 
businesses in analyzing their consumers’ purchasing his-
tories and making customized product suggestions for 
their next purchase based on their behavior and prefer-
ences. E-commerce companies, for example, can easily 
position product suggestions and offers by analyzing 
browsing trends and click-through rates of specific items. 
Using predictive modeling based on machine learning 
techniques, many online retailers, such as Amazon [71], 
can better manage inventory, prevent out-of-stock situa-
tions, and optimize logistics and warehousing. The future 
of sales and marketing is the ability to capture, evaluate, 
and use consumer data to provide a customized shopping 
experience. Furthermore, machine learning techniques 
enable companies to create packages and content that are 
tailored to the needs of their customers, allowing them to 
maintain existing customers while attracting new ones.

–	 NLP and sentiment analysis: Natural language pro-
cessing (NLP) involves the reading and understanding 
of spoken or written language through the medium of 
a computer [79, 103]. Thus, NLP helps computers, for 
instance, to read a text, hear speech, interpret it, ana-

lyze sentiment, and decide which aspects are significant, 
where machine learning techniques can be used. Virtual 
personal assistant, chatbot, speech recognition, document 
description, language or machine translation, etc. are 
some examples of NLP-related tasks. Sentiment Analy-
sis [90] (also referred to as opinion mining or emotion 
AI) is an NLP sub-field that seeks to identify and extract 
public mood and views within a given text through blogs, 
reviews, social media, forums, news, etc. For instance, 
businesses and brands use sentiment analysis to under-
stand the social sentiment of their brand, product, or 
service through social media platforms or the web as 
a whole. Overall, sentiment analysis is considered as a 
machine learning task that analyzes texts for polarity, 
such as “positive”, “negative”, or “neutral” along with 
more intense emotions like very happy, happy, sad, very 
sad, angry, have interest, or not interested etc.

–	 Image, speech and pattern recognition: Image recogni-
tion [36] is a well-known and widespread example of 
machine learning in the real world, which can identify an 
object as a digital image. For instance, to label an x-ray 
as cancerous or not, character recognition, or face detec-
tion in an image, tagging suggestions on social media, 
e.g., Facebook, are common examples of image recog-
nition. Speech recognition [23] is also very popular that 
typically uses sound and linguistic models, e.g., Google 
Assistant, Cortana, Siri, Alexa, etc. [67], where machine 
learning methods are used. Pattern recognition [13] is 
defined as the automated recognition of patterns and 
regularities in data, e.g., image analysis. Several machine 
learning techniques such as classification, feature selec-
tion, clustering, or sequence labeling methods are used 
in the area.

–	 Sustainable agriculture: Agriculture is essential to the 
survival of all human activities [109]. Sustainable agri-
culture practices help to improve agricultural productiv-
ity while also reducing negative impacts on the environ-
ment [5, 25, 109]. The sustainable agriculture supply 
chains are knowledge-intensive and based on informa-
tion, skills, technologies, etc., where knowledge transfer 
encourages farmers to enhance their decisions to adopt 
sustainable agriculture practices utilizing the increas-
ing amount of data captured by emerging technologies, 
e.g., the Internet of Things (IoT), mobile technologies 
and devices, etc. [5, 53, 54]. Machine learning can be 
applied in various phases of sustainable agriculture, such 
as in the pre-production phase - for the prediction of crop 
yield, soil properties, irrigation requirements, etc.; in the 
production phase—for weather prediction, disease detec-
tion, weed detection, soil nutrient management, livestock 
management, etc.; in processing phase—for demand esti-
mation, production planning, etc. and in the distribution 
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phase - the inventory management, consumer analysis, 
etc.

–	 User behavior analytics and context-aware smartphone 
applications: Context-awareness is a system’s abil-
ity to capture knowledge about its surroundings at any 
moment and modify behaviors accordingly [28, 93]. 
Context-aware computing uses software and hardware 
to automatically collect and interpret data for direct 
responses. The mobile app development environment 
has been changed greatly with the power of AI, particu-
larly, machine learning techniques through their learning 
capabilities from contextual data [103, 136]. Thus, the 
developers of mobile apps can rely on machine learning 
to create smart apps that can understand human behavior, 
support, and entertain users [107, 137, 140]. To build 
various personalized data-driven context-aware systems, 
such as smart interruption management, smart mobile 
recommendation, context-aware smart searching, deci-
sion-making that intelligently assist end mobile phone 
users in a pervasive computing environment, machine 
learning techniques are applicable. For example, context-
aware association rules can be used to build an intelligent 
phone call application [104]. Clustering approaches are 
useful in capturing users’ diverse behavioral activities by 
taking into account data in time series [102]. To predict 
the future events in various contexts, the classification 
methods can be used [106, 139]. Thus, various learning 
techniques discussed in Sect. “Machine Learning Tasks 
and Algorithms” can help to build context-aware adap-
tive and smart applications according to the preferences 
of the mobile phone users.

In addition to these application areas, machine learning-
based models can also apply to several other domains such 
as bioinformatics, cheminformatics, computer networks, 
DNA sequence classification, economics and banking, robot-
ics, advanced engineering, and many more.

Challenges and Research Directions

Our study on machine learning algorithms for intelligent 
data analysis and applications opens several research issues 
in the area. Thus, in this section, we summarize and discuss 
the challenges faced and the potential research opportunities 
and future directions.

In general, the effectiveness and the efficiency of a 
machine learning-based solution depend on the nature and 
characteristics of the data, and the performance of the learn-
ing algorithms. To collect the data in the relevant domain, 
such as cybersecurity, IoT, healthcare and agriculture dis-
cussed in Sect. “Applications of Machine Learning” is not 
straightforward, although the current cyberspace enables the 

production of a huge amount of data with very high fre-
quency. Thus, collecting useful data for the target machine 
learning-based applications, e.g., smart city applications, 
and their management is important to further analysis. 
Therefore, a more in-depth investigation of data collection 
methods is needed while working on the real-world data. 
Moreover, the historical data may contain many ambiguous 
values, missing values, outliers, and meaningless data. The 
machine learning algorithms, discussed in Sect “Machine 
Learning Tasks and Algorithms” highly impact on data qual-
ity, and availability for training, and consequently on the 
resultant model. Thus, to accurately clean and pre-process 
the diverse data collected from diverse sources is a chal-
lenging task. Therefore, effectively modifying or enhance 
existing pre-processing methods, or proposing new data 
preparation techniques are required to effectively use the 
learning algorithms in the associated application domain.

To analyze the data and extract insights, there exist many 
machine learning algorithms, summarized in Sect. “Machine 
Learning Tasks and Algorithms”. Thus, selecting a proper 
learning algorithm that is suitable for the target application 
is challenging. The reason is that the outcome of different 
learning algorithms may vary depending on the data charac-
teristics [106]. Selecting a wrong learning algorithm would 
result in producing unexpected outcomes that may lead to 
loss of effort, as well as the model’s effectiveness and accu-
racy. In terms of model building, the techniques discussed 
in Sect. “Machine Learning Tasks and Algorithms” can 
directly be used to solve many real-world issues in diverse 
domains, such as cybersecurity, smart cities and healthcare 
summarized in Sect. “Applications of Machine Learning”. 
However, the hybrid learning model, e.g., the ensemble of 
methods, modifying or enhancement of the existing learning 
techniques, or designing new learning methods, could be a 
potential future work in the area.

Thus, the ultimate success of a machine learning-based 
solution and corresponding applications mainly depends 
on both the data and the learning algorithms. If the data 
are bad to learn, such as non-representative, poor-quality, 
irrelevant features, or insufficient quantity for training, then 
the machine learning models may become useless or will 
produce lower accuracy. Therefore, effectively processing 
the data and handling the diverse learning algorithms are 
important, for a machine learning-based solution and eventu-
ally building intelligent applications.

Conclusion

In this paper, we have conducted a comprehensive overview 
of machine learning algorithms for intelligent data analysis 
and applications. According to our goal, we have briefly dis-
cussed how various types of machine learning methods can 
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be used for making solutions to various real-world issues. 
A successful machine learning model depends on both the 
data and the performance of the learning algorithms. The 
sophisticated learning algorithms then need to be trained 
through the collected real-world data and knowledge related 
to the target application before the system can assist with 
intelligent decision-making. We also discussed several 
popular application areas based on machine learning tech-
niques to highlight their applicability in various real-world 
issues. Finally, we have summarized and discussed the chal-
lenges faced and the potential research opportunities and 
future directions in the area. Therefore, the challenges that 
are identified create promising research opportunities in the 
field which must be addressed with effective solutions in 
various application areas. Overall, we believe that our study 
on machine learning-based solutions opens up a promising 
direction and can be used as a reference guide for potential 
research and applications for both academia and industry 
professionals as well as for decision-makers, from a techni-
cal point of view.
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Abstract

The Child Health Questionnaire-Parent Form 50 (CHQ-PF50; Landgraf JM et al., The CHQ User’s
Manual. Boston, MA: The Health Institute, New England Medical Centre, 1996) appears to be a useful
method of assessing children’s health. The CHQ-PF50 is designed to measure general functional status and
well-being and is available in several versions to suit the needs of the health researcher. Several publications
have reported favorably on the psychometric properties of the CHQ. Landgraf et al. reported the results of
an exploratory factor analysis at the scale level that provided evidence for a two-factor structure repre-
senting physical and psychosocial dimensions of health. In order to cross-validate and extend these results,
a confirmatory factor analysis was conducted with an independent sample of generally healthy, predomi-
nantly minority children. Results of the analysis indicate that a two-factor model provides a good fit to the
data, confirming previous exploratory analyses with this questionnaire. One additional method factor
seems likely because of the substantial similarity of three of the scales, but that does not affect the sub-
stantive two-factor interpretation overall.

Key words: Child Health Questionnaire, Confirmatory factor analysis, Quality of life

Abbreviations: BE – behavior; BP – bodily pain; CFA – confirmatory factor analysis; CFI – comparative fix
index; CH – change in health item; CHQ-PF50 – child health questionnaire-parent form 50; FA – family
activities; FC – family cohesion items; GH – general health scale; MH – mental health; NFI – normed fit
index; NNFI – nonnormed fit index; PE – parental impact-emotional; PF – physical functioning; PT –
parental impact-time; REB – role/social limitations-emotional/behavioral; RMSEA – root mean squared
error of approximation; RP – role/social limitations-physical; SE – self-esteem

Introduction

The Child Health Questionnaire (CHQ) is a re-
cently developed instrument to measure pediatric
health outcomes. Several publications document
the extensive work to validate the various versions
of this questionnaire (e.g., [1–4]). One important
consideration in the evaluation of an instrument is
construct validity. In the context of assessment,
construct validity refers generally to the extent to
which the measure assesses the domain, trait, or

characteristic of interest [5]. Understanding the
latent constructs that influence the observed vari-
ables is a critical aspect of construct validity.
Construct validity cannot be reduced to a single
piece of evidence, but a pattern of evidence can
provide support for construct validity. Delineation
of the factor structure of an instrument can con-
tribute substantially to the assessment of construct
validity. Confirmatory factor analysis (CFA) is
particularly useful in that respect. This paper ad-
dresses the replicability of the previously obtained

Quality of Life Research 11: 763–773, 2002.
� 2002 Kluwer Academic Publishers. Printed in the Netherlands.
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factor structure of the CHQ, using different sta-
tistical procedures and data obtained from a pre-
dominantly minority sample.

The Child Health Questionnaire-Parent Form 50
(CHQ-PF50)

Though the CHQ is relatively new, several studies
have reported its use in various versions (e.g., [6–
9]). The CHQ is considered a generic (as opposed
to disease specific) quality of life measure. In re-
cent years, interest in measuring quality of life
as an outcome measure has increased greatly.
Though several measures of quality of life have
been developed for adults, validated measures
available to assess quality of life in children are
limited [10]. Although there is some disagreement
on just what is meant by quality of life, it has been
defined as the ‘physical, social and emotional as-
pects of a patient’s well-being that are relevant and
important to the individual’ [11]. Most definitions
are derived from the World Health Organization’s
definition of health as ‘a state of complete physical
and mental and social well-being, and not merely
the absence of disease or infirmity’ [12]. Health-
related quality of life has been defined as ‘quality
of life measures that are likely to be influenced by
health interventions’ [11]. The CHQ appears to be
generally consistent with what is considered a
health-related quality of life measure.
The CHQ-PF50 is designed to measure the

physical and psychosocial well-being of children
5 years and older. Several forms of the CHQ have
been developed that vary in respondent (Parent
Form or Child Form) and number of items (PF28,
PF50, CF87, PF98). The child form (CHQ-CF87)
is appropriate for children 10 years old or older.
The CHQ-PF50 was empirically derived from the
full-length CHQ-PF98 in 1994. The CHQ-PF50
assesses several areas including general health,
change in health, physical functioning, bodily
pain, limitations in school work and activities with
friends, behavior, mental health, self-esteem, time
and emotional impact on the parent, limitations in
family activities and family cohesion. The health
concepts measured by the CHQ-PF50, including
the number of items contributing to each concept,
are further described in Table 1.
A four-week recall period is used for all scales

except for the change in health (CH) item, the

family cohesion (FC) items, and the general health
(GH) scale. Scoring provides a score for each
scale. In addition, two summary scores are pro-
vided: a physical health summary score and a
psychosocial health summary score. The CHQ has
been translated into several languages including
American–Spanish, Canadian–French, Finnish,
French, German, Dutch, Italian, Greek, Hondu-
ran, Mexican, Norwegian, Portuguese, and Swed-
ish [10]. A more extensive description of
development of the CHQ, the health concepts as-
sessed, and interpretation of scale scores is given in
the manual [1].

Previous factor analyses of the CHQ

Development and validation of the CHQ included
factor analyses of the correlations among the
scales. Exploratory factor analytic techniques,
specifically principal components analyses, pro-
vided evidence for a two-factor structure repre-
senting physical and psychosocial functioning.
These results were based on a sample of 914 chil-
dren from both general population and specific
condition (asthma, ADHD, cystic fibrosis, epi-
lepsy, rheumatoid arthritis, psychiatric problems)
groups. Four scales (physical functioning, role/
social-physical, general health perceptions, bodily
pain) loaded strongest on the physical factor. Four
scales (role/social-emotional/behavioral, self-es-
teem, mental health, behavior) loaded strongest on
the psychosocial factor. Two scales (parental im-
pact-time, parental impact-emotional) loaded on
both factors, but showed stronger loadings on the
psychosocial health factor.

Replication of factor analysis

Attempts to replicate results from previous factor
analyses are important for several reasons. Gor-
such [13] emphasized the importance of assessing
how well factors can be replicated and how in-
variant the factors are across samples. Replication
addresses how well factors generalize across sam-
ples drawn from the same population. Invariance,
in contrast, addresses how well factors generalize
across the specific variables or different samples.
The concern of this paper is chiefly the replication
of the factor structure obtained previously by
other researchers.
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Several circumstances influence the results of
factor analysis, including sample size, the com-
munalities among the variables, the number of
variables per factor, and the factor analytic
method used. In factor analysis, sample size is
usually discussed in terms of the number of cases
per variable. Gorsuch [13] suggested that the ab-
solute minimum ratio is five individuals per vari-
able and no fewer than 100 individuals, although
there is very little evidence supporting any one
notion [14].
Communalities also influence the results, and

subsequent replicability, of factor analyses since
communalities reflect the strength of the phe-
nomena and the accuracy of measurement [13].
Factor loadings become more replicable as com-
munalities increase. The likelihood of replication
also increases as the number of variables per factor
increases. Gorsuch [13] suggested a minimum of
four variables per factor, but acknowledged that

some CFAs may prove to be exceptions to this
rule.

Confirmatory factor analysis

CFA requires the specification of a factor model,
including the number of factors and the pattern of
zero and nonzero loadings on those factors. A
small number of theory-driven competing models
might be specified as well. CFA provides infor-
mation on how well the hypothesized model ex-
plains the relations among the variables. CFA has
the advantages of allowing hypothesis testing on
the data and may offer fewer opportunities to
capitalize on chance because of a priori model
specification [15]. The extensive prior work to de-
velop the theory underlying the CHQ and previous
factor analytic studies provide a sound basis on
which to test replicability of factor structure by
CFA.

Table 1. Health concepts measured with number of items in the CHQ-PF50

Health concept Number

of items

Brief description

Physical functioning (PF) 6 Measures the presence and extent of physical limitations due to

health related problems

Role/social limitations-physical (RP) 2 Measures limitations in the kind, amount and performance of

school work and activities with friends due to physical health

problems

General health perceptions (GH) 6 Measures perceptions concerning the child’s overall health in the

past, present, and future

Bodily pain/discomfort (BP) 2 Measures the intensity and frequency of general pain or discomfort

Parental impact-time (PT) 3 Measures limitations in personal time experienced by the parent/

guardian due to child’s physical health, emotional well being/

general behavior, and attention or learning abilities

Parental impact-emotional (PE) 3 Measures the amount of distress experienced by the parent/

guardian related to the child’s physical health, emotional well

being/general behavior, and attention or learning abilities

Role/social limitations-emotional/

behavioral (REB)

3 Measures limitations in the kind, amount and performance of

school work and activities with friends due to emotional or

behavioral difficulties

Self-esteem (SE) 6 Measures several dimensions of self-esteem including satisfaction

with school and athletic ability, looks/appearance, ability to get

along with others and family, and life overall

Mental health (MH) 5 Measures the frequency of both positive and negative states

including anxiety, depression, and positive states

General behavior (BE) 6 Measures overt behavior as a component of mental health

including behavior problems and ability to get along with others

Family activities (FA) 6 Measures the frequency of disruption in ‘usual’ family activities

due to the child’s health or behavior

Family cohesion (FC) 1 Measures the family’s ability to get along

Change in health (CH) 1 Subjective assessment of child’s health as compared to one year ago

(Modified with permission from the CHQ User Manual [1], pp. 33–38.)
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The question posed in the research reported here
was more demanding than simply whether the
factor structure for the CHQ would be replicable.
In addition we were interested in using the CHQ
with a sample of children from a low income,
predominantly minority, generally healthy popu-
lation, so the test of replicability was moderately
stringent.

Method

Participants

Participants were selected from community health
centers in Tucson, Arizona. Two methods of par-
ticipant solicitation were used. One sample was
collected via mail and one sample was collected in
person. These two samples were later combined to
create the sample used for the CFA. As part of a
pilot evaluation of a health insurance program for
children from low-income families, questionnaires
were mailed to parents of children enrolled in the
program. To maintain confidentiality, prepared
participation materials were provided to a com-
munity health center that then addressed and
mailed them. Parents with children of any age re-
ceived a questionnaire; however, the CHQ-PF50 is
considered appropriate only for children at least
5 years old. The response rate for this sample was
51% (100 mailed, 51 completed). Responses for
children younger than five (6) and questionnaires
with missing data on the scales (2) were eliminated
from the sample, leaving a sample size of 43.
A second sample consisted of participants ap-

proached in the pediatrics office of a community
health center. Parents were invited to participate if
they were the parent or legal guardian of a child
who was 5 years or older. The response rate for
this sample was 89.4% (132 approached, 118
completed). Ten questionnaires were eliminated
because of missing data on one or more of
the scales, leaving a sample size of 108. Partici-
pants were treated in accordance with the ‘ethical
principles of psychologists and code of conduct’
[16].
The two samples are highly similar in terms of

sociodemographic variables, and both contacts
were in the context of health care. There is no
reason to suppose that either the method of con-

tacting parents nor the circumstances under which
they filled out the questionnaire would have af-
fected the factor structure of the instrument, the
principle focus of this study. The analyses were,
thus, based on the combined sample of 151 par-
ticipants (see Table 2). The total sample is heavily
weighted toward female (mother) respondents,
lower educational levels, and Hispanic ethnicity.
Table 2 also provides physical health and psy-
chosocial health summary scores. The samples
were compared using a series of v2 tests (for cat-
egorical demographic characteristics) and ANO-
VAs (for summary scores). These tests indicated
only one significant difference between the two
samples: sample two included more respondents
from a minority background [v2 (1, n ¼ 151) ¼
22.23, p < 0.01], primarily due to a larger number
of respondents reporting Hispanic ethnicity.

Design

Though two methods of data collection were used,
all administrations of the CHQ-PF50 followed the
recommendations provided by the manual [1].
Participants who responded via mail received
study materials including a cover letter explaining
the project, a $5 incentive, an informed consent
form, a stamped, addressed envelope, and a
questionnaire. The questionnaire included the
CHQ-PF50, as well as additional questions de-
signed to assess the impact of health insurance on
family health and dynamics. The CHQ-PF50 was
reproduced exactly including instructions, ques-
tion order, and headings. Participants received an
additional $10 for returning a completed survey
directly to the investigator.

Table 2. Sociodemographic characteristics of the samples

Sample

one

Sample

two

Combined

sample

Female respondent (mother) 92.9% 84.3% 86.7%

Biological parent 97.6% 89.7% 91.9%

High school education or less 61.0% 58.8% 59.5%

Married 40.5% 49.5% 47.0%

Minority racial background 51.2% 87.0% 76.8%

Hispanic racial background 44.2% 65.7% 59.6%

Physical health summary score 49.0 45.5 46.5

Psychosocial health

summary score

51.0 48.8 49.4
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Participants who responded in-person were ap-
proached in the waiting room prior to seeing a
doctor. Participant materials include an informed
consent form and a questionnaire, the CHQ-PF50.
Again, the CHQ-PF50 was reproduced exactly,
including instructions, question order, and head-
ings. The cover letter was replaced by an oral ex-
planation of the project by the investigator.
Participants were entered in a drawing for $150 for
returning a completed survey.
Introduction to the questionnaire, adapted from

that provided in the CHQ manual [1], was similar
whether it was provided in written (via cover let-
ter) or verbal form. The general purpose of the
study was described. Participants were reminded
to read the instructions and that there were no
right or wrong answers. Participants were also
asked not to share their responses or ask for help
from any of their family members. The investiga-
tors were available by telephone or in person to
answer questions, depending on the method, with
only occasional questions during the in-person
method.

Scoring

Completed questionnaires were scored according
to the SAS [17] protocol provided in the CHQ
Manual [1], which includes a detailed, item-by-
item description of the scoring method. The user is
instructed to recheck questions, item stems, re-
sponse choices, and response values to ensure they
are taken verbatim from the manual. The data
were checked for any out-of-range values; none
were found. Items were recoded to ensure that for
all items a higher score indicated better health.
Items were also recalibrated to account for differ-
ing response continua. Scale scores are only cal-
culated for those individuals for whom half or
more of the items in the scale had been answered.
Raw scale scores were calculated by computing the
algebraic mean of the completed items. The raw
scores were then transformed so that the scale
scores range from 0 to 100. Eleven scale scores are
provided (PF, REB, RP, BP, BE, MH, SE, GH,
PE, PT, and FA). Two summary scores were also
calculated: a physical summary score and a psy-
chosocial summary score. These summary scores
are calculated by standardizing the scales based on
general population and clinical samples, aggre-

gating the scales using factor weights from these
samples, and transforming the scores to have a
mean of 50 and a standard deviation of 10.
Previous analyses did not include the family

activities (FA) scale nor the FC and the CH items
because these items were not included in some
clinical samples. For purposes of replication, these
items were omitted from this analysis as well.
Therefore, the analysis was based on the 10 re-
maining scales (PF, RP, GH, BP, PT, PE, REB,
SE, MH, BE). The two summary scores are cal-
culated using only these 10 scales.

Statistical analyses

Factor analyses are facilitated if conducted with
standardized variables [18]; therefore, scale scores
were standardized and z-scores served as variables
in the CFA. CFAs were performed using EQS [19],
a causal modeling program.
The primary task in testing confirmatory factor

analytic models is to determine the goodness of fit
between the hypothesized model and the sample
data [20]. The adequacy of model fit was evaluated
using the v2 statistic, the Bentler-Bonnet normed
fit index (NFI), the nonnormed fit index (NNFI),
the comparative fit index (CFI), and Steiger’s root
mean square error of approximation (RMSEA).
v2 reflects the statistical goodness of fit of the
observed matrix compared to the expected matrix
predicted by the hypothesized model. A significant
v2 value suggests that the hypothesized factor
model is not adequate, but the v2 statistic is sen-
sitive to sample size. With large samples, trivial
discrepancies can lead to rejection of an otherwise
good model; with small samples, v2 can be non-
significant even when the model does not fit well
[18]. Because of the sensitivity of the v2 statistic, it
is important to use some ‘practical’ indices of fit to
supplement evaluation of the proposed model.
Both the NFI and the CFI range from 0 to 1.00,
with a value greater than 0.90 being generally
taken to indicate an acceptable fit to the data [21].
These two fit indices are based on a comparison of
the hypothesized model with the null model (i.e.,
all correlations among the variables are 0). The
NFI has been shown to underestimate fit in small
samples. The CFI, on the other hand, was de-
signed the take sample size into account. There-
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fore, the CFI should be the primary index used
when evaluating model fit [20]. An additional in-
dex that should be taken into account is RMSEA.
Whereas previous indices discussed are considered
goodness-of-fit indices, RMSEA is a ‘badness of
fit’ index [18] because a value of 0 indicates perfect
fit. This index is a population-based index and
therefore, relatively insensitive to sample size.
RMSEA values below 0.10 may be considered
good, and the lower the better [18].

Results

The primary goal of the current research was
replication of the factor structure, but an advan-
tage of CFA is that it makes possible the com-
parison of competing models. Several different
models were tested and are reported on here.

Model A: two factors

Because replication of the previously obtained
factor structure was the primary interest in the
current study, a two-factor model was tested ini-
tially (Figure 1). The two factors represent physi-
cal health and psychosocial health. Four variables
were hypothesized to load on the first factor:
physical functioning (PF), role functioning-physi-
cal (RP), general health (GH), and bodily pain
(BP), with the other six variables hypothesized to
load on the second factor: parental impact-time
(PT), parental impact-emotional (PE), role func-
tioning-emotional/behavioral (REB), self-esteem
(SE), mental health (MH), and behavior (BE). The
CFA specifies that each scale should have a non-
zero loading on its hypothesized factor and a 0
loading on the other factor. It was also expected
that the two factors would be correlated. Finally,
the initial model assumed that the measurement
error terms would be uncorrelated.
Model A did not provide a particularly good fit

to the data (Table 3). The CFI of 0.767 indicates
that the hypothesized model is not an adequate
representation of the observed data. The significant
v2 value also indicates some misfit (v2 ¼ 166.61,
df ¼ 34, p < 0.01). Other indices indicated poor fit
as well (NFI ¼ 0.728, NNFI ¼ 0.691, RMSEA¼
0.161). Before attempting to improve the model fit,
it was important to rule out other plausible models.

These two alternative models will be described
before returning to improving the fit of Model A.

Alternative models

The poor fit of the two-factor model, along with
the correlations between the two factors suggests
the possibility that the data might be explained by
a single factor model, perhaps representing global
health. Thus, it was hypothesized that each scale
would have a nonzero loading on the factor. In
addition, the model specified that the measurement
error terms would be uncorrelated.
The single factor model (Model B) proved a

poor fit to the data with a CFI of 0.679. The v2

value also indicated poor fit ( v2 ¼ 217.49, df ¼ 35,
p < 0.01). Other fit indices indicated poor fit as
well (NFI ¼ 0.645, NNFI ¼ 0.587, RMSEA ¼
0.187). When models are nested, as are the models
in this series of CFAs, the v2 statistic can be
used to assess the difference in v2 between two
nested models. When assessing the differences be-
tween models, a significant v2 indicates that one of
the models represents a better fit than the other.
The results shown in Table 4 suggest that the two-
factor model (Model A) is probably a better fit to
the data than a single factor model (v2 differ-
ence ¼ 50.88, df ¼ 1, p < 0.01).
Previous results, as discussed above, indicated

that the two parental impact scales, though load-
ing most strongly on the psychosocial factor, also
had notable secondary loadings on the physical
factor. Therefore, it was desirable to test a two-
factor model with cross-loadings (Model C) that
permitted these two scales to have nonzero load-
ings on each of the two factors. For the other eight
scales, it was hypothesized that each scale would
have a nonzero loading on its hypothesized factor
and a zero loading on the other factor. It was also
predicted that the two factors would be correlated.
Finally, the model indicated that the measurement
error terms would be uncorrelated. An initial run
of this model indicated that the model did
not provide a good fit to the data. The two-
factor model with cross loadings (Model C) had a
CFI of 0.767 and a significant v2 value (v2 ¼
164.50, df ¼ 32, p < 0.001). Other indices indi-
cated poor fit as well (NFI ¼ 0.732, NNFI ¼
0.672, RMSEA ¼ 0.166). The fit indices are simi-
lar to those of Model A (v2 difference ¼ 2.11,
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df ¼ 2, p > 0.05); however, Model A was favored
over Model C as a more parsimonious explanation
of the observed data.
Though Model A represented a better and more

parsimonious explanation of the data than Model
B or C, it still did not provide a satisfactory fit.

Therefore, it was desirable to modify the primary
hypothesized model in order to improve the model
fit. Inspection of the standardized residuals led to a
closer examination three scales: PF, REB, and RP.
A portion of the variance in the data involving
these three variables was not accounted for by the

Figure 1. Model A: a two-factor model.
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hypothesized model, but it did not make theoret-
ical sense to allow these variables to cross-load on
the other factor.
Upon closer inspection of these three scales, it

became apparent that these scales might be cor-
related for methodological reasons. These three
scales appear together at the beginning of the
questionnaire, just after a single overall health
question. Portions of these scales are reproduced
in Table 5 in the order in which they appear in the
questionnaire. In addition, the structures of the

questions, particularly the answer choices, are very
similar. Finally, and perhaps most importantly,
the scales all address limitations that were experi-
enced by children due to different aspects of their
health.
Therefore, Model A was altered to create Model

D (Figure 2). Model D is identical to Model A,
with the exception that the measurement error
terms for PF, REB, and RP were allowed to co-
vary. Model D had a significantly better fit than
Model A (v2 difference ¼ 107.90, df ¼ 3, p <
0.01). The CFI for Model D was 0.95, indicating
that this model provides a good fit to the data. The
v2 value for this model is still significant (v2 ¼
58.71, df ¼ 31, p < 0.01), suggesting that there
still may be some misfit. Other indices indica-
ted a good fit (NFI ¼ 0.904, NNFI ¼ 0.929,
RMSEA ¼ 0.077).
Though Model D appeared to be the model of

choice, one final model was tested to examine the

Table 3. Overall goodness-of-fit indices for the CHQ

Codes Fit indices

v2 df p (Ho) CFI NFI NNFI RMSEA

A 166.61 34 0.00 0.767 0.728 0.691 0.161

B 217.49 35 0.00 0.679 0.645 0.587 0.187

C 164.50 32 0.00 0.767 0.732 0.672 0.166

D 58.71 31 0.00 0.951 0.904 0.929 0.077

E 58.71 31 0.00 0.951 0.904 0.929 0.077

Model A – two-factor model, Model B – single-factor model, Model C – two-factor with cross-loadings model, Model D – two-factor

with correlated errors model, Model E – three-factor model.

Table 4. Model comparisons

Codes v2 difference df p (Ho)

A vs. B 50.88 1 <0.01**

A vs. C 2.11 2 >0.05

A vs. D 107.90 3 <0.01**

A vs. E 107.90 3 <0.01**

Table 5. Sample items from three scales

Physical functioning (PF) During the past 4 weeks, has your child been limited in any of the

following activities due to health problems?

Doing things that take a lot of energy, such as playing soccer or

running?*

Role/social limitations-emotional/behavioral (REB) During the past 4 weeks, has your child’s school work or activities

with friends been limited in any of the following ways due to

EMOTIONAL difficulties or problems with his/her BEHAVIOR?

Limited in the KIND of schoolwork or activities with friends he/

she could do*

Role/social limitations-physical (RP) During the past 4 weeks, has your child’s school work or activities

with friends been limited in any of the following ways due to

problems with his/her PHYSICAL health?

Limited in the KIND of schoolwork or activities with friends he/

she could do*

(From the CHQ-PF50 in the CHQ User Manual [1], pp. 364–365, with permission.)

* These scales share a common response set that ranges from ‘Yes, limited a lot’ to ‘No, not limited’.
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possibility of a third factor that would represent a
method factor. This model, Model E, was identical
to Model A with the exception that the three scales
that appeared to correlate for methodological
reasons were allowed to cross-load on a third
factor. When Model E was tested, it yielded fit
indices identical to those of Model D.

Discussion

It appears from the analyses that both Models D
and E provide an adequate representation of the

data according to the indicators of fit used to
evaluate the models. Consideration of the theo-
retical bases for these two models, however, may
result in favoring Model D over E. By specifying a
third factor that appears to represent a method
factor, Model E gives too much credence to the
presence of presumably unwanted method vari-
ance. In theory, the presence of correlated error
terms should represent the case in which unwanted
variance intrudes on the variance that we are in-
terested in (i.e., wanted variance). There is no
reason to believe that the variance associated with
methodological factors (i.e., question similarity

Figure 2. Model D: a two-factor with correlate errors model.
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and question proximity) is desired or is important
enough to include as a factor in the measurement
model of the CHQ. Rather, the measurement
model initially hypothesized by the developers of
the questionnaire remains intact with the addition
of three correlated error terms.
The question remains, then, what can we learn

from Model D about the measurement model of
the CHQ. First, the factor structure obtained in
previous analyses has been replicated. This finding
supports the proposition that the CHQ does in-
deed assess two constructs that appear to represent
physical health and psychosocial health. It is, we
think, important that the factor structure was
replicated in a sample of relatively healthy chil-
dren, a large proportion of whom were from mi-
nority backgrounds.
This paper is not a test of factorial invariance

because the analysis was not conducted on a sys-
tematically selected portion of the sample (i.e.,
Hispanics only). The current analysis, however,
may provide an interesting clue as to what the
results of a test of factorial invariance may reveal.
Of the sample used in the current study, approxi-
mately 77% reported a minority ethnic back-
ground. The results of the present study suggest
that the factor structure would be invariant in at
least one minority population.
The second important finding is that method

variance may need to be considered in the mea-
surement model of the CHQ. The primary inves-
tigator in the development of the CHQ indicated
that in developing the questionnaire these similar
scales were intentionally placed together at the
beginning (J.M. Landgraf, personal communica-
tion). Because these scales had an obviously simi-
lar structure they were placed together at the
beginning of the questionnaire to make it easier for
the person completing the CHQ to get started
quickly. Clearly, the ease of beginning is a poten-
tial benefit of the choice to group them. There are
some drawbacks to that decision as well. Placing
similar scales together increases the likelihood that
the scales will covary to some degree because of
‘method’ or (unwanted) variance. Stated another
way, the answers chosen on these scales may be
influenced unduly by the similarity in the question
method rather than the similarity of the question
content. For a more extensive discussion of
method variance (see Ref. [21]).

It is only at a conceptual level that the difference
between Models D and E is of any consequence.
Whether one regards the residual correlations be-
tween the three specific items as shared error or as
the result of a separate method factor does not
affect any further use of those variables, e.g., in
deciding whether and how to ‘correct’ for the un-
wanted correlations among them. The magnitude
of the unwanted component is of some impor-
tance; if it is small, the decision whether to try to
correct for it is inconsequential. If, as in the pre-
sent case, the correlated error, or method variance,
is substantial (as suggested by the values of the
path coefficients), then partialing that term out of
the overall factors seems warranted.
The CFA results discussed here represent but a

single set of findings that are meaningful only in
the context of other validation work on this
questionnaire. Although conceptually Models D
and E are distinct but lacking in differential ana-
lytic consequences, the size of the error or method
effect that they represent is not trivial, and cross-
validation of the values for the path coefficients
estimated here should be attempted. If corrections
for error or methods effects are to be done, it is
critical that the corrections be of reasonable ac-
curacy. The analyses presented in this paper are
only a modest, although we think important, step
in the continuing validation of the CHQ. In the
meantime, the CHQ appears to be a useful tool for
assessing the health of children.
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Abstract

Objectives: Rapkin and Schwartz define response shift as otherwise unexplained, discrepant change in health-related quality of life
(HRQOL) that is associated with change in cognitive appraisal. In this article, we demonstrate how a recursive partitioning (rpart) regres-
sion tree analytic approach may be used to explore cognitive changes to gain additional insight into response-shift phenomena.

Study Design and Setting: Data are from the ‘‘Choices in Care Study,’’ an evaluation of HIVþ Medicaid recipients’ experiences and
outcomes in care (N 5 394). Cognitive assessment was based on the QOL appraisal battery. HRQOL was measured by the SF-36 Health
Survey, version 2 (SF-36v2).

Results: We used rpart to examine 6-month change in SF-36v2 mental composite score as a function of changes in appraisal, after
controlling for patient characteristics, health changes, and intervening events. Rpart identified nine distinct patterns of cognitive change,
including three associated with negative discrepancies, four with positive discrepancies, and two with no discrepancies.

Conclusion: Rpart classification provides a nuanced treatment of response shift. This methodology has implications for evaluating pro-
grams, guiding decisions, and targeting care. � 2009 Elsevier Inc. All rights reserved.

Keywords: Response shift; Health-related quality of life; Classification and regression trees; Segmentation strategies; Idiographic quality of life assessment; Rpart

1. Introduction

Converging evidence shows that response shift can
strongly affect how individuals appraise their health-related
quality of life (HRQOL) [1e4]. Response shift typically
appears in counterintuitive findingsdindividuals with severe
chronic illnesses reporting equal or better HRQOL scores
than healthy individuals or individuals with less severe
illness (e.g., [5,6]). For example, the general public assigned
a 0.39 HRQOL to dialysis, whereas dialysis patients assigned
their own HRQOL at 0.56 (on a 0e1 scale where 0 represents
death and 1 represents perfect health) [7]. This and similar
paradoxical findings bring into question what HRQOL
assessments are really measuring. Measurement imprecision
and response bias do not fully explain the phenomena [1].
The theory of response shift posits that it constitutes a change
in the meaning of one’s self-evaluation of the QOL construct
because of recalibration, repriortization, and/or reconceptu-
alization [4,8]. These constructs are related to work on
idiographic QOL assessment [2,9e11]. The theoretical and

measurement foundations of these constructs are well docu-
mented [3,4,12].

Rapkin and Schwartz [1] describe the assessment strate-
gies to probe respondents on their evaluation of the mean-
ing of QOL. They propose operationalizing response shift
as change in HRQOL that cannot be explained by changes
in overt health status, resources or life events, but that can
be associated with change in cognitive appraisal. Their
data-analytic strategy was based primarily on linear regres-
sion to estimate the extent to which residual QOL changes
are associated with appraisal change [2]. However, there is
no intrinsic reason that these relationships must be linear.
Rapkin and Schwartz’ notion of a final ‘‘combinatorial
algorithm’’ that people use to summarize their experiences
into HRQOL ratings explicitly posits complex interactions
among constituents of appraisal. For example, an individual
may report better QOL than expected given their health
status by ignoring problems, emphasizing positive experi-
ences, selecting favorable targets for self-comparison,
and/or focusing on less ambitious goals. Each of these pro-
cesses may operate alone or in combination to represent
distinct types of response shift.

There are obvious drawbacks to using linear regression to
examine relationships involving appraisal processes that are

* Corresponding author. Tel: þ1-646-888-0047; fax: þ1-212-888-

2959.

E-mail address: liy12@mskcc.org (Y. Li).

0895-4356/09/$ e see front matter � 2009 Elsevier Inc. All rights reserved.

doi: 10.1016/j.jclinepi.2009.03.021

Journal of Clinical Epidemiology 62 (2009) 1138e1147

mailto:liy12@mskcc.org


What is new?

We used the rpart classification and regression tree to
uncover the hierarchy of cognitive determinants un-
derlying QOL response shift in HIV/AIDS. Highest
in the hierarchy was the reduction of the salience of
negative experiences between baseline and 6 months
follow-up. A moderately large reduction (e.g., avoid
thinking about things that are disappointing, worri-
some, or difficult) was associated with a positive re-
sponse shift (i.e., better QOL than expected by overt
health status) in overall mental health. A combination
of other cognitive variables also came into play. For
example, increased concerns about monetary obliga-
tions and other external demands were associated with
a negative response shift. These findings may help
meet patients’ needs, perhaps by linking patients with
resources and support. Change in the content and
process of cognitive appraisal is a worthy patient-
reported outcome domain in its own right. The rpart
classification technique provides a nuanced interpreta-
tion of response shift.

intrinsically nonlinear. Classification and regression trees
(CART) methods are a suitable alternative to linear regres-
sion in elucidating potentially complex interactions [13].
Using an iterative algorithm, respondents are classified into
increasingly homogeneous subgroups with similar changes
in cognitive appraisal profiles, allowing a more nuanced
interpretation of how cognitive appraisal can influence
HRQOL. The broad goal of this article is to demonstrate
an empirical technique to identify prevalent patterns of cog-
nitive changes that can account for residual variance in
HRQOL change scores. Patterns of appraisal identified in
this way represent different manifestations of response
shift.

2. Methods

2.1. HIV/AIDS choices in care study

The study was developed by investigators at our respec-
tive institutions in conjunction with the New York State
Department of Health AIDS Institute to evaluate the impact
of the HIV Special Needs Plans, as part of an evaluation of
patient-reported outcomes and experiences in care reported
by HIVþ Medicaid recipients in New York State. Detailed
data collection plans are summarized elsewhere [14,15].
Institutional Review Boards approved the study.

Interviews were conducted in either Spanish or English,
in person or by telephone, according to patient preference.
The primary HRQOL assessment was the 36-Item Short
Form Health Survey, version 2 (SF-36v2) [16], assessed

at baseline (approximately 6 weeks post enrollment), and
at 6 and 12 months post baseline. Changes in cognitive
appraisal processes were assessed at these time points using
the QOL appraisal battery [1]. The baseline interview also
included measures of demographics, behavioral risks, and
health history.

2.2. QOL appraisal battery

After Rapkin and Schwartz [1], the QOL appraisal battery
included four components: (1) persons’ frame of reference
for considering HRQOL as assessed by six probes designed
to tap different motivational themes, including achievement,
maintenance, prevention, problem solving, disengagement,
and acceptance. For example, respondents were asked about
‘‘the main things you want to accomplish,’’ ‘‘problems you
want to solve,’’ and ‘‘things you are trying learn to accept,’’
to have their best possible QOL. Verbatim responses to these
probes, or ‘‘goal statements,’’ were coded and analyzed to
extract ‘‘goal attributes’’ (described below). Additionally, we
assessed (2) how persons sample experiences within that
frame, assessed by 13 items on, for example, whether or
not the persons evaluated HRQOL by ‘‘thinking about the
worst possible moments’’ within that frame, (3) how persons
evaluate experiences using different standards of comparison
by nine items on, for example, whether they compared
themselves with ‘‘other people living with HIV,’’ and (4)
how persons summarize and combine evaluations to describe
HRQOL by using a combinatory algorithm of 16 items on,
for example, whether they were thinking about ‘‘how well
you’ve been doing, how hard it has been, both or neither?’’.

2.3. Coding and summarizing goal statements to assess
frame of reference

From the open-ended assessments of frame of reference,
we collected over 6,700 goal statements at baseline and
6 months (plus an additional 1,458 from our first wave of
12-month follow-up interviews, which were coded in this
group, but not reported here). Content analysis of these
responses was accomplished through a two-stage process
that is briefly summarized below. Complete documentation
of goal coding, kappa reliability, and components analysis
are available from the authors on request.

In the first step, we selected at random just over one of
three of all responses (2,638). Each selected goal statement
was given to two of 13 judges (students and faculty in our de-
partment), after an allocation scheme to ensure that an equal
number of overlapping goals were assigned to each pair of
judges. Each judge independently sorted about 405 goal
statements into homogeneous categories, with the sole
criterion being that statements within a category must be
‘‘similar in all important ways.’’ Judges then recorded the
‘‘goal attributes’’ that they used to make distinctions among
categories, including life domains, motivations, and health
relevance. After completion of independent sorting, all
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judges met to compare their derived dimensions. In general,
there was strong agreement in the major distinctions among
life domains and in prevalent fine-grain distinctions. Judges
primarily differed in how specific to be in certain subdomains
(e.g., to distinguish concerns about specific family members
from those pertaining to the family in general). Based on this
discussion, we derived a consensus set of 24 binary goal attri-
butes. All goal statements could be characterized using com-
binations of these goal attributes. We calculated kappa for
each of the 24 codes, to determine whether or not pairs of
judges agreed on the presence or absence of each goal attri-
bute in their initial sort of goal statements. Collapsing across
dyads, we found that 11 of 24 categories exceed
kappa 5 0.70, another four exceed kappa 5 0.59, six ex-
ceeded kappa 5 0.35, and three codes (representing only
3.76% of coded statements) did not differ from chance.

After derivation of goal attributes, the remaining 2 of 3
(5,148) goal statements were assigned to 11 judges. We
assigned a random 20% of these goal statements (1,030) as
a reliability sample, allocated evenly to all possible pairs of
judges. Reliability coefficients for 13 of 24 categories
exceeded kappa 5 0.70, another six exceed kappa 5 0.50,
three exceeded an acceptable level of kappa 5 0.39, and
two categories (representing only 1.19% of coded state-
ments) were not different from chance. Based on these
results, final goal attributes were coded for each goal state-
ment. Note that in final coding, we resolved disagreements
among judges by assuming that differences were resulting
from errors of omission (one judge indicated a code that the
other did not).

Our next step involved combining scores across all of
individual’s goal statements at baseline and separately at
6-months to characterize current priorities and concerns at
each time of measurement. Our goal at this step was to
achieve a parsimonious data reduction while retaining as
much information as our data would permit. Our coding
system yielded a binary vector describing the presence or
absence of 24 different goal attributes for each goal state-
ment. Recall that goal statements were elicited by six differ-
ent motivational probes. Thus, for the nine most prevalent
codes, we calculated subtotals representing the occurrence
of each goal attribute for statements elicited by each motiva-
tional theme. For example, this cross-classification allowed
us to distinguish among goals about solving money prob-
lems, earning more money, or learning to live more frugally.
The 54 variables formed by the cells of this cross-classifica-
tion of nine major goal attribute codes by six motivational
themes fully accounted for 74% of all responses. These rep-
resented our primary goal attributes. We reduced these 54
variables by conducting a two-stage principal components
analysis, first summarizing endorsement rates of codes
within each of the six motivational themes (retaining 57%
to 89% of total variance in each set), and then combining
the 32 first-order components from these six analyses in a sin-
gle second-order principal components analysis (retaining
60% of variance among the first-order components).

Second-order analysis yielded 16 major goal attribute fac-
tors. These components are listed in Table 1.

The remaining 15 goal attribute codes were less preva-
lent, so we simply tallied the total number of times content
codes occurred for each individual at a given time of mea-
surement, without subtotaling by eliciting theme. Principal
components analysis yielded seven relatively independent
components after promax rotation, summarizing 58% of
the variance among these 15 codes. These seven subsidiary
goal attribute dimensions are also listed in Table 1. Sub-
stantively, we think of the primary goal content factors as
capturing the individuals’ status in broadly shared areas
of concern, whereas the subsidiary dimensions reflect more
particular concerns that may nonetheless have an important
influence on individuals’ appraisal of QOL.

2.4. Scoring other domains of QOL appraisal battery

The other three parameters of QOL appraisal were ana-
lyzed by a series of principal component analyses to map
the items of sample experiences to five factors, standards
of comparison to three factors, and combinatory algorithms
to seven factors. Generally, principal components with
eigenvalues greater than or equal to 1 were retained. Tables
2e4 summarize the total variance accounted for by the
retained eigenvalues and the rotated factor loadings of the
items. Standardized factor scores were calculated and en-
tered into the analysis. Take the combinatory algorithms
scale in Table 4 as an example, respondents were prompted
‘‘When you answered today, did you think more about.’’
and they rated the extent to which they thought about ‘‘Things
that are disappointing to you,’’ ‘‘How hard it has been,’’
‘‘Things that make you feel worried,’’ and so on. These three
items had high-factor loadings on the first factor that was thus
labeled as ‘‘Negative Experiences, Feelings, & Worries.’’

2.5. Changes in QOF appraisal

Because the QOL appraisal subscales were standardized,
all subdomains were thus mapped onto a comparable scale of
mean zero and unit standard deviation (SD). A respondent
with a zero ‘‘reacting to recent flare-ups’’ score, for example,
represents an appraisal through recent disease flare-ups at the
sample average. Changes in QOL appraisal were thus opera-
tionalized as changes in the standardized scores. In principle,
the changes in standardized scores can be thought of as
changes in effect-size units [17,18], thereby simplifying
comparisons made across multiple QOL appraisal domains
on arbitrary raw scales. We felt that it would facilitate inter-
preting the changes in appraisal by considering a set of crude
but practical cutoffs. We considered a 0.75 SD change a
‘‘moderate’’ change in appraisal, a 1.0 change a ‘‘moderately
large’’ change, and a 1.5þ change a ‘‘large’’ change. The
‘‘large’’ change is conveniently twice as large as the ‘‘moder-
ate’’ change. These cutoffs are more conservative than the
conventional effect-size indexes [18] (e.g., 0.80 as a ‘‘large’’
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effect), and we believe that they help track the numerous and
complex pattern of splits in the rpart analysis.

2.6. HRQOL discrepancy score

After Rapkin and Schwartz’ [1] formulation to examine
HRQOL response shift, it was first necessary to derive a

discrepancy score in the HRQOL to determine how much
the observed score differed from an expected value. Re-
sponse shift arises when the observed changes in HRQOL
scores deviate systematically from the expected HRQOL
changes owing to health-related events. A simplistic example
illustrates the basic conceptual premises. If a person experi-
ences more symptoms related to HIV/AIDS, and the

Table 1

Primary and subsidiary goal content dimensions

Primary goal content dimensions Example verbatim response

1 Maintain relationships, accept others, improve outlook ‘‘I want to keep my marriage the same as it is now’’ (865.6)

2 Solve problems with HIV treatment ‘‘I want to solve my HIV problems’’ (887.2)

3 Prevent money and housing problems, reduce worries and obligations ‘‘I want to accomplish getting better housing’’ (578.3)

4 Solve problems related to living situation and work ‘‘I want to solve problems in my living situation, I need to move’’ (53.4)

5 Address physical and emotional health problems ‘‘I want to prevent or avoid pain, both physical and emotional’’ (313.4)

6 Learn to live with HIV diagnosis and maintain current treatment

arrangements

‘‘I want to accept that I’ve got to live with HIV and accept

as they are’’ (325.6)

7 Avoid interpersonal and monetary concerns ‘‘I want to avoid getting into fights and arguments’’ (1849.8)

8 Maintain a positive mood, learn to accept the inevitable ‘‘I want to keep the same my attitude in thinking positively’’ (2116.9)

9 Accomplish work and financial goals ‘‘I want to be more financially stable’’ (177.1)

10 Avoid work-related problems ‘‘I don’t want anybody at work to know my HIV status’’ (137.8)

11 Reduce practical and monetary obligations and demands ‘‘ I want to reduce responsibilities such as paying credit card bills’’ (1808.9)

12 Maintain current living situation (vs. address health problems) ‘‘I want to keep my living arrangements with my wife

and family the same’’ (2331.10)

13 Acceptance, resignation to health and mood problems ‘‘I want to accept that nobody lives forever’’ (783.4)

14 Maintain and accept current work and monetary situation ‘‘I want to accept that I have to work even with

my health problems’’ (2127.7)

15 Acceptance of living conditions, housing, and neighborhood ‘‘I want to keep living in my neighborhood’’ (2565.6)

16 Concerns about HIV prevention ‘‘I want to prevent/avoid infecting other people with HIV’’ (209.1)

Subsidiary goal content dimensions

1 Outreach and community concerns ‘‘I want to accomplish more in outreach work’’ (210.1)

2 Social, religious, and discrimination concerns ‘‘I want to turn to God more’’ (1076.7)

3 Travel and leisure vs. chores ‘‘I want to travel to my country’’ (1707.7)

4 Independent functioning ‘‘I want to keep the same my independence’’ (2053.9)

5 Education and self-fulfillment ‘‘I want to accomplish the goal of finishing school’’ (367.8)

6 Legal and immigration concerns ‘‘I want to solve the problem of my immigration status’’ (2261.10)

7 Substance use ‘‘My main problem to solve is to break the methadone habit’’ (781.1)

Selected verbatim responses are identified by two numbers so that (781.1) represent statement number 781 assigned to rater 1.

Table 2

Factor loadings of quality-of-life appraisal scales in sampling experiences

‘‘When you responded today, how much did you.’’

1b 2 3 4 5

14%a 14% 13% 11% 9%

Find yourself thinking about the worst moments? 0.78

Focus on HIV/AIDS? 0.67

Consider things that you’d only think about for an interview like this? 0.57

Try to give your first reaction to the questions? 0.77

Try not to complain too much? 0.74

Try to communicate the seriousness of your situation? 0.64

Try to remember everything relevant over the past 3 months? 0.78

Think about how things have been going over past few days? 0.70

Emphasize the positive as much as possible? �0.42 0.51

Consider your relationships with family/friends? 0.83 0.46

Take into account what your doctor has told you about your health?

Think about the future? 0.59 0.82

Balance the positives with the negatives? 0.42 0.44

Recall recent episodes or flare-ups? 0.44 0.43

Note: loadings !0.40 were omitted.
a Variance accounted for by the eigenvalues associated with the latent factors.
b Factor 1: ‘‘Focusing on worst moments re-illness;’’ Factor 2: ‘‘Formulating responses to manage interview;’’ Factor 3: ‘‘Recalling recent events;’’ Fac-

tor 4: ‘‘Considering interactions with family and others;’’ and Factor 5: ‘‘Contemplating the future.’’
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increased symptoms are expected to reduce HRQOL by 10%
(such as the predicted HRQOL change by a statistical model
derived from large-scale surveys, controlling for other vali-
dated covariates), then an observed increase of 15% suggests
response shift. Thus, if change in cognitive appraisal was able
to explain these systematic discrepancies, that was indicative
of response shift. We decided to focus on the mental compo-
nent summary (MCS) score of the SF-36v2 rather than
the physical component for this demonstration, because our
prior preliminary analysis showed that it is more sensitive
to response shift [19].

To provide a highly conservative test of response shift,
we used an ordinary least square regression to control base-
line mental composite score for a wide range of possible
predictors, including demographics and personal history
(e.g., history of hard drug use and involvement in the crim-
inal justice system), baseline health status, baseline frame
of reference, baseline sampling, standards, and

combinatory algorithm, change in health status variables,
changes in number of self-reported symptoms, and inter-
vening events in care. Details on how these covariates are
assessed can be found in Refs. [14,15]. Standardized resid-
ual scores controlling these predictors were computed and
entered into the rpart analysis [20e22] to determine
whether and how changes in cognitive appraisal could be
used to explain these discrepancies.

2.7. Rpart model specifications

The rpart [20e22] model fitted the standardized residual
MCS scores in SF-36v2 [16] with 38 predictors representing
the changes in appraisal variables between baseline and
6-months assessmentdchanges in 16 primary and seven
subsidiary goal content dimensions, five predictors on the
sampling of experiences, three predictors on standards of
comparisons, and seven predictors on the combinatory algo-
rithms. For ease of interpreting the magnitude of response
shift, we divided our sample by the MCS discrepancy scores
to three categoriesd40% with the largest positive residuals
(deemed ‘‘Positive’’ response shift), 40% with the largest
negative residuals (‘‘Negative’’ response shift), and 20%
with residuals close to zero (‘‘No Change’’).

We followed the general approach in rpart analysisd
first grow a complex tree and then prune the tree back by
cross-validation [20,21,23e29]. Feldesman [29] is a highly
accessible tutorial on the different statistical computations
for continuous and categorical outcome variables; it also out-
lines a few default model specifications in the complex tree:
(1) stopping rule for a terminal node (!20 observations), (2)
criterion for tree pruning (‘‘cost-complexity parameter,’’
CP 5 0.01), (3) validation by 10-fold cross-validation
(1-standard error [1-S.E.] rule for pruning by CP), (4) speci-
fication of priors (proportional to data counts), and (5)

Table 4

Factor analysis and factor loadings on salience of experiences

‘‘When you answered today, did you think more about.’’

1 2 3 4 5 6 7

14% 12% 10% 9% 8% 8% 7%

Things that are disappointing to you? 0.78

How hard it has been? 0.65

Things that make you feel worried? 0.64

Things that you are proud of? 0.74

How well you are doing? 0.70

Things that make you feel calm? 0.70

Big changes? 0.78

The way things usually are? �0.76

Things settled to your satisfaction? 0.83

Things that are unfinished? �0.74

What is important to others? 0.76

What is important to you? �0.77

Long time concerns? 0.79

Recent concerns? 0.40 �0.72

What you do on your own? 0.90

The help you need from other people? 0.46 �0.52

1. Negative experiences, feelings, & worries; 2. Sources of satisfaction; 3. Change vs. routine; 4. Settled vs. unfinished concerns; 5. Things important to

others vs. self; 6. Long-time vs. recent concerns; and 7. Independence vs. help from others.

Table 3

Factor analysis and factor loadings on focus of comparisons

‘‘When rating your health and well-being

today, how much did you compare

yourself to.’’

1 2 3

23% 23% 20%

Others you know who are living now

with HIV/AIDS?

0.89

People whose health does not limit them

in any way?

0.89

Your ideal: your dream of perfect health? 0.82

The kind of life that you are really working for? 0.82

A time in your past before you had HIV? 0.88

Most people your age? 0.40 0.63

The way that the people in your life see you? 0.45

The things your doctor told you would happen? 0.41

1. Comparing oneself to others with HIV and with no health limita-

tions; 2. Comparing oneself to personal ideals or desired goals; and 3.

Comparing oneself to one’s past and to age-related norms.
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missing data are handled by surrogate splits. Details can be
found in textbooks and are omitted here [13,28,30,31].

2.8. Rpart model fit evaluation

Model performance was evaluated by a three-class classi-
fication performance metric based on overall error rate in
a confusion matrix and also by pairwise area under the
Receiver Operating Characteristic curve (AUC under the
ROC) analysis [32,33]. Our three-class classification was
separated into six binary comparisons after the rpart classifier
has been carried out. We calculated the AUC on ‘‘Positive’’
vs. ‘‘No Change’’ response shift, ‘‘Positive’’ vs. ‘‘Negative’’
response shift, and so on for all six pairwise ROCs. A single
average AUC index was calculated, called the M function
[33], to represent the overall model performance. We also en-
tered the same 38 predictors in a multinomial logit model for
comparison.

3. Results

3.1. Respondent characteristics

At this time of analysis, 619 individuals were recruited to
this study, of which 443 were due for the 6-month assess-
ments and 394 completed them (89%, follow-up data
collection ongoing). Table 5 summarizes participant charac-
teristics. Men and women were approximately evenly distri-
buted, with diverse race and ethnicity backgrounds, low
socioeconomic status, and an average age of 47.1 and 11.6
years since the identification of HIV.

3.2. Response-shift analysis using rpart

Figure 1a shows the fullest rpart dendrogram, derived by
accepting the default settings. The 10-fold cross-validation
suggested pruning the tree back to only nine terminal nodes
(Fig. 1b). This was based on the 1eS.E. rule [20,21], plot-
ted in Fig. 2, to find the least complex tree within 1 SD of
the minimal cross-validation error. The pruned tree showed
the lowest cross-validation error, beyond which tree com-
plexity entailed no additional improvement.

Table 6 shows the confusion matrix of the nine-node tree
and the model performance AUC measures of three alterna-
tive models. The nine-node tree made 243 correct classifi-
cations (62% accuracy, 95% confidence interval: 39e80%
by bootstrapping), which was superior to the 36% chance
accuracy by the marginal 40e20e40 split. The pairwise
AUC indexes show comparable performance between the
nine-node rpart tree and the multinomial logit, with an
overall AUC of 0.72. The 24-node tree consistently outper-
forms the pruned tree and the multinomial logit model.
However, the cross-validation argued against it because of
the low generalizability.

We now discuss the nine terminal nodes in Fig. 1b from
left to right by interpreting the distinctions among groups that
emerged in this analysis. The first group of 78 individuals in
node 1 stood out because they reduced the salience of nega-
tive experiences by a moderately large amount. This group
tended to have a high prevalence of positive discrepancies
(47 out of 78). For the remaining 316 individuals in nodes
two through nine, the salience of negative experiences in
evaluating HRQOL was either maintained or increased
(>�1.04 SD). For succinctness, we interpret nonlarge reduc-
tion in splits as roughly maintenance or possible increase.
Reduction in salience of negative experiences alone was
not sufficient to affect discrepancies in HRQOL. A combina-
tion of other cognitive variables comes into play. The second,
third, and fourth nodes were distinguished from the rest of the
sample based on a moderate reduction in the extent to which
they compared themselves to others. Group 4 represented
a small subgroup that differed from groups 2 and 3 by a mod-
erately large increase in goals related to solving problems
associated with living situations and work. Although three
persons displayed negative discrepancies, most of the indi-
viduals in this small group 4 demonstrated little or no
discrepancy from expected change in psychological well-
being. For individuals in nodes 2 and 3, discrepancy was
associated with moderate changes in goals related to inde-
pendent functioning. Group 2 maintained or increased goals
related to independence that was associated with predomi-
nately positive response shift. Conversely, group 3 markedly
reduced goals associated with independence, contributing to
more negative psychological well-being than expected. It is
noteworthy that groups 2, 3, and 4 were all affected by
changes in specific goals related to problems with work or
with maintaining independence. Such changes in frame of
reference interact with changes in standards of comparison
to produce a range of response shifts.

Nodes 5e9 either maintained or increased their tendency
to compare themselves with others, as well as the salience of
negative feelings and experiences. On the far right node 9, the
largest group of 145 individuals identified in this analysis
sample, stood out from the others because of maintained or
increased concerns about monetary obligations and other
external demands. This combination, greater salience of
negative feelings and comparison of self to others along with
increased demands, was clearly associated with marked

Table 5

Participant characteristics

Characteristic n 5 619

Sex (% male) 328 (53%)

Age in yr 47.1 (SD 5 8.5)

Time since HIV identification (yr) 11.6 (SD 5 5.7)

Marital status/domestic partner 409 (66%)

Sexual orientation (% heterosexual) 452 (73%)

Race

African descent 359 (58%)

Anglo 31 (5%)

Latino 186 (35%)

Abbreviations: SD, standard deviation.

Note: Numbers are persons and percentages unless otherwise noted.
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negative discrepancies in reported QOF. However, for indi-
viduals without concerns about reducing demands and
obligations, other factors came into play. Node 8 represented
a group that had moderately high reduction in goals on main-
taining relationships by accepting others and improving their
own outlook. This group tended to report changes in psycho-
logical well-being close to values predicted by baseline fac-
tors, health changes, and events in care.

Individuals in the remaining groups 5, 6, and 7 all tended
to increase or sustain their concerns about maintaining
relationships and achieving a positive outlook. Again moving
in from the right, node 7 contained a preponderance of
individuals with negative response shift. Interestingly, this
group reported a marked decrease in goals related to prevent-
ing or avoiding interpersonal and monetary concerns.
Conceivably, these individuals wanted to stave off certain

a

b

Fig. 1. Full recursive partitioning tree with 24 terminal nodes (a) and the pruned tree with nine terminal nodes (b). To minimized clutter in (a), the most

prevalent outcomes in the terminal nodes are represented in symbols, for positive discrepancy (marked with the þ sign), negative discrepancy (�), and

no discrepancy (*). Many splitting criteria in (a) are omitted.
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problems at baseline but later realized that this was untenable
by 6 months, thus contributing to a negative response shift.

Nodes 5 and 6 share many features, including the salience
of negative experiences, a tendency to compare oneself to
others, goals to maintain relationships, improve one’s outlook,
and avoid interpersonal and monetary problems, but not to
reduce obligations or demands. Most of these individuals, in
node 5, tended to report more positive psychological well-
being than expected as a result of efforts to manage communi-
cations during the interview. This factor, from the sampling
experience domain reflects individuals’ efforts to edit their
responses by not complaining too much, by giving their first
reaction, and by trying to convey the seriousness of their situ-
ation. Increasing or sustaining this response set was associated

with positive discrepancies in well-being. Alternatively, indi-
viduals in node 6 had reduced or abandoned efforts to manage
communication during the interview. Most of the individuals
in node 6 demonstrated negative response shift.

4. Discussion

The rpart-derived model was useful in identifying aspects
of response shift that was hard to detect through linear analysis.
Rpart performed equally well as a multinomial logistic regres-
sion of the same predictors. Rpart provided a straightforward
method that yielded more clinically interpretable results for
identifying subgroups of response shift that appeared to be
mostly influenced by changes in emotion (e.g., ‘‘negative ex-
periences and feelings’’) and subjective norms (‘‘comparing
with others’’). Invoking comparisons with others played an im-
portant role in explaining discrepancies in SF36v2 change that
only became apparent when examined in conjunction with the
salience of negative events. Thereafter, frames of reference
and individual concerns came into play in response shift, in-
cluding five of the 16 primary goal factors. Our findings also
shed light on the potential for individuals to sample and report
experiences that affect their HRQOL selectively, to manage
communication during the interview. Permitting the interplay
of cognitive change variables provides additional, comple-
mentary information about QOL response shift.

The present findings have bearings on application of QOL
measures and on understanding and meeting patients’ needs.
Individuals continually encounter new challenges and new
opportunities, and factor these into how they self-evaluate their
well-being. Individuals living with a chronic, life-threatening
illness encounter many such challenges and the stakes are high.
An interpersonal conflict may interfere with an important
source of social support; monetary or housing problems may
strain an individual’s limited resources; and challenges to inde-
pendence may invoke personal fears of premature debilitation
and mortality. These challenges may be even greater in the
Medicaid HIV/AIDS population. Additionally, we show that

Fig. 2. Graphical output of the plotcp() command in recursive partitioning.

The horizontal dotted line represents the 1-standard error ruledthe cutoff

cross-validation error statistic at 1 standard deviation above the minimal

cross-validation error. The tree with nine terminal nodes is considered

the desired size for pruning because it entails the lowest cross-validation

before additional complexity in the tree is accompanied by higher cross-

validation errors.

Table 6

Classification and misclassification results of the pruned rpart tree with nine terminal nodes and model performance indexes for three alternative models

Predicted response shift

Positive No change Negative Total

Residual changes in HRQOL Positive 117 4 40 161

No change 31 16 31 78

Negative 35 10 110 110

Total 183 30 181 394

Pairwise AUC

1 2 3 4 5 6 Overall AUC

Rpart 24-node tree 0.83 0.90 0.87 0.83 0.90 0.87 0.86

Rpart 9-node tree 0.70 0.77 0.69 0.70 0.76 0.69 0.72

Multinomial logit 0.71 0.75 0.71 0.71 0.75 0.71 0.72

Abbreviations: Rpart, recursive partitioning; HRQOL, health-related quality of life; AUC, area under the ROC curve.

1. No change vs. positive; 2. Negative vs. positive; 3. Negative vs. no change; 4. Positive vs. no change; 5. Positive vs. negative; and 6. No change vs.

negative.
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some individuals adapt to challenges by altering their cogni-
tions, by relinquishing goals or modifying expectations for
what they are seeking (e.g., node 9 by ‘‘reducing practical &
monetary obligations/demands’’ and node 7 by ‘‘avoiding in-
terpersonal & monetary concerns’’). The distinction between
nodes 7 and 9 is subtle, with node 9 emphasizing more on prac-
tical concerns, such as reducing the financial obligations of
paying bills. Individuals may selectively disengage from situ-
ations that they can no longer manage. These processes neces-
sarily play out overtime. It is not surprising that individuals’
cognitive criteria for the appraisal of psychological well-being
and distress are quite fluid.

Cognitive assessment provides a way to take these wide
variations in QOL appraisal into account [1]. We can use these
methods to control response-shift effects in evaluations of
programs or treatments. For example, we might observe im-
provement in an individual’s emotional well-being if we take
into account that they are presently engaged in solving hous-
ing problems and in boosting independence (e.g., node 2).
Similarly, apparent reduction in emotional well-being might
be reinterpreted in light of an individual’s selective emphasis
on reducing practical and monetary demands (e.g., node 9).
More fundamentally, it may be important to interpret the
impact of disease and treatment on measures of cognitive
appraisal. As our analysis demonstrates, there is a complex
interplay among measures of appraisal and QOF. It is impor-
tant to understand when and how increased contact with the
health system is associated with a sense of greater depen-
dence, and when it is associated with increasing expectations
and standards for self-evaluation. Change in the content and
process of cognitive appraisal is a worthy patient-reported
outcome domain in its own right.

Our results support the Rapkin and Schwartz model [1],
in that cognitive variables helped to account for substantial
HRQOL response shift in ways that were interpretable
and consistent. However, several methodologic challenges
remain. The QOL appraisal battery generates considerable,
detailed descriptive data about the appraisal process. It is
quite challenging to operationalize the process of describ-
ing the intermediaries of response shift, as we have attemp-
ted. There are inherent problems in CART methods [34]
that originate from the fact that one predictor may win
a particular split by only a small margin. This makes such
splits somewhat arbitrary; errors cascade into subsequent
splits, highlighting the importance of tree pruning by cross-
validation [34]. New methodologic developments are avail-
able [35e38] and may be helpful in future research on
response shift. We hope that our study will prompt further
theoretical and empirical work to improve on the descrip-
tion of the response-shift phenomena.
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