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Abstract 1 

The elastic response of the knee joint in various loading and pathological conditions has been 2 

investigated using anatomically accurate geometry. However, it is still challenging to predict the 3 

poromechanical response of the knee in realistic loading conditions. In the present study, a 4 

viscoelastic, poromechanical model of the knee joint was developed for soft tissues undergoing 5 

large deformation. Cartilages and menisci were modeled as fibril-reinforced porous materials and 6 

ligaments were considered as fibril-reinforced hyperelastic solids. Quasi-linear viscoelasticty was 7 

formulated for the collagen network of these tissues and nearly incompressible Neo-Hookean 8 

hyperelasticity was used for the non-fibrillar matrix. The constitutive model was coded with a 9 

user defined FORTRAN subroutine, in order to use ABAQUS for the finite element analysis. 10 

Creep and stress relaxation were investigated with large compression of the knee in full 11 

extension. The contact pressure distributions were found similar in creep and stress relaxation. 12 

However, the load transfer in the joint was completely different in these two loading scenarios. 13 

During creep, the contact pressure between cartilages decreased but the pressure between 14 

cartilage and meniscus increased with time. This led to a gradual transfer of some loading from 15 

the central part of cartilages to menisci. During stress relaxation, however, both contact pressures 16 

decreased monotonically. 17 

 18 

Keywords: Fluid pressure; Creep; Stress relaxation; Finite deformation; Human knee joint; Finite 19 

element analysis20 
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1. Introduction 1 

The elastic response of the knee joint in different loading and pathological conditions has been 2 

extensively investigated using three-dimensional (3D) finite element (FE) models. For instance, 3 

the contact mechanics of the healthy and meniscectomized knee joints were investigated under 4 

large compression [1]. The in-situ ligament forces and joint kinematics were validated against 5 

experimental data [2]. The effects of boundary conditions and bone deformation on contact 6 

stresses were clarified [3]. The role of collagen fibrils of articular cartilage in the mechanical 7 

function of the knee was studied [4]. Total and partial meniscectomies have been also 8 

investigated using 3D computational models [5-9]. Cartilage injury and osteochondral defects 9 

have been investigated by several research groups [10-12]. 10 

In all these studies, cartilages and menisci were modeled as elastic, i.e. the fluid flow and the 11 

relevant time-dependent behavior were not considered. It was believed that these models could be 12 

used to approximate the instantaneous load response of the joint, when the fluid is trapped in the 13 

tissues. In fact, the instantaneous behavior of fluid-saturated materials is elastic [13,14]. 14 

Therefore, a Poisson's ratio of 0.45-0.48 and a large effective elastic modulus have often been 15 

used in elastic modeling to approximate the incompressible response of the tissues at fast knee 16 

compression. 17 

Fluid pressurization has been implemented in axisymmetric or 2D modeling of the knee joint 18 

[15-17]. Moreover, a finite sliding, frictionless contact model of porous media was developed to 19 

study the contact of 3D cartilage layers in finite deformations [18]. In anatomically accurate 20 

modeling of human joints, one of the first 3D poromechanical models was developed to study the 21 

internal derangement of the temporomandibular joint [19]. An anatomically accurate 3D knee 22 

joint model was developed to account for the fluid pressurization and fibril-reinforcement in 23 
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cartilages and menisci [20]. The fibril-reinforced poromechanical model was compared to a 1 

single-phase elastic model of the knee, and different predictions were obtained for the 2 

instantaneous response [21]. The creep behavior of the intact and meniscectomized knee joints 3 

was also investigated [22, 23]. In all these poromechanical studies of the knee joint, however, the 4 

small deformation theory was used to accelerate numerical convergence. Only the short-term load 5 

response of the knee with soft tissues in large deformation was investigated using a fibril-6 

reinforced model of articular cartilages and an elastic model of menisci [24, 25]. 7 

A finite deformation theory needs to be incorporated in the knee joint modeling, in order to 8 

predict the viscoelastic poromechanical response in physiological conditions. In the present 9 

study, large deformations were formulated in a nonlinear, fibril-reinforced poromechanical model 10 

for cartilages and menisci. The creep and stress relaxation of the knee joint in full extension was 11 

investigated and the results were compared to the experimental data from the literature. 12 

 13 

2. Methods 14 

Cartilages and menisci were modeled as fully saturated porous media reinforced with a 15 

continuum collagen network. Ligaments were considered as fibril-reinforced solid materials 16 

because fluid pressurization is not significant in tension. Nearly incompressible, Neo-Hookean 17 

hyperelasticity was considered for the non-fibrillar solid matrix of tissues. Quasi-linear 18 

viscoelasticty [26, 27] was employed for the collagen network. The numerical formulation of the 19 

constitutive model was performed in a co-rotational reference frame to preserve objectivity (i.e. 20 

frame indifference) of stress rates. A user defined FORTRAN subroutine, UMAT, was coded for 21 

the numerical implementation. The UMAT was then numerically verified and experimentally 22 

validated using simple geometries prior to the use in the joint modeling 23 
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2.1  Formulation of the Non-fibrillar Matrix 1 

Denoting the current coordinate of a material point by x  and its reference coordinate by X , the 2 

deformation gradient F , the total volume change at the point, J , and the distortional component 3 

of deformation gradient, F , can be defined, respectively, as [28] 4 
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The right Cauchy-Green deformation tensor, C , its distortional component, C , and the first 6 

invariant of C , 1I , can now be found as 7 
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where 10C  and 1D  are measures of shear modulus and bulk modulus, respectively. The Cauchy 13 

stress tensor in the non-fibrillar matrix, mσ , is obtained from the push forward of the second 14 

Piola-Kirchhoff stress in the matrix, mS  15 
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The Cauchy stress takes the indicial form 17 
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in which 
T

B FF  is the distortional left Cauchy-Green deformation tensor. 1 

For large deformations and geometric nonlinearities, the material Jacobian tensor needs to be 2 

obtained from an objective stress rate. The Jaumann rate is commonly used in FE 3 

implementations and is used in ABAQUS for continuum elements. The Kirchhoff stress and its 4 

Jaumann rate can be obtained as 5 

WτWτττστ mmmmmm J 


,         (6) 6 

where mτ is the Kirchhoff stress and mτ  is Kirchhoff stress rate, 

mτ is its Jaumann rate, and W is 7 

the spin tensor. The material Jacobian of the non-fibrillar matrix, mD , can now be found from 8 

variation in the Jaumann rate of the Kirchhoff stress (ABAQUS Manual, 2011) 9 

dDτ  :mm J


          (7) 10 

where d is the rate of deformation tensor. The components of the fourth order tensor, m
ijklD , can be 11 

found as (ABAQUS Manual, 2011) 12 
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2.2  Stresses and Material Jacobian of the Fibrillar Network 14 

At each material point, the fibrillar properties were defined in three local coordinate directions, x, 15 

y and z. This enables defining an anisotropic behavior, when the local coordinate system at 16 

different points is oriented in different directions. It was assumed that fibers only resist tension. 17 

Therefore, zero stiffness was assigned for fibers in compression. Furthermore, shearing was born 18 

by the non-fibrillar matrix only. For the fibers aligned in the x direction and subjected to tensile 19 
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strain in the x direction, the Cauchy stress in the fibrillar matrix based on the quasi-linear 1 

viscoelasticity (QLV) can be expressed as [27] 2 



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where f
x is the stress in the fibrillar network, rather than the stress in an individual fiber. xG  is 4 

called reduced relaxation function, e
x  is the elastic stress in the fibrillar matrix and x is the 5 

logarithmic strain. These variables are all for the x direction. The same equation, but with 6 

subscripts y or z, can be derived for the y or z direction, respectively. The reduced relaxation 7 

function is often expressed in terms of exponentials 8 

 
m

m
x

m
xx tgtG )/exp(1)(          (10) 9 

where m
xg  are the weight constants and m

x  are the characteristic times for the viscoelastic 10 

dissipation. 11 

The tensile elastic stress, e
x , is based on the nonlinear stress-strain behavior of the tissues at 12 

equilibrium and is assumed as quadratic here [29] 13 

2)( xxxx
e
x BA             (11) 14 

where xA  and xB are constants. This stress is set to zero if fibers are in compression in the x-15 

direction. The viscoelastic stress (9) can then be numerically determined by (A-7), as shown in 16 

Appendix A. The Cauchy stress in the solid is the sum of the stresses in the non-fibrillar matrix 17 

and fibrillar network. 18 

Now consider the numerical approximation of the material Jacobian for the fibrillar network, 19 

fD . We note that only the first integral of Eq. (A-1) depends on 1 k . Therefore, the material 20 

Jacobian can be approximated as: 21 
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In general, the material Jacobian is a fourth order tensor. However, in this case, it is assumed that 2 

the fibers only act in tension (zero stiffness in compression) and there is no shear interaction 3 

between the individual fibers. Therefore, the material Jacobian fD  is shown in the form of a 4 

second order tensor. In order to form the material Jacobian for the tissue, ,  andf f f
xx yy zzD D D  must 5 

be added to the first three diagonal elements of the Jacobian for the non-fibrillar matrix, 6 

,  andm m m
xxxx yyyy zzzzD D D  in Eq. (8). 7 

2.3  Verification and Validation of the User-defined Material Model, UMAT 8 

The convergence of UMAT was verified using single and multiple elements in different loading 9 

and boundary conditions (known as patch test). Porous and solid elements with and without 10 

fibril-reinforcement were examined to ensure correct update of material Jacobian and stress 11 

tensor. 12 

Stress relaxation and creep data [30] were used to validate the material model. The 13 

experiments were performed on 8 bovine cartilage explants with 3.08±0.08 mm in diameter and 14 

1.61±0.08 mm in thickness. Both creep and stress relaxation tests were performed continuously 15 

on each specimen. A 3-step ramp compression and relaxation was applied: in each step, a 16 

displacement of 22 µm was applied at 2.0 µm/s followed by 1200 s relaxation. Similarly, a 3-step 17 

creep loading was used: in each step, a compressive force of 8 g was applied in 1.6 seconds, 18 

followed by 4000 s creep [30]. 19 
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One best fit is presented here (Fig. 1). The material properties were summarized in Table 1. 1 

For the anisotropic fibrillar network, 24 material parameters were required, if the reduced 2 

relaxation function was approximated by 3 terms (2 in Eq. (11) and 6 in Eq. (10), times 3 3 

directions). To avoid complexities in the data fit, the fibrillar properties were considered identical 4 

in the three directions. Therefore, the fibrillar properties were reduced to 8 (Table 1). 5 

 6 

2.4  Knee Geometry and Finite Element Mesh 7 

The geometry of the knee joint (Figure 2) was reconstructed from MRI data of a healthy male 8 

subject (27 years old, right knee). Cartilages and menisci were meshed using 20-node reduced 9 

integration hexahedral elements (C3D20RP). Ligaments were meshed using 8 node hexahedral 10 

elements (C3D8). Bones were assumed as rigid and their surfaces were discretized using 11 

triangular elements. 12 

Structured mesh generation was performed with special care on elements' aspect ratios and 13 

minimizing the number of distorted elements. Four and three layers of elements were generated, 14 

respectively, for the femoral and tibial cartilages. Four layers of elements were also generated for 15 

each meniscus. The average aspect ratio of elements was 3.3 for cartilages and 3.4 for menisci. A 16 

total number of 28176 elements were used including 7476 for the femoral cartilage, 4638 for the 17 

tibial cartilages, 4144 for the menisci, 3593 for the ligaments and 8595 for the bones. The 18 

number of distorted elements was only 0.1% for the cartilages and 0.3% for the menisci (an angle 19 

< 45º or > 135º). 20 

A step-by-step mesh sensitivity analysis was conducted using further refined meshes (Table 21 

2). Our strategy was to probe the mesh size effect on contact pressures. In the first step, the 22 
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femoral cartilage was refined with four times as many elements whereas other tissue meshes 1 

remained unchanged. Insignificant difference was found for the maximum contact pressure 2 

(Table 2). In the second step, the reference mesh of menisci was also replaced by a refined mesh. 3 

Finally, the reference mesh of all tissues was replaced by a refined mesh (Table 2). It was found 4 

that the contact distribution in each tissue was almost unchanged in all mesh refinements. 5 

Therefore, the original mesh was used for further results. 6 

 7 

2.5  Material Properties, Load and Boundary Conditions for the Joint Modeling 8 

Material properties of the tissues (Table 3) were chosen to be consistent with previous studies 9 

[4,22,29,31,32]. Three terms were taken for the reduced relaxation function (Eq. 10) [33,34]. The 10 

fibrillar network was considered orthotropic while the non-fibrillar matrix was considered 11 

isotropic. The hydraulic permeability was higher in the fiber direction [22,35]. 12 

The fiber orientation in the femoral cartilage (the x direction in Table 3) was determined 13 

based on the split-line patterns [36]. For the menisci, primary collagen fibers were oriented in the 14 

circumferential direction. Random fiber orientation was assumed for the tibial cartilages. The 15 

initial strains in the ligaments were chosen to be close to those from previous studies: 2.5% in 16 

ACL, 2% in MCL and LCL, and nil in PCL [1,37,38]. The initial strains were converted to initial 17 

stresses with reference to measurements [37] and applied as initial stress conditions. 18 

Both creep and relaxation of the knee were considered. For creep, a compressive force of 19 

700N was applied to the femur in proximal-distal direction; for relaxation, a knee compression of 20 

0.6 mm was applied. The load/displacement was applied in 1s and held constant up to 200s. The 21 

femur was unconstrained in all translations but fixed in all rotations [39,40]. Tibia and fibula 22 



- 11 - 
 

were fixed at the bottom. Fluid exudation was permitted through the free surfaces of cartilaginous 1 

tissues. Moreover, fluid flow was allowed cross the contacting surfaces of cartilages and menisci 2 

using CONTACT PERMEABILITY option. Geometrical nonlinearities in large deformation 3 

were included using NLGEOM option in ABAQUS. 4 

2.6  Solution Techniques 5 

Finite sliding, surface to surface contact was modeled between femoral cartilage and menisci, 6 

femoral and tibial cartilages and menisci and tibial cartilages. Therefore, 6 contact pairs were 7 

defined, with 3 on the medial and 3 on the lateral sides. Frictional contact with coefficient of 0.02 8 

[41] was considered for all contact surfaces. The penalty method was used to enforce the contact 9 

constraint. Implicit consolidation analysis in ABAQUS Standard was used for the FE 10 

simulations. Computations were performed using 12 parallel CPUs and up to 36 GB of RAM 11 

(Queen’s University). A typical simulation of 200s was finished in about a week with almost two 12 

days to complete the analysis of the loading phase (i.e. the first second). 13 

 14 

3. Results 15 

For the creep case, the maximum contact pressure was in the medial side (Fig. 3). As creep 16 

developed, the contact area increased and the maximum contact pressure decreased (Fig. 3b vs. 17 

3a). Although the contact pressure in the medial condyle decreased by 37% in 99s, the contact 18 

pressure in the lateral condyle decreased only by 5%. This resulted in more uniform contact 19 

pressure across the condyles in late creep (Fig. 3a vs. 3b). Moreover, as the maximum contact 20 

pressure decreased in the femoral cartilage, it increased in the menisci during early creep (Fig. 21 
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4a). However, the maximum contact pressures in both cartilage and meniscus decreased with 1 

relaxation (Fig. 4b). 2 

The vertical displacement of the femur exhibited a nonlinear response and reached 0.65mm 3 

under 700N compressive force applied in 1s (Fig. 5). The maximum compressive strain prior to 4 

creep in the surface of tibial cartilages was about 0.31 in the medial and 0.20 in the lateral 5 

compartments (Fig. 6a). As creep developed, cartilage strain increased subsequently (Fig. 6b vs. 6 

6a). The medial compartment was subjected to significantly higher strains in the loading phase as 7 

compared to the lateral compartment (Fig. 6a). The strains in the two compartments became 8 

closer as creep developed (Fig. 6b). 9 

The maximum fluid pressure was found in the medial condyle prior to creep. Similar to 10 

contact pressure, the fluid pressure was more uniform across the condyles as creep developed 11 

(not shown). No considerable change in the fluid pressure was observed (Fig. 7) when the 12 

viscoelastic fibrillar stress (Eq. 9) was replaced by the elastic fibrillar stress (Eq. 11), provided 13 

that the elastic constants in Eq. (11) measured at equilibrium were replaced by the corresponding 14 

constants measured at the instantaneous response. 15 

The maximum principal stress (tensile) was predominantly aligned in the fiber direction, i.e. 16 

in the directions of split lines for the femoral cartilage and in the circumferential direction for the 17 

meniscus (not shown). For the stress relaxation of 0.6 mm compression, the reaction force in the 18 

femur was about 600N. Maximum contact pressure was observed in the medial compartment and 19 

overall contact distribution was similar to that of creep (not shown). 20 

  21 
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4.  Discussion 1 

4.1  Model Verification and Validation 2 

Verifications and validations were done at two levels, first for the constitutive model and its 3 

UMAT subroutine, second for the knee joint model. At the first level, numerical formulation and 4 

the UMAT were verified by the patch test for several scenarios. The constitutive model was 5 

validated against multistep creep and relaxation tests in unconfined compression (Fig. 1). 6 

Furthermore, the present constitutive model was parallel to the previous one with small 7 

deformation [32,34], which has been validated with various test data. 8 

At the second level, the convergence of the knee model was somehow indicated in the step-9 

by-step mesh sensitivity analysis (Table 2). The sensitivity analysis showed acceptable numerical 10 

precision when the reference mesh was used; it is not realistic presently to seek better numerical 11 

precisions for such complicated problems. 12 

Measurements from the literature were used to partially validate our knee joint modeling. 13 

The predicted femoral axial displacement exhibited a nonlinear behavior and reached 0.65mm at 14 

700N. This was in agreement with experimental data (Fig. 5). The maximum compressive strain 15 

in the surface of tibial cartilages was about 0.30 in the medial and 0.20 in the lateral 16 

compartments prior to creep (Fig. 6a). In in-vivo measurement, the peak cartilage deformation in 17 

full extension and under weight-bearing single-leg stance was 0.25±0.1 for the medial and 18 

0.22±0.1 for the lateral compartments [43]. Considering that the 700N load used in our study was 19 

about the subject's body weight, our prediction seemed to be reasonable. 20 

The predicted joint contact areas and contact pressures seemed to be reasonable too. Under 21 

700N load prior to creep, the contact area in tibial plateau was 551 mm2 for the medial and 581 22 
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mm2 for the lateral sides, resulting in a total contact area of 1132 mm2. These values were in the 1 

reported range in the literature: 960±170 [44] and 1125±180 mm2 [45] under 500N force; 2 

1150±200 [44], 1250±100 [45] and ~1039 mm2 [46] under 1000N force. The predicted average 3 

contact pressure on the tibial plateau was 0.84 MPa on the medial and 0.6 MPa on the lateral 4 

compartments. The measured average contact pressures were 0.48 MPa under 445N [47], 0.82 5 

MPa under 668N [48] and 1.1 MPa under 1000N [40]. Again, our prediction was in the reported 6 

range. 7 

Consistent with the experimental studies [39,44], the maximum contact pressure occurred in 8 

the medial compartment (Fig. 3). However, the predicted contact pressure of 1.28 MPa was on 9 

the lower end of the reported range: 2.9 MPa at 500N [39], 1.33 MPa at 750N [49], 3.0 MPa [44] 10 

and 4.76 MPa [46] at 1000N. These differences could be resulted from the individual differences 11 

of the joints, as we see diverse data from the literature. However, the tissue properties used in the 12 

finite element simulations might be another source that caused this discrepancy. 13 

4.2  Creep vs Stress relaxation 14 

Fluid pressure dissipation was much slower in creep than in stress relaxation (Fig. 7), which was 15 

supported by the mechanical tests with explants [30]. This phenomenon is consistent with the 16 

physics of creep and stress relaxation. In stress relaxation, the applied displacement is held 17 

constant resulting in reduced reaction in the joint (not shown) with the fluid loss. The fluid 18 

pressure thus decreases with time. In creep, the fluid pressure dissipation is slowed down by 19 

increased deformation (Fig. 6a vs. 6b) that maintains the constant joint reaction: the fluid loss in 20 

the tissue reduces the fluid pressure, while increased tissue deformation raises the fluid pressure. 21 

In both cases, however, the fluid pressure supported a substantial portion of the loading for some 22 

time. 23 
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The contact pressure distribution was similar in creep and stress relaxation. The maximum 1 

contact pressure was in the medial compartment for both cases. The difference in contact 2 

pressures between the condyles diminished as creep or relaxation developed (Fig. 3 for creep). 3 

These similarities in creep and relaxation are reasonable as the joint contact is predominantly 4 

determined by the contact geometry. It is generally accepted that the medial compartment 5 

supports more loading at the instant of loading [39,44]. Our results support this point and yet 6 

provide more details about the time-dependent load transfer in the knee joint. The fluid 7 

pressurization likely provides more load support in the medial than lateral compartments. When 8 

the fluid pressure diminishes, more balanced load support occurs between the compartments. 9 

The load transfer from cartilage to meniscus were fundamentally different in creep and stress 10 

relaxation. As creep continued, the contact pressure between cartilages decreased but the contact 11 

pressure between cartilages and menisci increased (Fig. 4a). Whereas in the relaxation case, both 12 

contact pressures decreased monotonically with time (Fig. 4b). This phenomenon seems to be 13 

logical since the total force in the joint is constant in creep: when the contact pressure decreases 14 

in the central area, it must increase in the periphery (note also the contact area increases a little 15 

with creep). During relaxation, the total force in the joint decreases with time, resulting in a 16 

general reduction of the contact pressure. It is worth mentioning that our creep results seemed to 17 

contradict the indentation test data in the literature [50] in which similar pressure patterns were 18 

obtained in cartilage-to-cartilage and indenter-to-cartilage measurements. The contrast was likely 19 

due to the difference in the contact conditions between the knee and the indentation setups. In the 20 

present study, the wedge-shape geometry of the menisci and their radial/circumferential motion 21 

facilitated time-dependent changes in the joint contact areas during creep. In the measurements 22 

[50], however, the disk-shape specimens would not allow changes in the contact areas. 23 



- 16 - 
 

4.3  Collagen Viscoelasticity and Fiber Orientation 1 

Virtually the same fluid pressures were obtained (Fig. 7), when the reduced relaxation function 2 

was replaced by its initial value (i.e. use Gx(0) in Eq. 9). The collagen stiffness reduction history 3 

described by the relaxation function had little effect on the fluid pressurization in the tissues. 4 

Therefore, it may not be always necessary to model collagen viscoelasticity, but the short-term 5 

fibrillar modulus must be used if the collagen network is considered elastic. The same finding has 6 

been reported in tissue explants modeling [34]. It must be noted that not all results will remain 7 

the same when the collagen viscoelasticity is ignored [34]. 8 

The maximum principal stress was essentially oriented in the direction of primary fibers (not 9 

shown). This result seems logical as fibers in the tissues are supposed to support the tensile 10 

stresses resulted from knee compression due to the Poisson’s effect and fluid pressure. 11 

4.4  Fluid Pressurization in Menisci 12 

The result showed partial load transfer from cartilages to menisci during creep (Fig. 4a), which is 13 

consistent with the mechanical function of the menisci. This function of menisci cannot be fully 14 

understood without the present poromechanical modeling. Further results indicated that the load 15 

transfer was facilitated by the fluid pressure in the menisci. We performed additional simulations 16 

with menisci modeled as a transversely isotropic solid whereas cartilages were still modeled as a 17 

fibril-reinforced fluid-saturated material. The result showed a constant contact pressure (for 50s 18 

simulations) in cartilages and menisci during creep. This may suggest that the fluid in meniscus is 19 

essential to produce the observed creep response of the joint although further investigations are 20 

required to confirm this preliminary result. 21 
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The challenge in poromechanical modeling of the knee joint is more or less related to the 1 

double contact of menisci with femoral and tibial cartilages. In previous poromechanical 2 

modeling, some techniques were used to accelerate the numerical convergence. For instance, in 3 

an axisymmetric model of the knee, membrane elements were used on the surface of cartilages 4 

and menisci [15]. In a 3D knee model, cartilages were considered as poromechanical, but the 5 

menisci were treated as linear elastic solid [24]. The present result indicated the necessity of 6 

modeling the menisci as poromechanical. 7 

4.5  Large vs. Small Deformation Theories 8 

Many present results in large deformations were qualitatively in agreement with our small 9 

deformation results published previously [20,23]. For instance, for the knee in full extension 10 

under simple compression, the maximum contact pressure was observed in the medial 11 

compartment. The fluid pressure dissipation was much slower in creep than in stress relaxation. 12 

There were some quantitative differences between the results obtained from small and large 13 

deformation theories. For instance, the dissipation of fluid pressure was faster in large 14 

deformations compared to small deformations. This was probably due to the use of different 15 

loading rates in the two scenarios: 300N was applied in one second for small deformations 16 

whereas 700N was applied in one second for large deformations. The overall distribution of 17 

contact pressure was rather different in small and large deformations, especially at early times (in 18 

both creep and stress relaxation): the contact pressure was more evenly distributed across the 19 

condyles in small deformations. This discrepancy diminished with creep time. A few reasons 20 

may explain the differences. Small sliding contact was used in small deformations whereas finite 21 

sliding contact was used for large deformations. Moreover, the initial strains in ligaments were 22 

not considered in small deformations, but considered in large deformations. Above all, two 23 
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different knees were used in small deformation simulations [22,23] and the large deformation 1 

simulations presented herein. The results might be subject-specific. 2 

4.6  Limitations 3 

Only one knee was used to perform the present simulations. Another knee was used for small 4 

knee compressions. It is not clear on what extent the results are subject-specific. Moreover, the 5 

measurements used for model validation were performed on various knees with different ages 6 

and gender. Furthermore, the assumptions made in our simulations included simplified fiber 7 

orientations, idealized loading and boundary conditions. Tissue mechanical properties may also 8 

need further verifications in future studies. 9 

In summary, a fibril-reinforced, viscoelastic poromechanical model in large deformation has 10 

been developed to predict the poromechanical response of the knee joint. Cartilages and menisci 11 

were modeled as fibril-reinforced porous materials. Quasi-linear viscoelasticity was considered 12 

for the collagen network and Neo-Hookean hyperelasticity was used for the non-fibrillar matrix. 13 

A user defined FORTRAN subroutine was developed to implement the constitutive law in the 14 

commercial software ABAQUS. After numerical tests and experimental validations, the model 15 

was used to simulate the creep and stress relaxation of the knee under simple compression. The 16 

new formulation and coding are necessary for more realistic numerical approximations since the 17 

cartilaginous tissues in the knee are experienced large deformation under physiological loading. 18 

The model may be used to clarify the load sharing between articular cartilages and menisci of the 19 

knee, which is modulated by fluid pressurization in the cartilaginous tissues. Different load 20 

sharing during creep and relaxation indicates a more complicated loading mechanism of the knee 21 

joint than that was previously understood.  22 
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Appendix A. Numerical Integration of the Fibrillar Stress 

 

Denoting the current time by 1kt and the previous time by kt , the fibrillar stress (9) at the current 

time can be expressed as 
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Introducing Eq (11), the first integral of (A-1) can be written numerically using a central 

point formula 
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In a numerical procedure, this integral can be calculated after the strain in the previous increment 

)( kx t  has been determined. 

The calculation of the second integral of (A-1) requires stress and strain data from all 

previous increments as the limit of this integral is from 0 to kt . This means that the stress and 

strain values must be stored at every integration point of each finite element for all time 

increments. This would require a huge storage of data for our 3D knee modeling. To avoid this 

problem, the integral must be rewritten in an incremental form depending only on the data from 

the previous two increments. Introducing Eq (10), 
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where 
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This equation can be further expressed as 
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Noting that 1k k kt t t    and )()( 1 kkk tt   and using a midpoint formula for the second 

integral above, Eq. (A-4) takes the numerical form of 
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Therefore, the fibrillar stress takes the final numerical form of 
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Table 1  Geometrical parameters and material properties of the model used to fit the experimental 

stress relaxation and creep tests of a tissue explant. k is the hydraulic permeability of the tissue 

defined by Darcy’s law. 

Disk dimension 
Fibrillar collagen network 

Eq. (11) 

Non-fibrillar porous matrix 

Eq. (5) 

Diameter: 3.02 mm 
A = 2.0 MPa 

B = 767.1 MPa 

C10 = 0.115 MPa 

D1 = 4.0 MPa-1 

k = 0.001 mm4/Ns 

Thickness: 

1.66 mm 

Reduced relaxation coefficients, Eq. (10): 

g1=0.6, λ1=10, g2=0.7, λ2=100, g3=0.2, λ3=1000 
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Table 2. Changes in the maximum contact pressure in a step-by-step mesh sensitivity study, as 

compared to the pressure obtained from the reference mesh. Fluid pressure was not considered in 

the sensitivity study. The reference mesh was used for the full simulations of the knee joint with 

fluid pressures. 

Mesh 
Number of elements in each tissue Change in 

maximum contact 
pressure (%) 

Femoral 
cartilage 

Menisci 
Tibial 

cartilages 

Reference 7476 4144 4638 N/A 

Step 1 29904 4144 4638 1.9 

Step 2 29904 33152 4638 5.4 

Step 3 29904 33152 37104 8.1 
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Table 3. Material properties of the collagen network and the non-fibrillar solid matrix of all soft 

tissues 

 

  

Fibrillar collagen network 

Eq. (18)  

Non-fibrillar matrix 

Eq. (5) 

Primary fiber  
direction (x), 

(MPa) 

Perpendicular  
directions (y, z), 

(MPa) C10 

(MPa) 
D1 

(MPa-1) 

  
A B A B 

Femoral cartilage 1.376 367.14 0.413 110.14 0.176 0.96 

Tibial cartilages 0.918 229.46 0.918 229.46 0.183 1.68 

Menisci 12.84 0.0 2.295 0.0 0.880 0.192 

Ligaments 46.47 1118.6 0.0 0.0 0.385 1.2 

Reduced relaxation coefficients, in Eq. (10), for all tissues in x, y and z directions: 

g1=0.87, λ1=10, g2=0.036, λ2=100, g3=0.273, λ3=1000 

Hydraulic permeability for cartilaginous tissues (Darcy’s law): 

kx=0.002 mm4/Ns, ky=0.001, kz=0.001 

 

 

 

1 
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FIGURE CAPTIONS 1 

Figure 1. Comparison of the computational with experimental results on cartilage explants. (a) 2 

Stress relaxation; and (b) creep. The same material parameters were used to fit the relaxation and 3 

creep tests simultaneously. The material and geometrical parameters used in the computations 4 

were presented in Table 1. 5 

Figure 2. The knee joint geometry reconstructed from magnetic resonance images (a) and meshed 6 

with finite elements (b). The model includes femur, tibia, fibula, articular cartilages, menisci and 7 

ligaments. It is from the right knee of a 27-year Caucasian male with no leg injury history. 8 

Figure 3. Contact pressure distributions on the articular surface of femoral cartilage for creep at 9 

a) 1s, and b) 100s.  Inferior view; medial condyle on the right. 10 

Figure 4. Maximum contact pressure in femoral cartilage and menisci as a function of time. (a) 11 

creep; and (b) stress relaxation. 12 

Figure 5. Knee compressive displacement as a function of applied force, numerical prediction 13 

versus experimental measurements. The experimental data were taken from the literature 14 

[39,40,42]. Maximum applied load in the present study was 700N (force control). 15 

Figure 6. Normal strain in the surface layer of tibial cartilages in the direction of knee 16 

compression under creep loading at (a) 1s, and (b) 100s. Superior view; medial side on the right. 17 

Figure 7. Maximum fluid pressure in the femoral cartilage as a function of time for (a) creep; and 18 

(b) stress relaxation. The fluid pressure was obtained from the centroids of elements which were 19 

approximately at 3/8 depth from the articular surface. For the case of viscoelastic fibers, the 20 

stiffness of the fibrillar network decreased with time as indicated by the reduced relaxation 21 
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function (Eq. 10); for the case of elastic fibers, the stiffness was taken to be the initial stiffness of 1 

the fibrillar network with no reduction in time. 2 

 3 
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Fig. 3 



- 34 - 
 

 

a) 

 

 

b) 

 

Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 


