Recent Advances in Computational Mechanics of the Human Knee Joint

M. Kazemi, Y. Dabiri, and L.P. Li

Department of Mechanical and Manufacturing Engineering, University of Calgary

Contents

Abstract	
1. Introduction	1
2. Constitutive Modeling of the Tissues	2
3. Computational Models of the Knee joint	5
3.1 Geometry and Mesh Generation of the Knee	
3.2 Implementation of Tissue Models	
3.3 Finite Element Model Developments	
3.4 Poromechanical Models	
4. Verification of the Numerical Modeling	9
5. Validation of the Numerical Modeling	10
6. Pathomechanical Modeling and Clinical Applications	12
6.1 Ligament Injury and Reconstruction	
6.2 Total and Partial Meniscectomy	
6.3 Cartilage Injury and Degeneration, Osteoarthritis Models	
6.4 Knee Replacement	
6.5 Sports and Gait Modeling	
7. Miscellaneous Joint Models	15
8. Discussion: Advances, Challenges and Future Directions	16
8.1 Anatomically Accurate Geometry	
8.2 Use of Constitutive Models	
8.3 Physiological Loadings and Contact Conditions	
8.4 Future Directions	
8.5 Concluding Remarks	
Acknowledgements	20
References	20