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ABSTRACT 1 

Fluid pressurization in articular cartilages and menisci plays an important role in the mechanical 2 

function of the knee joint.  However, the fluid pressure has not been incorporated in the previous 3 

finite element modeling of the knee.  Elastic models of the knee are widely used instead.  It is 4 

believed that an elastic model can be used to predict the instantaneous load response of the knee 5 

as long as large effective moduli for the cartilaginous tissues are used.  In the present study, the 6 

instantaneous response of the knee was obtained from a proposed model including fluid pressure 7 

and fibril reinforcement in the cartilaginous tissues.  The results were then compared with those 8 

obtained from an elastic model using the effective modulus method.  It was found that the 9 

deformations and contact pressures predicted by the two models were substantially different.  A 10 

unconfined compression of a tissue disk was used to understand the issue.  It was clear that a full 11 

equivalence between the instantaneous and elastic responses could not be established even for 12 

this simple case.  A partial equivalence in stress could be conditionally established for a given 13 

unconfined compression but not valid for a different magnitude of compression.  The 14 

instantaneous deformation of the intact tissues in the joint was even more difficult to determine 15 

using the effective modulus method.  The results thus obtained were further compromised 16 

because of the uncertainty over the choice of effective modulus.  The tissue nonlinearity was one 17 

of the factors that made it difficult to establish the equivalence in stress.  The pressurized tissue 18 

behaved differently from a solid material when nonlinear fibril reinforcement was presented.  The 19 

direct prediction of the instantaneous response using the proposed poromechanical model had the 20 

advantage to determine the fluid pressure and incompressible deformation. 21 

KEYWORDS:  Articular cartilage mechanics; Effective modulus; Fibril-reinforced model; Finite 22 

element analysis; Fluid pressure; Knee joint mechanics 23 

24 
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1.  INTRODUCTION 1 

Finite element models of the knee joints have been developed for various bioengineering 2 

applications [1-3].  The analysis is time-consuming because of the complex knee geometry and 3 

multiple mechanical contacts involving femur, tibia, patellar, menisci, femoral and tibial 4 

cartilages.  To simplify the problem, single-phase elastic models of cartilage and meniscus have 5 

been widely used in the joint modeling [4-6].  Fibril reinforcement in the articular cartilages and 6 

menisci were also considered in a recent model but the fluid pressure in the tissues was still 7 

neglected [7].  It is believed that an elastic model can be used to describe the instantaneous load 8 

response of the knee or the immediate mechanical behavior of the knee to fast loading, as long as 9 

an effective Young’s modulus is applied.  This effective modulus must be greater than the actual 10 

modulus of the tissue matrix, because the fluid trapped in the matrix stiffens the tissue [8].  In 11 

addition, an effective Poisson’s ratio is set as close to 0.5 as possible to approximate the tissue 12 

incompressibility at fast compression [9-10].  This method is referred to as the effective modulus 13 

method hereafter. 14 

The equivalence of instantaneous response of fluid saturated materials to the elastic behavior 15 

of a single-phase solid material has been long established for 3D problems [11].  For poroelastic 16 

beams or columns, only an effective modulus is required for the description of the instantaneous 17 

deflections.  However, for thin poroelastic plates, both effective modulus and effective Poisson’s 18 

ratio are required in order to describe the instantaneous mechanical response using elastic 19 

solutions [12].  In the mechanics of soft tissues, both the solid and fluid phases are considered 20 

incompressible [13,14].  Applying the linear biphasic theory, the effective modulus for the 21 

instantaneous compression of a unconfined isotropic disk is 1.5E/(1+ν), where E and ν are the 22 

modulus and Poisson’s ratio of the tissue matrix [15].  First, we see this effective modulus does 23 

not apply to the same tissue disk in confined compression.  So it is dependent on boundary 24 
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conditions.  Furthermore, this effective modulus (< 1.5E) cannot be applied to the cartilages in 1 

the knee joint, for which the effective modulus used was often 10 times greater than a realistic 2 

modulus [1,8].  It is not clear how the equivalence can be established in a numerical procedure of 3 

a 3D problem, such as for the knee joint, which involves nonlinear and anisotropic properties of 4 

multiphasic tissues.  The objective of the present study was to determine on what extent an elastic 5 

model could describe the instantaneous load response of the knee.  Issues on the numerical 6 

equivalence of the instantaneous and elastic responses were also investigated. 7 

 8 

2.  METHODS 9 

Equivalence of Instantaneous Load Response to Elastic Behavior 10 

We first reexamined the concept of equivalence of the instantaneous load response of a 11 

hydrated tissue to the elastic behavior of a solid material.  The conditions of equivalence can be 12 

easily demonstrated using the unconfined compression testing of articular cartilage as an 13 

example. 14 

A fibril-reinforced model was chosen for the present study because it highlights the role of 15 

collagen fibers in the tissues [16-18].  The model could also describe the strong strain-rate 16 

dependent constitutive behavior of articular cartilage that was observed in experiments [19].  In 17 

the fibril-reinforced modeling, articular cartilage was considered as a fluid-saturated linear matrix 18 

reinforced by a nonlinear collagen network [20].  The linear matrix, referred to as the nonfibrillar 19 

matrix, consists of mostly proteoglycans, or the tissue excluding the fluid and collagen fibers.  20 

For the case of a tissue disk in unconfined compression, the problem is often simplified as 21 

axisymmetric.  Using r and z to refer to the radial and axial directions respectively (r is parallel to 22 

the articular surface), the stresses in the nonfibrillar matrix can be written in the incremental form 23 

of Hooke’s law 24 
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where λ and μ are the Lamé constants of the nonfibrillar matrix (denoted by the superscript m).  2 

The Poisson’s ratio ν ≠ 0.5 so that the Lamé constants are valid.  There is no fibrillar stress in the 3 

axial direction, because the fibers are in compression in this direction.  The fibrillar stress in the 4 

radial direction is 5 

d df
r f rEσ ε=           (2) 6 

where the modulus of the fibrillar matrix (denoted by the superscript or subscript f), Ef, can be a 7 

general function of the fibrillar strain, εr. 8 

Consider the equilibrium state, or the elastic solution.  The fluid pressure vanishes.  Using 9 

the free boundary condition on the cylindrical surface, the total stress in the radial direction must 10 

be zero, i.e. 11 

m f
r rσ σ= −           (3) 12 

Substituting Eqs. (2) and (3) into the first equation of (1), the radial strain can be determined by 13 

2( ) d d 0f r zE λ μ ε λ ε⎡ ⎤+ + + =⎣ ⎦       (Elastic, ν ≠ 0.5, no fluid pressure)  (4) 14 

if the axial strain is given such as in a relaxation test.  Eliminating the radial strain in the second 15 

equation of (1) by using (4), the total stress in the axial direction can be obtained by 16 
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The radial stress in the matrix is determined by (3) after the relations (2) and (4) are used 18 
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      (Elastic, no fluid pressure)    (6) 19 
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If a compression is applied instantaneously on a homogenous tissue disk, the fluid would be 1 

trapped (i.e. no flow) in the tissue at the instant of load application.  A uniform fluid pressure is 2 

produced instantaneously.  Again, the total stress in the radial direction must be zero, i.e. 3 

= m f
f r rp σ σ+       (Instantaneous response)      (7) 4 

The incompressibility of the solid and fluid phases leads to no tissue volume change, or 5 

d d / 2r zε ε= −           (8) 6 

Equation (1) is then simplified as 7 

d 2 d  ,    d 2 dm m
r r z zσ μ ε σ μ ε= =        (9) 8 

Combining equations (7) to (9) and (2), the total stress in the axial direction can be determined by 9 

1d d d 3 d
2

m
z z f f zp Eσ σ μ ε⎛ ⎞= − = +⎜ ⎟

⎝ ⎠
      (Instantaneous response)   (10) 10 

If the effective modulus method is used to predict the instantaneous axial stress σz, the 11 

effective Lamé constants λ' and μ', as defined by the effective modulus and effective Poisson's 12 

ratio, must satisfy the following equation  13 

22 12 3
2( ) 2 f

f

E
E

λλ μ μ
λ μ
′

′ ′+ − ≡ +
′ ′+ +

      (11) 14 

because equations (5) and (10) must be identical.  It is observed that the effective material 15 

properties must be in general strain-dependent, because Ef is a function of the fibrillar strain.  16 

Equation (11) must be satisfied for all strains in a given domain.  In order to satisfy the 17 

incompressibility requirement, equation (4) must be identical to (8), which requires that 18 

2 0fE μ′+ =           (12) 19 

This requirement can never be satisfied because both properties must be positive (unless ν = 0.5, 20 

then equation (8) simply applies).  Therefore, one cannot use (4), an elastic formula of 21 

compressible material, to calculate the strain of the instantaneous response. 22 
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 1 

Finite Element Analysis of the Knee Joint 2 

A MRI derived knee model was recently constructed to determine the fluid pressurization in 3 

articular cartilages and menisci of the knee [21].  The cartilaginous tissues were modeled using a 4 

3D fibril-reinforced mechanical contact model recently proposed for articular cartilage [22].  The 5 

constitutive law of the solid matrix was coded using a FORTRAN subroutine, while the fluid 6 

flow was described by Darcy’s law formulated in ABAQUS.  Site-specific collagen fiber 7 

orientations were incorporated per split-line directions [23].  The primary fibers in meniscus were 8 

aligned in the circumferential direction, and secondary fibers in the radial direction.  Mechanical 9 

contact allowing small frictional sliding (coefficient of friction: 0.02) was simulated between the 10 

following pairs using ABAQUS: femoral and tibial cartilages, femoral cartilage and meniscus, 11 

meniscus and tibial cartilage.  The results thus obtained compared reasonably well with data from 12 

the literature [21]. 13 

In the present study, finite element solution was first obtained using the proposed 14 

poromechanical model including fluid pressure (referred to as “full solution”).  The SOIL 15 

CONSOLIDATION procedure in ABAQUS was used for this purpose.  The elastic solution 16 

corresponding to the effective modulus method was then obtained using the steady analysis from 17 

the SOIL procedure, which ignored the fluid pressurization.  The same fiber properties were used 18 

for both cases, but the steady analysis was performed using a Poisson’s ratio of 0.48 and a large 19 

effective modulus for the nonfibrillar matrix of cartilage or meniscus (Table 1).  The effective 20 

modulus was determined by matching the total forces for the two solutions.  This modulus is 21 

commonly determined this way in published studies when the force data is available, and finite 22 

element analysis is used to obtain contact pressure etc. 23 
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Using the proposed model, the instantaneous response was approximated by sealing all tissue 1 

surfaces with impermeable boundary conditions and using virtually zero permeability.  The 2 

permeability was taken to be 10−6mm4/Ns, which was approximately one thousandth of any 3 

realistic permeability for cartilage and meniscus.  This small value enhanced the impermeability 4 

within the tissues in addition to a rather high ramp compression rate of 100μm/s used in all finite 5 

element solutions.  These conditions secured negligible fluid flow and incompressibility in the 6 

tissues (confirmed by the fluid velocity obtained). 7 

All knee compressions were applied at 100μm/s on the top of the meshed distal femur while 8 

the bottom of the meshed tibia was fixed [21].  The femur was also restrained from rigid-body 9 

translation in the horizontal plane, but free from any rotations.  These boundary conditions 10 

excluded significant knee flexion but allowed small sliding between articular surfaces. 11 

 12 

3.  RESULTS 13 

The full solution associated with fluid pressure was obtained using the proposed model with 14 

Young’s moduli of 0.26 and 0.50 MPa, respectively, for the nonfibrillar matrices of cartilages 15 

and menisci, and a Poisson’s ratio of 0.36 for all cartilaginous tissues (Table 1, nonlinear).  While 16 

all fibrillar properties remained unchanged and the Poisson’s ratio for the elastic solution was set 17 

to 0.48, the effective modulus of the nonfibrillar matrices was found to be 1.22 MPa, in order to 18 

match the total force from the full solution at the compression of 100 μm (star in Figs. 1).  Here, 19 

for simplicity, the same effective modulus was used for all cartilaginous tissues.  However, using 20 

this exact effective modulus, the forces from the elastic solutions were, respectively, only 93% 21 

and 86% of the full solutions when the compression was increased to 200 and 500 μm (Fig. 1).  22 

In fact, the two curves do not match even at small strains, with the full solution more nonlinear. 23 
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The maximum contact pressure predicted by the effective modulus method was virtually the 1 

same as that from the full solution (Fig. 2; Note: it was true for 100μm compression only, 2 

because the equivalence was attempted at this compression).  However, the pressure distributions 3 

predicted by the two methods were significantly different, with less high contact pressure regions 4 

(in red) or larger low contact areas (not shown) when the fluid pressure was present (Fig 2a vs 5 

2b).  The fluid pressure also produced a quite different displacement pattern in the lateral condyle 6 

(Fig. 3a vs 3b).  When the compression was increased to 200μm, the contact pressure patterns 7 

were similar to what shown in Fig. 2 for the two cases respectively, but the peak contact 8 

pressures were not the same anymore (Fig.2 caption). 9 

When the effective modulus was increased from 1.22 to 12 MPa, a moderate value from 10 

literature, the total force would be increased to 6.3 times (Fig. 4), and the peak contact pressure 11 

on the femoral cartilage to 7.5 times for the same compression of 100 μm (Fig. 5).  The 12 

displacement pattern (not shown for the larger modulus) had essentially no similarity to that 13 

shown in Fig. 3b. 14 

Two additional cases of the knee joint were further considered in order to determine the 15 

factors that influenced the equivalence of the instantaneous and elastic responses.  Linear fibrillar 16 

property was assumed to run the two cases with and without fluid pressure (last column in Table 17 

1).  The effective modulus was adjusted in order to match the forces at 100μm compression for 18 

all four cases (Fig. 6).  It was seen that the force function from the elastic solution deviated less 19 

from the instantaneous response when the material properties were linear (Fig. 6). 20 

Four parallel cases were also considered for the unconfined compression of cartilage disks 21 

(Table 2, Fig. 7).  The difference between the full and elastic solutions was more evident here, 22 

because the tissue disk was fully (uniformly) pressurized, as compared very locally pressurized in 23 

the knee joint.  The axial stresses in the two linear solutions were identical (independent on 24 
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compression) as the equivalence could be established for the axial stress by equation (11) when 1 

Ef was constant.  However, it was not necessary for the effective Poisson’s ratio to be close to 2 

0.5.  The same force and axial stress would be obtained from the linear elastic solution, if the 3 

effective Poisson’s ratio were zero and the effective modulus were 7.4868 MPa (instead of 4 

2.5257 MPa when the effective Poisson's ratio was taken to be 0.48, Table 2).  These results for 5 

unconfined compression disk were obtained from ABAQUS using the same user-defined 6 

numerical procedure as that for the knee joint modeling.  They are identical to the analytical 7 

solutions from the previous section, an indication of good numerical results.  It should be noted 8 

that the instantaneous response of a homogeneous tissue disk to this uniform compression can be 9 

precisely obtained using the finite element method with impermeable boundary condition 10 

regardless of the permeability of the tissue and the speed of compression. 11 

 12 

4.  DISCUSSION 13 

There has been no doubt over the equivalence of the instantaneous load response of soft tissue to 14 

an elastic behavior [11-13].  The question is how to establish the equivalence in a finite element 15 

analysis, or whether we should just use a poromechanical model to determine the instantaneous 16 

response.  The present study indicated that a full equivalence could not be always established 17 

using constant effective modulus even the Poisson’s ratio used was close to 0.5.  When only 18 

linear constitutive laws were applied, an equivalence in forces and stresses could be established 19 

for the case of uniform deformation using an effective modulus (Fig. 7), but could not be 20 

established for the case of non-uniform deformation such as in the knee joint (Fig. 6; the 21 

difference was small for the linear case though).  When any nonlinear constitutive law was 22 

involved, the equivalence could not be fully established using the effective modulus method 23 

(Figs. 1-3 & 7, equation 11).  The effective properties must be strain dependent, although it is not 24 
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clear whether the equivalence can be expressed with simple equations for general cases.  No 1 

equivalence will be established in finite element analysis unless numerical procedures are 2 

particularly formulated to accommodate the strain dependent equivalence. 3 

 Incompressibility must be particularly formulated in order to obtain the instantaneous 4 

deformation using an elastic model [7].  The volume strain depends on both the modulus and the 5 

Poisson’s ratio (Fig. 8).  It may not be reliable to simply use a Poisson’s ratio close to 0.5 with a 6 

generic formulation to approximate the incompressibility of the tissues, because it is asymptotic 7 

at 0.5 and numerical singularity will occur if the value is too close to 0.5. 8 

 Two factors were found to prevent simple establishment of equivalence between the 9 

instantaneous and elastic responses using the effective modulus method: (1) a nonlinear 10 

constitutive law obviously made the problem more complicated, as demonstrated with the 11 

analytical solution for the case of unconfined compression; (2) A non-uniform deformation 12 

produces complex fluid pressure gradients instantaneously.  Another factor is the boundary 13 

conditions, which is obvious but not investigated in the present study. 14 

 There were uncertainties in the results obtained using the effective modulus method, because 15 

of the non-uniqueness of the effective modulus.  The maximum contact pressure for a given 16 

compression (e.g. 100μm) from the elastic solution did not deviate much from the full solution 17 

(Fig. 2), when a partial equivalence in force was established for this compression (100μm).  18 

However, the pressure distributions were very different even the total forces were equal (Fig. 2).  19 

Furthermore, this partial equivalence shown in Fig. 2 would not be possible for other 20 

compression magnitudes (e.g. 50 or 200μm) if the same effective modulus were used.  A new 21 

equivalence must be established for each magnitude of compression with a new effective 22 

modulus.  For the case of unconfined compression, the effective modulus must be 5.72 MPa to 23 

match the force at 200μm compression (not shown), other than 3.14 MPa for the 100μm 24 
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compression, if the same effective Poisson's ratio 0.48 is used.  The deformations from the two 1 

solutions were very different, as indicated by the displacement (Fig. 3, 100μm compression), 2 

even the partial equivalence was established.  In addition, the displacement pattern was also 3 

influenced by the magnitude of the modulus: a larger modulus produced more rigid motion for 4 

the femoral cartilage (not shown, but more arrows pointed downward compared to Fig. 3b).  5 

Therefore, the reliability of the results largely depends on the correct choice of the effective 6 

modulus.  The importance of proper determination of the effective modulus can also be observed 7 

from Figs. 3-4. 8 

 It is neither necessary nor sufficient to use an effective Poisson’s ratio close to 0.5 to 9 

establish the equivalence between the instantaneous and elastic load responses.  The equivalence 10 

in deformation cannot be established using any Poisson’s ratios except for exactly 0.5 (equation 11 

12).  The partial equivalence in stress can be established for unconfined compression for a range 12 

of effective Poisson’s ratio and modulus if the fibrillar modulus is constant (equation 11).  13 

However, a unique effective Poisson’s ratio may be required for general 2D and 3D problems 14 

[24]. 15 

 Nonlinear fibril reinforcement was considered in the present study.  The important influence 16 

of fibril reinforcement on the instantaneous response of cartilage has been recognized in 17 

experimental studies [25], and demonstrated in modeling [20].  The fibers were recently 18 

incorporated into whole knee joint modeling without considering the fluid pressure, but an 19 

incompressible material model was necessarily used [7].  In the present study, the uncertainty in 20 

the effective modulus was not a direct consequence of the nonlinear fiber properties.  In fact, the 21 

same fiber properties were used in the comparison of the instantaneous and elastic load 22 

responses.  The difference was produced by the fluid pressurization in the tissues.  The 23 
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pressurized tissue behaved very differently from a solid material when the fibril reinforcement 1 

was nonlinear [20]. 2 

 The major limitation of this study was the use of small deformation theory, which may have 3 

caused certain numerical error for the large compression shown in Fig. 1.  However, most of the 4 

results presented were for 100m compression, which produced strains well below 2.5% for most 5 

contact regions (if 50m compression went to the femoral cartilage, and the rest to tibial 6 

cartilage/menisci).  The conclusions from these results should be qualitatively correct, and 7 

supported by the analytical solutions in the methods section.  The solutions obtained from large 8 

deformation theory would be more nonlinear, resulting in more difficulties to establish 9 

numerically the equivalence between the instantaneous and elastic responses.  Furthermore, if 10 

realistic large compression were considered, the difference between the full and elastic solutions 11 

would be much more significant than what is observed in Fig. 6, because the nonlinearity would 12 

be more evident when the tissues are more compressed.  This prediction can be deduced from the 13 

case of unconfined compression shown in Fig. 7, which was subjected to 10% uniform 14 

compressive strain.  It is important to point out that the difference in the contact pressure 15 

distributions from the two solutions was significant even the compressive strain was small and 16 

the total forces were equal (Fig. 2). 17 

 In conclusion, the effective modulus method with an elastic model cannot be used to 18 

describe the incompressibility of the cartilaginous tissues at instantaneous knee compression.  19 

The deformation thus obtained is greatly compromised even the effective Poisson’s ratio is very 20 

close to 0.5.  Some equivalence in stress between the instantaneous and elastic responses might 21 

be established for a given knee compression if the effective modulus and Poisson’s ratio were 22 

determined for the same compression.  The stresses may only be predicted for the compression at 23 

which the equivalence has been established.  Different effective properties must be used for a 24 
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different compression.  The effective modulus method is more suitable for linear than nonlinear 1 

materials, only if the deformation is not a concern.  The proposed poromechanical model 2 

accounting for the fluid pressure is more time-consuming than the elastic model, but has the 3 

potential to provide further or more precise information.  In addition, only real material properties 4 

are needed in the poromechanical model, which eliminates the uncertainties in the determination 5 

of compression-dependent effective properties encountered when an elastic model is used.  6 

Finally, the findings presented here might serve as a guide to interpret the elastic solutions should 7 

the effective modulus method be used to seek preliminary results. 8 

 9 
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Table 1  Material properties used in all finite element analyses of the knee joint.  The collagen 

network was considered as nonlinear in the proposed poromechanical model, where the modulus 

was a function of the tensile strain ε.  The compressive stiffness of the fibers was neglected.  

Linear fibrillar property, or constant fibrillar modulus, was used for comparison. 

 
 
Tissue 

 Fibrillar moduli,  
Nonlinear (MPa) 

Nonfibrillar 
matrix 

Fibrillar moduli,  
Linear (MPa) 

Primary fiber 
direction 

Normal 
directions 

E 
(MPa)

ν Primary fiber 
direction 

Normal 
directions 

Femoral 
cartilage 

3+1600ε 0.9+480ε 0.26 0.36 10 3 

Tibial 
cartilage 

2+1000ε 2+1000ε 0.26 0.36 5 5 

Menisci 28 5 0.5 0.36 28 5 

Bone Eb = 5000,  νb = 0.3 

Effective moduli for cartilages & menisci (ν' = 0.48):  Nonlinear  1.22,  Linear  1.25 
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Table 2  The four cases of finite element analysis on articular cartilage in unconfined 

compression.  The poromechanical model was used to consider the fluid pressure (“Full solution” 

and “Linear trapped”).  The effective modulus method was used when no fluid pressure was 

considered (Nonlinear “Elastic solution” and “Linear elastic”).  The Lamé constants for the 

nonfibrillar matrix were / 2(1 )Eμ ν= +  and / (1 )(1 2 )Eλ ν ν ν= + − .  The radius and thickness 

of the disk were, respectively, 3 and 2 mm. 

Assumed nonlinear fibrillar matrix 
Ef = (2+1000εf) MPa 

 Assumed linear fibrillar matrix 
Ef = 14.4 MPa 

“Full solution” 

Fluid saturated matrix 
E = 0.26 MPa, ν = 0.36 

 “Linear trapped” 

Fluid saturated matrix 
E = 0.26 MPa, ν = 0.36 

“Elastic solution” (Nonlinear) 

Effective solid matrix 
E' = 3.14 MPa, ν ′  = 0.48 

 “Linear elastic” 

Effective solid matrix 
E' = 2.5257 MPa, ν ′  = 0.48 
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FIGURE CAPTIONS 

Fig. 1  Total reaction force in the knee joint as a function of the compression magnitude.  The full 

solution was obtained using the proposed model considering the fluid pressure in cartilages 

and menisci.  The elastic solution ignored fluid pressurization and was obtained using an 

effective modulus that enabled a match of the forces at 100 μm compression as marked by the 

star. 

Fig. 2  Contact pressure on the articular surface of the femoral cartilage at 100μm knee 

compression.  (a) full solution with fluid pressure considered; (b) elastic solution using a large 

effective modulus.  The broken lines indicate the position of menisci (inferior view: medial 

meniscus on the right-hand side).  The peak contact pressures at 200μm compression were 

(not shown) 0.321 and 0.296 MPa for cases (a) and (b) respectively.  Note that the contours do 

not actually show the boundaries of the contact areas. 

Fig. 3  Surface displacement vectors of the femoral cartilage at 100μm knee compression.  (a) full 

solution (8−225μm); (b) elastic solution (35−142μm).  The broken lines indicate the position 

of menisci (inferior view: medial meniscus on the right-hand side). 

Fig. 4  Total reaction force in the knee joint as a function of Young’s modulus of the nonfibrillar 

matrix, as determined by the effective modulus method.  The effective Poisson’s ratio was 

0.48. 

Fig. 5  Maximum contact pressure on the femoral cartilage as a function of Young’s modulus of 

the nonfibrillar matrix, as determined by the effective modulus method.  The effective 

Poisson’s ratio was 0.48. 

Fig. 6  Total reaction force in the knee joint as a function of the compression magnitude.  The 

“Full solution” and “Elastic solution” were part of the results shown in Fig. 1, assuming 

nonlinear fibrillar property.  Two additional solutions were obtained assuming linear fibrillar 
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property: “Linear trapped” was the solution considering fluid pressure, while “Linear elastic” 

was an elastic solution.  Material properties (Table 1) were chosen so that the forces for all 

cases were the same at 100μm compression as marked by the star. 

Fig. 7  Total reaction forces for the cartilage disk in unconfined compression.  The four cases 

were parallel to those in Fig. 6 for the knee joint, and are illustrated in Table 2. 

Fig. 8  Volume strain as a function of the Poisson’s ratio when the Young’s modulus was given.  

This was determined for a cartilage disk in unconfined compression when fluid pressure was 

not considered. 
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