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A B S T R A C T   

There is currently a lack of knowledge regarding the spatiotemporal variation of day and night surface urban 
heat island intensity (SUHII) in the major cities of Bangladesh. These cities have a large population base and 
generally lack the resources to deal with rapid urbanisation impacts, so any increase in urban temperature has 
the potential to affect people both directly (due to heatwave conditions) or indirectly (due to loss of livelihood). 
Time series diurnal (day/night) MODIS land surface temperature (LST) data for the period 2000–2019 was used 
to produce baseline information about SUHI intensity, drivers and temporal trends. Five large cities were selected 
based on population size and historical urban expansion rates. Results indicated that annual SUHII was greater in 
the larger cities of Dhaka and Chittagong than in the smaller cities. SUHII observed during the day was also 
greater than at night. Population (in terms of city size and surface cover), lack of greenness and anthropogenic 
forcing were major factors affecting SUHII. Trend assessments revealed positive trends during daytime in four 
out of five cities, while one city recorded negative trends at night. The findings may provide new insights into 
impacts arising from rapid urbanisation and demographic shifts.   

1. Introduction 

The world is currently experiencing widespread urban expansion, 
with the expansion rate equal to, or even higher than, the growth in the 
urban population (Seto, Fragkias, Güneralp, & Reilly, 2011). The 
world’s total urban area has expanded by 168 % between 2001 and 
2018, with the highest growth rates being observed in Asia and Africa 
(Huang, Huang, Wen, & Li, 2021). Cities and their inhabitants have 
become key drivers of global environmental change (Grimmond, 2007) 
due to a significant increase in human-created impervious areas around 
the globe (Gong et al., 2020). Urban expansion substantially alters 
natural surfaces, resulting in a range of environmental effects (Girardet, 
2020). Though these effects can vary according to the scale of the study 
(Kalnay & Cai, 2003), they are most noticeable within local environ-
ments (Grimm et al., 2008). 

The difference in temperature between the urban and surrounding 
rural areas is possibly the most visible effect associated with the 

urbanisation process and is mainly due to increased human activities 
(Heisler & Brazel, 2010). This observed temperature gradient is typically 
known as the urban heat island (UHI) – a phenomenon first noted in the 
European city of London in the early 1800’s (Howard, 1833). The 
gradient is recorded as an index and flags the presence of elevated 
temperature locations within a city area. Two major types of UHIs are 
distinguished; a) the atmospheric urban heat island (AUHI), and b) the 
surface urban heat island (SUHI). The type of UHI is based on the height 
above the ground at which the phenomenon is observed and measured 
(Oke, 1982). UHIs modulate local climate (Landsberg, 1981; Roth, 
2007), however they can also significantly influence both local and 
regional climates (Kalnay & Cai, 2003). There is a lack of consensus as to 
how UHIs contribute to global warming (Emmanuel & Krüger, 2012); 
the main disagreement being whether warming trend estimates derived 
from weather station data are influenced by local warming conditions 
(Zhou et al., 2004). Studies reveal, however, that the UHI contribution 
may be highly significant at the local scale, especially in rapidly growing 
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cities (Ren, Chu, Chen, & Ren, 2007). UHIs amplify thermal intensity 
(Estrada, Botzen, & Tol, 2017), so people residing in urban areas are 
becoming increasingly vulnerable to heatwave episodes (Liao et al., 
2018). Mora et al. (2017) demonstrated that around 30 % of the world 
population is currently at risk of exposure to lethal heatwave conditions, 
a figure which is projected to increase to 48 % by 2100. Im, Pal, and 
Eltahir (2017) indicate that the densely populated agricultural region of 
South Asia may also experience extreme heatwave conditions in future. 
Apart from increasing heatwave likelihood, UHIs have the potential to 
impact human wellbeing and health (Pyrgou, Hadjinicolaou, & Santa-
mouris, 2020), vegetation phenology (Kabano, Lindley, & Harris, 2021), 
diurnal temperature range (DTR) (Argüeso, Evans, Fita, & Bormann, 
2014; Yang et al., 2020), energy consumption (Li et al., 2019), rate of 
disease vector development (Connolly, Keil, & Ali, 2020), water con-
sumption (Guhathakurta & Gober, 2007) and can also lead to a general 
reduction in thermal comfort (Salata et al., 2017). With UHIs negatively 
impacting local environmental conditions (Parsaee, Joybari, Mirzaei, & 
Haghighat, 2019) and becoming a key challenge to achieving urban 
sustainability (Corburn, 2009), an increasing interest in assessing this 
phenomenon has taken place over the last decade or so (Giridharan & 
Emmanuel, 2018). Causal factors and the relative intensity of impacts 
vary according to latitude and/or climatic regions (Mirzaei & 
Haghighat, 2010), hence, many cities are now basing temperature 
adaptation/mitigation planning on local climatic conditions (Malings 
et al., 2017). 

The techniques used to characterise UHI effect across cities can be 
broadly divided into: a) in-situ (field) measurements, and b) satellite- 
based estimation. In-situ observations, either by fixed weather stations 
or mobile traversing, are valuable in defining actual ground conditions 
(Hu, Xue, Klein, Illston, & Chen, 2016), however a change in locatio-
n/instrumentation, as well as inadequate coverage, can complicate their 
use (Wang et al., 2007). To overcome these possible issues, land surface 
temperature (LST) data from airborne and earth observing satellites is 
commonly employed in UHI studies. In-situ air temperature records are 
typically used to examine AUHI, known as the canopy layer heat island 
(CUHI), and LST data is used to reveal the spatiotemporal pattern of 
SUHI. Remotely sensed data can provide synoptic and repeat coverage 
consistently over large areas, so they are widely utilised on: i) global 
(Chakraborty & Lee, 2019; Li, Zha, & Zhang, 2020; Peng et al., 2012; 
Schwarz, Lautenbach, & Seppelt, 2011); ii) regional (Fu & Weng, 2018; 
Imhoff, Zhang, Wolfe, & Bounoua, 2010; Raj, Paul, Chakraborty, & 
Kuttippurath, 2020; Tran, Uchihama, Ochi, & Yasuoka, 2006; Yao, 
Wang, Huang, Niu, Liu et al., 2018; Zhou, Zhao, Liu, Zhang, & Zhu, 
2014); and iii) local scales (Hartz, Prashad, Hedquist, Golden, & Brazel, 
2006; Lazzarini, Marpu, & Ghedira, 2013; Li et al., 2011; Mathew, 
Khandelwal, & Kaul, 2017; Tomlinson, Chapman, Thornes, & Baker, 
2012; Wu, Ye, Shi, & Clarke, 2014). For example, Peng et al. (2012) used 
419 global cities to demonstrate SUHI and associated causal factors. 
They showed that daytime surface urban heat island intensity (herein-
after, SUHII) is higher than nighttime, noting that the driving mecha-
nisms differed according to the specific climatic zone within which the 
city was situated. Chakraborty and Lee (2019) emphasis that diurnal 
variability of SUHII is highest in equatorial climates and lowest in arid 
zones. Based on the data from more than 400 global cities, Li et al. 
(2020) note that factors influencing SUHII varied spatially between 
cities. Regional and city-specific studies such as those conducted in 
China, USA and India observe marked seasonality of SUHII (see Fu & 
Weng, 2018; Raj et al., 2020; Yao, Wang, Huang, Niu, Liu et al., 2018). 
For instance, satellite-based measurements of SUHII by Imhoff et al. 
(2010) indicate that the summer magnitude is larger than winter over 38 
populous cities of the US. Likewise, Raj et al. (2020) note that SUHII is 
strongly influenced by rapid urbanisation in 44 Indian cities and 
nighttime trend is increasing. Huang et al. (2016) show that SUHII 
significantly influences the amplitude of daytime LST in Beijing and 
Shanghai, and that the DTR becomes narrower in Beijing and broader in 
Shanghai. Alexander (2021) reveals that causal factors of urban LST 

vary according to cities. Chen, Chiu, Su, Wu, and Cheng (2017) indicate 
that urbanisation strongly affects diurnal variation of cities temperature. 
Even though SUHII varies between cities, existing studies underscore the 
fact that human-dominated land use/cover changes, in combination 
with accelerated anthropogenic activities, are largely accountable for 
generating the excess heat recorded in urban agglomerations (Li et al., 
2019; Lazzarini et al., 2013; Rodríguez, Ramos, de la Flor, & Domínguez, 
2020), and therefore, location-specific measures are required to mitigate 
this (Li et al., 2020; Ren, Ng, & Katzschner, 2011). 

Bangladesh, with an estimated total population of 161 million (m) 
and density of 1,120 per square kilometre (km2) (BBS, 2012), is one 
country most vulnerable to climate change (Eckstein, Künzel, Schäfer, & 
Winges, 2019). The regional topography is characterised by a very 
low-lying land surface. It comprises eight administrative divisions, 64 
districts and 12 city corporations. There are four distinct seasons: 
pre-monsoon (March–May), monsoon (June– September), 
post-monsoon (October–November) and winter (December–February). 
The climate is cool and dry during winter, with a hot humid summer and 
a rainy monsoon showing marked seasonality in both rainfall and tem-
perature. Due to an ever–increasing population, the country has expe-
rienced, and continues to experience, a substantial reduction of existing 
natural surface (such as forest and agricultural lands), and an associated 
expansion in urban land (Rai, Zhang, Paudel, Li, & Khanal, 2017). The 
urban population of the country grew from 22.5 m in 1990 to 60 m in 
2019 (https://data.worldbank.org/indicator/SP.URB.GROW? locations 
= BD; BBS, 2012), with resultant environmental issues in the major 
cities, including a sharp increase in observed temperatures (Kant, Azim, 
& Mitra, 2018). The trend of increasingly elevated temperatures in the 
main city is projected to increase, and continuous hot spell periods may 
become more common (Mourshed, 2011). Bangladesh is frequently 
affected by natural hazards such as flooding, so policies and strategies to 
minimise the impacts of these natural events are well developed. It is 
only recently, however, that urban warming has been recognised as an 
important issue affecting these large urban areas (GED, 2018). 

Although the impact of land use/cover change on Landsat-based LST 
has been examined by many researchers (Gazi, Rahman, Uddin, & 
Rahman, 2020; Kant et al., 2018; Kafy, Rahman, Hasan, & Islam, 2020; 
Roy et al., 2020; Rahman et al., 2020; Trotter, Dewan, & Robinson, 
2017), only two of them have examined SUHII (Kant et al., 2018; Roy 
et al., 2020). Another work utilises Moderate Resolution Imaging 
Spectroradiometer (MODIS) data of 2002–2014 during the monsoon 
season (June-August) over megacities of Asia, including Dhaka (Itz-
hak-Ben-Shalom, Alpert, Potchter, & Samuel, 2017). These works have 
improved the overall understanding of the spatiotemporal variation of 
LST/SUHII, however, they have used limited data (only daytime and 
selected years) and are limited in scope (e.g., using only a single city). 
The temporal resolution of Landsat is coarse (a 16-day cycle) and 
overpasses Bangladesh in the morning hours (10:30 am local time), so 
the use of Landsat data does not provide a complete picture of the real 
situation given that SUHI often intensifies later in the day (Guo et al., 
2015). Landsat also does not provide nighttime data, which hinders 
estimation of the intensity of SUHI during the night. Existing studies 
have also only examined the relationship between vegetation and LST, 
but it is highly likely that SUHII is also influenced by multiple other 
factors (Li et al., 2020). Kotharkar, Ramesh, and Bagade (2018), in a 
critical review of existing research, demonstrate that baseline data about 
UHIs of Bangladesh cities is clearly lacking. The review notes that Delhi, 
Chennai and Colombo were the most frequently studied cities in South 
Asia. It is important to note that the intensity and magnitude of day and 
nighttime SUHI varies between cities, even if they are in the same 
country (Huang et al., 2016). 

Many studies utilise infrared-derived LST data from satellites, such as 
MODIS, however a shortcoming with these measurements is that valid 
data is restricted to clear-sky conditions (without cloud). Chakraborty, 
Hsu, Manya, and Sheriff (2020) note that, as the recorded LST values are 
valid only for clear-sky conditions they may not represent the 
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climatological mean state. Ermida, Trigo, DaCamara, Jiménez, and 
Prigent (2019) use passive microwave LST observations to overcome the 
infrared-based limitations and note that the amplitude of clear-sky bias 
(the difference between average clear-sky and average all-weather LSTs) 
is closely related to the fraction of clear-sky days. These observations are 
pertinent in countries where seasonal cloud cover can be an issue. 

Existing studies may be of little relevance for the expanding cities of 
Bangladesh (from the viewpoint of mitigating the negative impacts) for 
a number of reasons. Firstly, global studies are based on a stationary 
urban boundary, hence are prone to uncertainty (Manoli et al., 2019). 
Findings are therefore difficult to implement on a local level (Chakra-
borty et al., 2020). Secondly, satellite observation time greatly in-
fluences SUHI intensity owing to the fact that the overpass time differs 
between cities (Mathew, Khandelwal, Kaul, & Chauhan, 2018). Thirdly, 
energy and health impacts vary between day and night, so character-
ising the full diurnal scale of local climate is essential (Krayenhoff, 
Moustaoui, Broadbent, Gupta, & Georgescu, 2018). Fourthly, measures 
undertaken to curb urban warming during summer may intensify SUHI 
intensity in winter (Debbage & Shepherd, 2015). Finally, previous 
studies have not comprehensively examined the spatiotemporal patterns 
of urban warming, its determinants and trends over these cities, 
although these types of studies are crucial for a populous and data poor 
country like Bangladesh. The identification of city–scale warming pat-
terns can contribute to informed decision–making and support the new 
“smart city” concept aimed at promoting sustainable urban develop-
ment. The findings can also be of value in developing location–specific 
adaptation strategies to reduce environmental impacts related to 
urbanisation–induced local warming and to improve the quality of life of 
the urban dwellers. 

The primary aim of this study is to develop baseline information on 
the spatiotemporal pattern of SUHII in selected cities of Bangladesh 
using timeseries MODIS LST data. Five large cities, namely Dhaka, 
Chittagong, Khulna, Rajshahi and Sylhet, have been selected based on 
population size, historical urban growth (BBS, 2012; Rai et al., 2017) 
and the availability of ancillary information. The objectives are to: (a) 
examine annual and monthly day, night SUHII between 2000 and 2019; 
(b) determine factors controlling SUHII in these cities; and (c) investi-
gate temporal trends. 

2. Materials and methods 

2.1. Datasets 

The MOD11A2 LST product (v006) used in this study is 1 km spatial 
resolution, 8-day composite data averaged from MODIS daily observa-
tions (10.30 am and 10.30 pm) for the 2000–2019 period. Version 6 data 
is used in this study due to its improved accuracy (Wan, 2014). The LST 
has been retrieved from MODIS 31 and 32 bands using a generalised 
split-window algorithm. The initial LST retrieval has been corrected for 
cloud contamination issues, so this study uses imagery with only clear 
sky pixels and has been subsequently processed to retain pixels with an 
LST error of ≤2 K. 

Other Version 6 MODIS products used include yearly land use and 
land cover (LULC) (MCD12Q1), an 8-day surface reflectance product 
(MOD09A1), a daily aerosol optical depth (AOD) product at 0.55 μm 
(MCD19A2), a daily short-wave black and white sky albedo (MCD43A3) 
product and vegetation continuous function product (MOD44B). Grid-
ded population data includes annual LandScan data at 1 km spatial 
resolution (https://landscan.ornl.gov/), which provides people per pixel 
and an average of the 24 -h population. To understand the contribution 
of anthropogenic forcing, nighttime lights (NTL) data was used, 
comprising both the Defence Meteorological Satellite Program – Oper-
ational Linescan system (DMSP-OLS) and the Visible Infrared Imaging 
Radiometer Suite (VIIRS) data. The NTL data has undergone inter- 
calibration, intra-annual composition, inter-annual corrections (Liu, 
He, Zhang, Huang, & Yang, 2012) and cross-sensor calibration. A power 

function, similar to that documented in Wu, He, Peng, Li, and Zhong 
(2013), was used to intercalibrate the DMSP-OLS data. This function was 
specifically used to obtain the regression coefficients representing the 
relationship between invariant regions of one reference and the other 
DMSP-OLS images. These coefficients were subsequently used to 
develop the intercalibrated DMSP-OLS data. The F152001 image was 
used as a reference image in this case. Invariant regions were then 
defined from groups of pixels, with each pixel having a standard devi-
ation of ≤1.5 for the whole 2000–2013 timeseries. To integrate the 
VIIRS data with DMSP-OLS, the seasonality of VIIRS was initially 
removed using the Hodrick and Prescott (1997) filter and then the 
Biphasic Dose Response (Ma, Guo, Ahmad, Li, & Hong, 2020) model was 
used to cross-calibrate both NTL annual series. A nominal resolution of 1 
km was used to make all the datasets consistent. 

This study utilises the planning boundary of the five cities rather 
than the city corporation area for analysis, since all future urban growth 
will definitely take place within this defined planning zone. A shape file 
of each planning boundary was acquired from the relevant city devel-
opment authorities. 

2.2. Analytical techniques 

Yearly MODIS LULC data, using the International Geosphere- 
Biosphere programme (IGBP) classification scheme (Sulla-Menashe & 
Friedl, 2018), was employed for this study. Several steps were involved 
in defining urban and rural areas using the LULC data. Firstly, the data 
was reclassified into urban and non-urban land covers. This was an 
iterative process to define multitemporal urban boundary (2000–2019) 
for each city. Secondly, a buffer polygon, away from the urban area was 
created to define the rural boundary. Twenty buffer polygons were 
generated for each year (2000–2019) given the number of urban pixels 
change every year, and to ensure that the size of the rural area being 
approximately the same as urban area for each city. Due to dissimilar-
ities in the size of the cities, some adjustments to buffer size were 
required. For example, the rural buffer for Dhaka was 20 km away from 
existing urban cover (Fig. 1) while for Rajshahi it was 15 km. The 
rational regarding the buffer distance variability was that a greater 
distance from the defined urban pixels would provide an increased ac-
curacy in SUHI values (Zhou et al., 2014). Waterbodies in urban areas, as 
well as built-up pixels in rural sites, can potentially influence the ac-
curacy of SUHI intensity calculations (Chakraborty & Lee, 2019; Li et al., 
2020), so these were removed. Finally, the LST values for urban and 
rural areas were extracted for each month/year (day and night), for each 
city. The intensity of SUHI (SUHII), i.e., the difference in mean LST 
between urban and rural areas, was then defined for each city. To 
examine the spatial pattern of SUHII, the pixel-wise difference in mean 
LST was used. 

A number of indices were computed from the highest quality pixels 
of MODIS timeseries 8-day reflectance product. They were: enhanced 
vegetation index (EVI) (Liu & Huete, 1995), otherwise known as 
greenness; normalised difference water index (NDWI) (McFeeters, 
1996); biophysical composition index (BCI) (Deng & Wu, 2012); and 
moisture stress index (MSI) (Rock, Vogelmann, Williams, Vogelmann, & 
Hoshizaki, 1986). The reason for using EVI instead of the most popular 
normalised difference vegetation index (NDVI) is that NDVI is prone to 
saturation (Li et al., 2011). BCI was chosen due to its effectiveness in 
separating impervious surfaces from other urban land cover categories 
(Deng & Wu, 2012). The coefficients utilised in calculating the tasselled 
cap transformation were obtained from Wu, Xiong et al. (2013), and 
were then used to compute BCI. Since waterbodies have specific heat 
capacity and influence both heating and cooling of urban environment 
(Tan, Sun, Huang, Yuan, & Hou, 2021), NDWI was used. The availability 
of soil and plant moisture can also significantly modulate urban thermal 
environment. To understand the effect of moisture on SUHI intensity, 
MSI was employed. Equations used to derive these indices are shown in 
supplementary Table S1. Derived indices were then aggregated at 
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monthly and annual scales. Other potential causative factors identified 
included AOD, population, NTL, VCF and albedo. Since black-sky and 
white-sky albedo are linearly related and provide similar result (Peng 
et al., 2012), only white-sky albedo (WSA) was used. The tree cover 
fraction of annual VCF product (Dimiceli et al., 2015) was also utilised. 

A number of steps were performed to isolate potential factors 
affecting SUHI intensity. Initially, the delta values of each causative 
variable between urban and rural areas (δAOD, δBCI, δEVI, δPOP, δMSI, 
δNDWI, δNTL, δTREE and δWSA) were extracted. Scatterplots were 
produced from the temporally-averaged day and night SUHII of all cities 
(calculated from the annualised mean) and the explanatory variables, 
and were used to explore the variable relationships (supplementary Fig. 
S2). Prior to conducting the correlations, the multicollinearity between 
independent variables was also tested using the variance inflation factor 
(VIF). In this process, all the variables were used to identify the suit-
ability of individual variables and variable combinations. Factors 
exhibiting high VIF were removed, predictors that were linearly un-
correlated were isolated and parameters having a VIP value of <10 (Lin, 
2008) were retained. To determine the temporal relationship between 
each environmental factor and SUHII, twenty samples (2000–2019) for 
each city was used. The Pearson’s correlation coefficient (r) and tests for 
significance at 95 % and 99 % levels were performed. 

The temporal trends of annualised day and nighttime means of SUHII 
over five cities were evaluated using the Mann-Kendall (MK) test 
(Kendall, 1948; Mann, 1945). The slope of the trend was estimated using 
the Theil-Sen slope (Sen, 1968), with a positive value of the slope 
indicating an increasing trend and a negative value denoting a 
decreasing trend. The corresponding p-value was also estimated (at 95 % 
and 99 % significance levels), to indicate whether the observed SUHII 
trend is statistically significant or not. 

Finally, to determine the relative impact of cloud cover on clear-sky 
pixel retrieval, pixel loss due to cloud was also calculated. The data was 
first decoded and then the mandatory QA (MODLAND) scientific dataset 
was clipped using the buffers and cloud cover pixels (value 10) were 
removed from the total pixel count for each image to provide a pixels 
lost/pixels retained percentage. 

3. Results 

3.1. Variability of day and nighttime SUHII 

The average SUHII of the cities is shown in Fig. 2. This indicates that 
the annual daytime SUHII is greatest for Dhaka (2.74 ◦C), followed by 
Chittagong (1.92 ◦C), Khulna (1.27 ◦C), Sylhet (1.10 ◦C) and Rajshahi 
(0.74 ◦C). In contrast, nighttime mean SUHII is greatest for Chittagong 
(1.90 ◦C), with Dhaka second (1.57 ◦C). The lowest nighttime SUHII is 
observed in Sylhet city (0.16 ◦C). The annual average SUHII for day and 
nighttime is positive for all five cities, though the magnitude differs. This 
may be related to the city area and population size of these cities. 

The spatial pattern of annual day and night SUHII is presented in 
Fig. 3. This indicates that SUHII is mainly concentrated in the urban 
core, both during the day and at night. For instance, the main urban core 
of Dhaka experiences values as high as 5 ◦C while SUHII values for 
Chittagong ranges from 2 to 3 ◦C during the daytime. At night, elevated 
temperatures are recorded in the urban core of both cities. 

Inter-annual day, night and day-night SUHII variability are shown in 
Fig. 4. The Dhaka daytime SUHII exhibits a notable increase in mean 
temperature from 2.20 ◦C in 2000 to 3.18 ◦C in 2019. The equivalent 
time period values for Chittagong are 1.80 ◦C and 2.28 ◦C, indicating an 
increase of 0.48 ◦C during that 20-year period. In contrast, the difference 
in SUHII during the day for Khulna, Rajshahi and Sylhet is 0.57, 0.04 and 
0.38 ◦C, respectively, for that period. This suggests that Dhaka has 
experienced the greatest increase in daytime SUHII (0.98 ◦C) whereas 
Rajshahi has the least (0.04 ◦C). In regards the nighttime SUHII, Chit-
tagong has the largest increase (0.52 ◦C) followed by Sylhet (0.34 ◦C), 
Rajshahi (0.25 ◦C) and Dhaka (0.23 ◦C). Surprisingly, Khulna has 
experienced a drop of 0.34 ◦C in nighttime SUHII since 2000. The day- 
night variability is high for Chittagong followed by Rajshahi, while 
Dhaka, Sylhet and Khulna appear to show a subtle variation. This may 
point to narrowing/broadening of the DTR over time (Fig. 4). The 
monthly variation of day and night SUHII, and diurnal range, is shown in 
supplementary Fig. S3. 

Monthly day and night SUHII for the five cities were averaged and 
are shown in Fig. 5. This shows that month-wise day and nighttime 
SUHII varies substantially between the cities. In Dhaka, for example, 

Fig. 1. Average land surface temperature (LST) of 2019 in Dhaka megacity and delineation of urban and rural boundaries; (a) day; (b) night. Black solid polygon is 
Dhaka Metropolitan Development Plan (DMDP) boundary and dashed line is the buffer polygon location. 
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high SUHII values occur in August (3.52 ◦C) during the day, and in 
January (2.16 ◦C) at night. In Chittagong, the daytime maximum SUHII 
takes place in September (3.14 ◦C) while the nighttime maximum occurs 
in January (2.40 ◦C). Khulna experiences mostly positive daytime SUHII 
(except during the months of June and July). At night, the months of 
July to October exhibit negative SUHII. The highest SUHII is seen in 
September (1.52 ◦C) during the day and in March (1.06 ◦C) during the 
night. Positive SUHII dominates during both day and night, with the 
exception being the negative SUHII observed in Rajshahi during August 

nighttime and December daytime. Interestingly, both maximum day 
(3.10 ◦C) and night (1.99 ◦C) SUHII occur during the month of July in 
this city, located in northern Bangladesh. The intensity of SUHII appears 
to vary significantly in Sylhet city since negative SUHII dominates 
during the night as compared to daytime. June records negative day and 
night SUHII, with May having the highest SUHII (1.74 ◦C) during the day 
and during nighttime, and February having the highest SUHII (1.06 ◦C). 
The intensity of daytime SUHI is generally the same, while the nighttime 
intensity varies according to city size, indicating that the day-night 

Fig. 2. (a) Daytime; (b) nighttime surface urban heat island intensity (SUHII); and (c) diurnal range over five Bangladesh cities, averaged over 2000–2019.  

Fig. 3. Spatial pattern of surface urban heat island intensity (SUHII) in five cities, averaged over 2000–2019; (a) day; (b) night.  
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variability of urban temperature is decreasing in the larger cities such as 
Chittagong. 

3.2. Factors associated with SUHII 

The VIF values of the original nine explanatory variables are shown 
in supplementary Table S4. The analysis reveals that three variables (e. 
g., EVI, MSI and NDWI) have high VIF values across all cities. On the 
other hand, BCI shows a linear relationship with variables such as NTL. 
Following further analysis, the results indicate that four cities (Dhaka, 
Chittagong, Khulna and Rajshahi) can be explained by a common set of 
variables while Sylhet cannot (Table 1). A high VIF value is observed 
between δPOP and δNTL for Sylhet, while removing NTL provides 
acceptable VIF values (Table 1). It would be expected that EVI (live 
vegetation or its growth status) and VCF (tree cover per pixel) should 
have a strong association, however this does not appear to be the case. 
Seven variables were identified as free from collinearity issues and were 

used to evaluate the relationship between SUHII and any potential 
drivers. 

Table 2 displays the correlation between SUHII and a number of 
possible driving factors. Results indicate that greenness, as defined by 
the difference in EVI between the urban and rural areas, has a consis-
tently negative relationship with day and nighttime SUHII. This suggests 
that vegetation plays a key role in regulating the surface temperature of 
these cities (with the exception of nighttime in Khulna). A statistically 
significant relationship between daytime SUHII and the urban and rural 
population difference (δPOP) is observed in three cities, and at night in 
Rajshahi. 

BCI appears to be linearly related to other variables in four cities, and 
it shows a significant influence on nighttime temperature in Sylhet. This 
is evidence for the influence of impervious surfaces on temperature. 
Anthropogenic forcing, defined by δNTL, is negatively correlated for 
Dhaka, but shows statistically significant positive relationships for 
Chittagong (both during day and night) and during the day for Khulna 
and Rajshahi. 

The relationship between albedo (δWSA) and SUHII appears to be 
rather inconsistent. For instance, WSA has a significantly positive rela-
tionship with daytime SUHII in Chittagong and Khulna. However, such a 
relationship is negative and mostly weak for the other cities (both day 
and night). The effect of aerosol on temperature is negative during the 
day and nighttime for Dhaka and Chittagong, however other cities show 
a weaker and statistically insignificant relationship. Tree cover, ob-
tained from δVCF, has a weakly positive correlation during day across 
cities, but at night, the relationship is negative for Dhaka and Khulna 
with a much lower correlation coefficient (Table 2). The correlations 
between monthly SUHII and the difference in causative factors also 
show similar results (data not shown). 

Fig. 4. Day, night and day-night inter-annual variability of surface urban heat island intensity (SUHII) in five cities, 2000–2019.  

Fig. 5. Monthly surface urban heat island intensity (SUHII) in five cities averaged over 2000–2019; (a) Day; (b) Night.  

Table 1 
Variance inflation factor (VIF) for explanatory variables.  

Variable Variance Inflation Factor (VIF)  

Dhaka Chittagong Khulna Rajshahi Sylhet 

δAOD 2.177 2.023 1.439 1.321 1.403 
δBCI – – – – 2.464 
δEVI 6.640 5.019 1.790 6.106 3.740 
δPOP 3.570 2.991 1.700 3.432 2.215 
δNTL 2.241 5.541 2.511 6.526 – 
δVCF 1.413 1.204 1.460 1.262 1.349 
δWSA 1.275 2.623 1.743 1.262 3.279  
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3.3. Trends of SUHII 

Annual day and nighttime SUHII trends (obtained via Mann-Kendall 
test) are shown in Table 3. This indicates that the daytime SUHII trend 
appears to be increasing for four of the five cities, with Chittagong, 
Khulna and Rajshahi exhibiting a statistically significant trend. During 
nighttime, however, only Rajshahi has a statistically significant 
increasing trend, and Dhaka, Chittagong and Sylhet show an insignifi-
cantly positive trend. In contrast, Khulna city exhibits a decreasing trend 

in regards nighttime SUHII. 
Monthly SUHII trends are presented in Table 4. Dhaka shows an 

increasing trend during day across all months except July, while at night 
the months of May, July and August show negative trends, though the 
magnitude of the trends differs. Chittagong has an overall positive 
daytime trend (apart from August), but the trend decreases during 
nighttime in May and August. Khulna shows a nighttime negative trend 
for nearly all months (again with the exception of August). Daytime 
SUHII however shows an overall positive trend (apart from July). Raj-
shahi experiences an increasing daytime trend for most months, while at 
night only April shows a decreasing trend. Sylhet, in contrast, exhibits a 
daytime increase, except in June and August. During the night only May 
shows a negative trend. 

3.4. Clear-sky pixel count 

The percentage of LST pixels remaining after removal of defined 
cloud-affected data, but before further processing, is shown in Table 5. 

Table 2 
Pearson’s correlations between annual day and night surface urban heat island intensity (SUHII) and factors across cities.  

Factors Dhaka Chittagong Khulna Rajshahi Sylhet  

Day Night Day Night Day Night Day Night Day Night 

δAOD − 0.372 − 0.213 − 0.325 − 0.429 − 0.142 0.117 0.322 − 0.015 0.089 0.031 
δBCI – – – – – – – – 0.381 0.467** 
δEVI − 0.891* − 0.491** − 0.863* − 0.318 − 0.766* 0.456** − 0.371 − 0.508** − 0.391 − 0.567* 
δPOP 0.919* 0.458 0.718* − 0.135 0.385 − 0.342 0.496** 0.600* 0.370 0.389 
δNTL − 0.364 − 0.140 0.770* 0.451** 0.603* − 0.625* 0.534** 0.407 – – 
δVCF 0.310 − 0.070 0.061 0.099 0.066 − 0.180 0.226 0.154 0.266 0.243 
δWSA − 0.149 − 0.286 0.515** 0.154 0.626* − 0.795* − 0.299 − 0.226 − 0.115 − 0.388  

* Significant at 99 %. 
** Significant at 95 %. 

Table 3 
Annual day and nighttime trend of SUHII in five cities (◦C/y).  

Time Dhaka Chittagong Khulna Rajshahi Sylhet 

Daytime 0.062 0.046* 0.032* 0.020** 0.017 
Nighttime 0.012 0.007 − 0.021 0.012** 0.015  

* Significant at 99 %. 
** Significant at 95 %. 

Table 4 
Monthly day and night trend of SUHII for five cities (◦C/y).  

Mon Dhaka Chittagong Khulna Rajshahi Sylhet  

Day Night Day Night Day Night Day Night Day Night 

Jan 0.060* 0.023** 0.033* 0.010 0.020 − 0.026* 0.048* 0.006 0.013 0.008 
Feb 0.067 0.037* 0.029 0.015 0.026 − 0.003 0.014 0.003 0.003 0.011 
Mar 0.063* 0.029 0.042 0.024 0.025 0.002 0.016 0.011 0.050 0.038* 
Apr 0.090* 0.012 0.092* 0.016 0.035 − 0.017 0.048** − 0.003 0.051** 0.045 
May 0.025 − 0.015 0.037 − 0.018 0.032 − 0.025 0.032 − 0.046* 0.082** − 0.005 
Jun 0.093 0.032 0.119 0.044 0.056 − 0.001 0.081** 0.068** − 0.153 0.144** 
Jul − 0.022 − 0.018 0.099 0.051 − 0.098 − 0.034 0.001 0.012 0.072 0.000 
Aug 0.006 − 0.010 − 0.012 − 0.091 0.129* 0.024 0.006 0.008 − 0.066 0.001 
Sept 0.071** 0.010 0.099* 0.011 0.064* − 0.025 0.044 0.016 0.015 0.042** 
Oct 0.059* 0.010 0.069* 0.036** 0.061* − 0.008 0.037 0.030** 0.014 0.019 
Nov 0.049* 0.028* 0.061 0.019 0.024 − 0.038* − 0.014 0.029* 0.016 0.015 
Dec 0.039* 0.010 0.025 0.013 0.024** − 0.046 − 0.008 0.012* 0.004 0.005  

* Significant at 99 %. 
** Significant at 95 %. 

Table 5 
Percentage of pixels (%) remaining after removal of cloud–affected pixels.  

Period Dhaka Chittagong Khulna Rajshahi Sylhet  

Rural Urban Rural Urban Rural Urban Day Night Day Night 

Annual day 75.9 72.9 73.9 74.8 75.9 73.9 75.6 75.7 73.8 71.6 
Annual night 74.1 73.9 69.6 70.5 75.0 74.8 77.2 77.6 72.1 71.9 
Pre-monsoon day 91.2 90.5 87.5 89.0 93.0 91.6 94.2 94.8 85.4 84.1 
Pre-monsoon night 94.4 93.5 95.4 95.3 94.5 94.4 96.7 97.1 85.4 85.7 
Monsoon day 37.4 28.6 34.4 35.7 36.3 30.0 34.8 33.8 34.9 29.1 
Monsoon night 28.9 29.3 15.4 18.1 31.0 30.4 35.4 36.5 28.9 28.0 
Post-monsoon night 98.2 98.0 96.5 97.4 98.8 99.1 97.8 98.2 98.5 98.5 
Post-monsoon night 97.1 96.5 95.7 95.6 98.1 97.9 99.0 99.0 98.7 98.6 
Winter day 96.8 97.7 97.8 97.8 96.4 98.0 96.6 97.6 97.6 97.9 
Winter night 98.6 98.7 98.7 98.8 98.7 98.7 98.7 98.7 98.7 98.7  
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Further statistics for each aggregated period are contained in supple-
mentary Table S5 which illustrates the impact of cloud cover on the base 
diurnal LST value counts, annually and seasonally, for the five cities. 
There is minimal loss of pixels in the post-monsoon and winter periods, 
with > 95.6 % valid pixels recorded over the city areas during both day 
and night. The counts during the pre-monsoon season indicate that most 
urban and rural areas recorded average valid pixel counts of approxi-
mately 90 %, although Sylhet, located in a topographically elevated 
region in the north-east of the country recorded 85 % valid pixels during 
both day and night. The monsoon period, characterised by heavy rainfall 
and extensive cloud cover, shows average valid pixel counts for all cities 
of 35.6 % for rural day time, 31.4 % for urban daytime, 27.9 % for rural 
nights and 28.5 % for urban nights. Chittagong, the only city located 
next to the ocean, recorded 34.4 %–35.7 % for daytime (on par with 
other cities) but a very low 15–18.1 % for monsoon nights. This may be 
the result of oceanic influences during nighttime. Using the term clear- 
sky pixel as an indication of individual LST robustness is appropriate, 
however the term is questionable if used during monsoonal periods 
when a significant reduction in valid pixels may impact areal LST 
calculations. 

4. Discussion 

A rapid growth in population and the associated urban areas are 
recognised as significant and active agents of local temperature change 
(Chapman, Watson, Salazar, Thatcher, & McAlpine, 2017), especially in 
developing countries. Urbanisation, in combination with global warm-
ing, is expected to increase heat-related mortality (Mora et al., 2017). 
Cities in developing countries typically have large populations and 
generally lack the resources to deal with the consequences of rapid ur-
banisation (Moretti, 2014), so a consistent rise in temperature in these 
areas has the potential to negatively impact the lives and livelihood of 
millions (Huq, 2001). Evaluating the spatiotemporal pattern of urban 
warming, as well as identifying possible causal factors, is the first step in 
the development of possible adaptation measures (Ren et al., 2011). This 
process appears to be currently lacking for the cities of Bangladesh. 

No comparable studies are available to validate the SUHII variation 
observed in the current analysis, however the Chakraborty and Lee 
(2019) study has provided an opportunity to compare results. For 
example, this work found that the annual day and nighttime SUHII 
values were 2.74 and 1.57 ◦C for Dhaka, while their study reported 1.60 
and 1.03 ◦C, respectively. Likewise, SUHII values for other cities tended 
to vary between the two studies though the spatial patterning was very 
similar. The strongest SUHII was mainly confined to the urban core 
during both day and night (Fig. 3), which may be related to high pop-
ulation density as well as other sociocultural factors such as income and 
access to transportation (Chakraborty et al., 2020). Surface roughness of 
the urban areas (Hu et al., 2016) could also be important. A comparison 
of monthly SUHII values across the cities revealed some similarities in 
the observed variation. Observed discrepancies in day/night SUHII 
values may have resulted from the data and methods used (Yao, Wang, 
Huang, Niu, Chen et al., 2018). For instance, Chakraborty and Lee 
(2019) used both Aqua (MYD) and Terra (MOD) LST datasets from 2003 
to 2018 with a calculated LST error of ≤3 K. MYD data is collected 
during overpasses at 1.30 pm and 1.30 am in contrast to the 10.30 am 
and 10.30 pm collection time for MOD. The current study utilised 20 
years (2000–2019) of data from only the Terra sensor, with a defined 
LST error of ≤2 K. Previous studies have shown that variations in the 
MODIS quality flag use can significantly impact the estimation of SUHII 
(Lai et al., 2018). The number of samples obtained can have a significant 
effect (de Faria Peres, de Lucena, Rotunno Filho, & de Almeida França, 
2018), and the environmental condition of the overpass area also affects 
SUHII characterisation (Kerr, Lagouarde, Nerry, & Ottlé, 2004). Differ-
ences in the delineation of the defined urban extent is another possible 
area of variation. As noted earlier, city-specific SUHII studies of 
Bangladesh are virtually non-existent, however previous studies with 

selected Landsat data (Kant et al., 2018; Roy et al., 2020) had indicated 
an increased daytime SUHII, corroborating the current findings. The 
impact of land use change on LST produced a similar outcome for Raj-
shahi (Kafy et al., 2020) and Dhaka (Rahman et al., 2020; Trotter et al., 
2017). It is, therefore, reasonable to say that this work has provided 
important baseline information on monthly and annual intensity of 
SUHI, during the day and night, and that larger cities appear to have 
greater variation than smaller cities. This contrasts with the findings of 
Peng et al. (2012). 

The temporal evolution of SUHII indicated that the warming trend 
was intensifying over time, particularly in Dhaka and Chittagong 
(Fig. 4). Studies undertaken on global to local scales have also observed 
this phenomenon; a response to increased anthropogenic forcing and 
heterogeneous urban mosaics irrespective of climatic zone (Alexander, 
2021; Bowler, Buyung-Ali, Knight, & Pullin, 2010; Coseo & Larsen, 
2014; Deilami, Kamruzzaman, & Liu, 2018; Hu et al., 2016; Lai et al., 
2018; Li et al., 2020; Peng et al., 2019; Quan, Zhan, Chen, Wang, & 
Wang, 2016; Raj et al., 2020; Yao, Wang, Huang, Niu, Liu et al., 2018; 
Zhou et al., 2014). Nocturnal SUHII dominated in the coastal city of 
Chittagong (Fig. 4), a result similar to Jauregui (1997). This nighttime 
feature may be associated with significant warming of the Indian Ocean 
and the Bay of Bengal over the last few years (Panmei, Divakar Naidu, & 
Mohtadi, 2017), as well as differential, evaporative cooling due to 
impervious surfaces (Ojeh, Balogun, & Okhimamhe, 2016), surface 
roughness related vertical mixing (Hu et al., 2016) and differences in 
other physical processes related to the release of anthropogenic heat 
(Wang et al., 2017). 

One notable feature observed is the change in diurnal range, both at 
the annual and the monthly scales, over the cities. Chittagong had a 
strong narrowing in annual DTR, followed by Rajshahi (Fig. 4). At the 
monthly scale, however, the narrowing of DTR was more pronounced 
during the winter months (December–February) than during the 
monsoon, similar to that observed in data recorded at stations in 
Bangladesh (Abdullah et al., 2021) and with downscaled climate data 
(Mourshed, 2011). Maximum land temperature tends to occur in the 
afternoon and minimum temperature in the early dawn, so TERRA may 
have underestimated DTR in this work. Other MODIS sensors (such as 
Aqua) which acquire data during midday and early morning, may be 
used to corroborate the DTR variability in the study area. Urban 
expansion affects the minimum temperature to a greater degree than 
maximum temperature, and this reduction in day-night temperature 
variability in the dry season has been previously observed (Argüeso 
et al., 2014). Huang et al. (2016) noted that the amplitude of annual 
daytime LST is enhanced due to urbanisation in China, resulting in a 
narrower DTR in Beijing than in Shanghai. Hence, the impact of UHIs on 
annual temperature cycle (ATC) is warranted. The temporal fluctuation 
of SUHII can also be associated with rapid land cover changes and crop 
phenology (Quan et al., 2016), multiple reflection by 3-D urban struc-
tures, a reduction of evapotranspiration due to an abundance of 
impermeable surfaces (Wang, Berardi, & Akbari, 2016) and differential 
cooling rates during the early evening transition period (Hu et al., 2016). 
As far as land cover change is concerned, the large cities of Bangladesh 
have probably experienced a greater rate of change than most other 
cities on the globe, a rate primarily driven by high rural-urban migration 
(see Kant et al., 2018). 

The correlation between mean day and nighttime temperature was 
plotted to understand whether factors affecting temperatures during the 
daytime were different to nighttime (Fig. 6). The analysis showed a 
statistically significant correlation (R2 = 0.50; p = 0.00) across cities, 
suggesting that drivers influencing SUHI intensity were generally iden-
tical (Table 2). This finding contrasts with that of Peng et al. (2012) who 
reported no correlation between annual day and nighttime SUHII, and 
that drivers seemed to vary between the different global cities. Causal 
factors associated with the genesis of SUHII did vary in strength in this 
study, however population, imperviousness and lack of vegetation 
(greenness or live vegetation) appeared to be strong contributors to the 
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rise of urban temperature. 
An analysis of potential collinearity between factors indicated that 

NDWI, MSI and EVI were linearly dependent (Table S3), possibly due to 
similar moisture and/or wetness characteristics. The use of a common 
spectral region (i.e., near infrared) to derive these indices may also be 
involved. Imperviousness, represented by the biophysical composition 
index (BCI), was also associated with population in four of the cities, but 
not in Sylhet. The variables with strong linear relationships were 
removed from the analysis resulting in the explanatory variables having 
a much smaller value than the VIP threshold value of <10 (Table 1). 

Human populations play a major role in shaping cities and influ-
encing the thermal environment of urban areas, so increasing popula-
tion numbers both expand city size and are accountable for the rapid 
transformation of natural land cover to impervious surfaces. Substitut-
ing BCI with population does not necessarily indicate that the degree of 
imperviousness contributes less to SUHII. Rather, the population num-
ber or density indirectly reflects the development intensity of an area 
and the complexity of the urban surface. For instance, a greater popu-
lation means a greater number of sociocultural elements which can 
directly (by metabolic heating) or indirectly (by anthropogenic heat 
flux) affect a city’s surface temperature (Rizwan, Dennis, & Chunho, 
2008). In contrast, the prevalence of impermeable materials resulting 
from an increasing population, such as buildings, streets and other 
man-made features, enhance thermal admittance and high heat storage 
and lead to a modification in local energy balance (Mirzaei & Haghighat, 
2010; Oke, 1982; Wang et al., 2016). Thus, these two factors either in 
combination, or singly, result in higher temperatures. Population dif-
ferentials between urban and rural locations (δPOP), exhibited strong 
influence on the daytime SUHII for Dhaka (r = 0.92), Chittagong (r =
0.72) and Rajshahi (r = 0.50) which is in accord with studies conducted 
in Asian cities (Sakakibara & Matsui, 2005; Tran et al., 2006; Wu & 
Zhang, 2018) but contrasts with Peng et al. (2012). The negative rela-
tionship between nighttime SUHII and δPOP in the coastal cities of 
Chittagong and Khulna was likely to be attributed to the effect of sea 
breezes (Santamouris et al., 2017). The association between δBCI and 
temperatures during day and night was positive for Sylhet (Table 2), 
suggesting biophysical composition, between urban neighbourhoods, 
contributed positively to SUHII (Guo et al., 2015; Song & Wu, 2016; 
Wang et al., 2017). Despite differences in the nighttime lights between 
urban and rural (sub-urban) (δNTL) areas showing a positive effect on 
SUHII on global and regional scales (Li et al., 2020; Raj et al., 2020; Yao, 
Wang, Huang, Niu, Liu et al., 2018), its effect on day and nighttime 
temperature was negative for Dhaka (Table 2), although a strong to 
moderate association can be seen for the other cities, except for Khulna 
at night (r = − 0.625). This reinforces the idea that human populations, 

along with enhanced socioeconomic activities, are primarily responsible 
for local warming, especially in Bangladesh cities and that factors con-
trolling SUHII can vary between cities, even if they are within the same 
country or continent, a fact observed by other researchers (Alexander, 
2021). 

Vegetation, characterised by δEVI, showed a consistently negative 
relationship with day and nighttime SUHII, with the exception of Khulna 
during the night (Table 2). Previous studies have emphasised the role of 
greenness in moderating urban temperature, especially during daytime 
(Chakraborty & Lee, 2019; Chen et al., 2017; Li et al., 2020; Peng et al., 
2019; Quan et al., 2016; Raj et al., 2020; Yao, Wang, Huang, Niu, Liu 
et al., 2018; Zhou et al., 2014). The cooling potential of an area is usually 
controlled by differences in evaporative cooling, variations in land 
use/cover, the absence of moisture and the lack of vegetation (Charabi & 
Bakhit, 2011; Ojeh et al., 2016; Shojaei et al., 2017). The observed 
relationship between δEVI and SUHII is therefore noteworthy, particu-
larly in the context of Bangladesh cities. Green coverage (tree cover 
fraction) displayed inconsistent results, albeit with much lower corre-
lations, apart from a nighttime negative relationship in Dhaka and 
Khulna (Table 2). This may be related to varying phenological processes 
(Kabano et al., 2021), an absence of shading (Giridharan & Emmanuel, 
2018), seasonal variation in the LST-vegetation relationship (Qiao, Tian, 
& Xiao, 2013) and small signal of δVCF due to noise introduced by 
urban-rural differentials (Chakraborty et al., 2020). As a typical urban 
area in Bangladesh has a low tree density and is characterised by highly 
scattered vegetation patches (Rahman, Rahman, & Momotaz, 2019), 
any existing tree coverage may be of little help in promoting convection 
cooling. The cooling effect of vegetation is also dependent on its type. 
For instance, evergreen vegetation is substantially more effective in 
providing year-round benefits than deciduous vegetation (Chun & 
Guldmann, 2018). In contrast, a dispersed distribution of vegetation 
provides little cooling benefit (Quan et al., 2016), so strategically 
placing them in heat-exposed areas is more effective than arbitrarily 
aiming for a high percent of green cover in cities (Zölch, Maderspacher, 
Wamsler, & Pauleit, 2016). Although precise information on greenspace 
use (either as urban forest or parks) is sparse in Bangladesh, a previous 
study has shown that the existing per capita green space within a large 
city is very low (Jaman, Zhang, & Islam, 2020). Since areas of low LST is 
a typical characteristic of greenspace, these are usually the target for 
development during the urbanisation process (Yang, Sun, Ge, & Li, 
2017), and a substantial reduction of greenspace in urban areas has been 
noted, intensifying the urban temperature profile (Kant et al., 2018). 
This practice is also seen elsewhere, with negative consequences for the 
local and regional thermal environment (Yang et al., 2017). 

The association between albedo and SUHII was mostly negative, 
though daytime SUHII showed a strong positive relationship for Chit-
tagong and Khulna (Table 2). The negative correlations may have 
stemmed from surface heat storage and the energy exchange capacity of 
urban features, as well as the lack of vegetation/greenness (Peng et al., 
2012; Quan et al., 2016; Shojaei et al., 2017). While a positive rela-
tionship was expected between SUHII and δAOD (the difference of AOD 
between the urban and rural areas), it was found that the correlations 
were negative for Dhaka and Chittagong, both during the day and at 
night, whereas a weak relationship was observed for other cities such as 
Sylhet. While a similar finding was noted by Raj et al. (2020) for major 
Indian cities, the seasonal distribution of aerosol loading seems to have 
impacted on day and night SUHII in the urban areas (Pandey et al., 
2014). 

Annual day and nighttime positive trends in SUHII over all four cities 
(apart from Khulna at night) are indicative of urban area warming in 
Bangladesh (Table 3). This is consistent with the results of Raj et al. 
(2020). Although monthly SUHII trends varied, positive trends were 
observed during the dry months of December to February and the 
transitional month of November (Table 4). This highlights the impact of 
global warming (Giridharan & Emmanuel, 2018) and the physical pro-
cesses associated with SUHI development taking place within cities 

Fig. 6. Relationship between annual mean day and nighttime SUHII 
across cities. 
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(Wang et al., 2017). 
Some limitations to this study should be noted. Firstly, only remotely 

sensed variables were used to identify potential controlling factors of 
SUHII over Bangladesh cities. The inclusion of background climate (Sun, 
Li, Yang, & Chen, 2019), urban planning indicators (Guo, Zhou, Wu, 
Xiao, & Chen, 2016), landscape metrices (Peng, Hu, Dong, Liu, & Liu, 
2020), black-sky albedo (Oleson et al., 2003) and waste heat informa-
tion (Rizwan et al., 2008) could make future work more robust, as these 
variables can have a marked impact on land surface temperature. Since 
SUHII has strong diurnal and seasonal variations, characterising it at 
diurnal and seasonal scales would also be of great value. The two MODIS 
sensors (Aqua and Terra) record data four times a day, therefore, 
characterising SUHII based on the combination of the two sensors may 
provide a more accurate estimate of SUHII (Lai et al., 2018). Hu et al. 
(2016) has argued that remotely sensed LST overestimates the surface 
temperature of horizontal features and underestimates the surface 
temperature of vertical features in an urban area, so the resulting rep-
resentation of the actual surface temperature may be poor. To overcome 
this estimation issue, the use of in-situ instrumentation is vital in 
providing true measurements of UHIs. Finally, the issue of reduced pixel 
count values (due to reduced clear sky conditions) is observed most 
notably in the monsoon period in Bangladesh, and hence the impact on 
LST and derived intensity values is most pronounced in this season. In 
general, the better the clear-sky conditions, the lower will be the missing 
pixel percentages (i.e., the greater the percentage of valid pixels). It can 
be assumed that the LST values recorded with 100 % valid pixels will 
approach the true LST climatology. Study using microwaves to remove 
the influence of cloud cover indicated that: i) solar radiation during the 
day in clear-sky situations results in higher LST values (a generally 
positive bias); while ii) during the night it is generally negative because 
of increased radiative cooling (Ermida et al., 2019). The use of in-situ 
instrumentation can also be used in this case to determine the validity 
of LST measurements. 

Despite these limitations, this study provided a greater understand-
ing of the local temperature variation within the large cities of 
Bangladesh and provides further information for developing possible 
mitigation measures. 

5. Conclusion 

To the best of our knowledge, this is the first study of its kind to 
characterise SUHII over large cities in Bangladesh, incorporating 20 
years of quality-controlled, day and night, MODIS LST data, and a se-
lection of causal factors. A buffering technique was employed to 
generate a rural boundary at a defined distance from the existing urban 
areas and SUHII was determined as the difference between these two 
areas. The Pearson’s correlation was used to isolate those factors 
affecting day and night SUHII and MK tests were used to examine the 
temporal trends. Analysis indicated that the magnitude of annual SUHII 
was high for Dhaka (2.74 ◦C) and Chittagong (1.92 ◦C) during the day, 
however at night Chittagong had the largest magnitude (1.90 ◦C) fol-
lowed by Dhaka (1.57 ◦C). Day and nighttime intensities appeared to be 
increasing, causing a narrowing of diurnal temperature range (DTR). 
Monthly analysis revealed that SUHII was greater (with few exceptions) 
and highly pronounced during the dry months than during wet months. 
An assessment of causal factors revealed that population (in terms of city 
size and surface cover), lack of greenness and anthropogenic forcing 
were the main factors affecting the temperature of Bangladesh cities. A 
trend assessment indicated that daytime SUHII over four out of five 
cities was increasing, while at night three cities were experiencing sta-
tistically insignificant positive trends, and the nighttime trend in Khulna 
city was decreasing. Monthly trend statistics varied significantly 
depending on the city, though an increasing SUHII trend in daytime was 
more pronounced, highlighting significant thermal variations present in 
city areas. 

The findings of this study are expected to provide important 

information for further work given that global warming is likely to 
exacerbate urban heat island effects in the near future. This study sup-
ports progress towards the UN’s sustainable development goals (SDGs) 
and the local climatic information detailed in this study could help in the 
development of area-specific mitigation measures. 
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