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Abstract: Artificial intelligence (AI) techniques have been successfully adopted in predictive modeling
to capture the nonlinearity of natural systems. The high seasonal variability of rivers in cold weather
regions poses a challenge to river flow forecasting, which tends to be complex and data demanding.
This study proposes a novel technique to forecast flows that use a single-input sequential adaptive
neuro-fuzzy inference system (ANFIS) along the Athabasca River in Alberta, Canada. After estimating
the optimal lead time between four hydrometric stations, gauging data measured near the source
were used to predict river flow near the mouth, over approximately 1000 km. The performance of
this technique was compared to nonsequential and multi-input ANFISs, which use gauging data
measured at each of the four hydrometric stations. The results show that a sequential ANFIS can
accurately predict river flow (r2 = 0.99, Nash–Sutcliffe = 0.98) with a longer lead time (6 days) by
using a single input, compared to nonsequential and multi-input ANFIS (2 days). This method
provides accurate predictions over large distances, allowing for flow forecasts over longer periods
of time. Therefore, governmental agencies and community planners could utilize this technique to
improve flood prevention and planning, operations, maintenance, and the administration of water
resource systems.
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1. Introduction

The modeling of large watersheds is challenging because of the complexity of hydroclimatic
regimes due to intra- and inter-basin variations in topography, climatic patterns, land cover, basin
drainage density, soil drainage capacity, and other associated factors. For example, simulated flows
along the mainstream of rivers located in cold weather regions are usually more sensitive to climate data
inputs, while in other cases, where the runoff cycle is interflow-dominated, the hydrologic response is
more sensitive to the regional topography [1].

The Athabasca River Basin (ARB) has been subject to several hydrological studies over the past
decade because of the increasing population and industrial/agricultural activities that this region has
been experiencing over the past 40 years. There is particular interest in understanding the variability
in the Athabasca River flow, because it represents an important resource for oil and gas extraction and
operational processes, as well as agricultural irrigation. Changes in the magnitude of river flow and
seasonality may lead to decreases in water supply, which will impact natural ecosystems, including
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freshwater species and streamside ecosystems that contribute to the rich floodplain forests [2–4].
These changes may also force alterations to water management regulations for multi-objective
reservoirs [5–7]. Therefore, it is important to understand the temporal and spatial variability of
current and future hydrologic regimes to provide for sustainable water resource management and
monitoring programs.

River flow forecasting models can generally be divided into two main categories: process-driven
models and data-driven models [8–12]. The former attempts to simulate the physical processes
in a mathematical fashion within the watershed system, combining empirical and physical-based
equations. Data-driven models are also called “black box” in nature, as they do not require knowledge
of the underlying processes; they are solely based on empirical equations calibrated to field data.
The main difference between process-driven and data-driven models is the representation of the
governing processes and their data necessity. Toth et al. [13] employed a physical-based model called
WATFLOOD to investigate the Athabasca River flow variability. Historical station-observed discharge
records, along with temperature, precipitation, and topography data collected between 1965 and
1989, were used in this study as model inputs. The results showed that the estimated flow of the
Athabasca River at Fort McMurray, in terms of the Nash–Sutcliffe coefficient, is 0.72 for model validation.
A variable infiltration capacity (VIC) model implemented with the global circulation model (GCM) was
used by Eum et al. [1] to forecast water flow along the Athabasca River. Inputs between 1979 and 2010
for discharge, climate, and vegetation–soil–runoff data were considered. The most accurate model was
found to have a Nash–Sutcliffe coefficient equal to 0.84 and an RMSE equal to 166 m3/s. Rood et al. [2]
opted for a simple interpolation approach to model the Athabasca River flow, using discharge data
between 1957 and 2011 for Jasper, Hinton, Windfall, Athabasca, and Fort McMurray gauging stations.
The model efficiency coefficients showed a model accuracy of 0.79. The physical-based model soil and
water assessment tool (SWAT) was used by Shrestha et al. [14] to assess climate change impacts on
freshwater resources for the ARB. The authors included snowpack, elevation band, groundwater, soil
drainage, soil–vegetation slope, and pond/reservoir hydraulic conductivity data to forecast flow at
Fort McMurray. A 0.91 Nash–Sutcliffe coefficient was estimated, which meant that this model was the
most accurate approach in the existing literature, to our knowledge. Eum et al. [5] opted for VIC as
their hydrological modeling approach. The authors considered hydrometric data between 1985 and
1997 for model calibration and the 1998–2010 period for model validation. Major data inputs for this
model included: climate data (temperature and precipitation), snow accumulation, snowmelt, potential
infiltration into frozen ground, land cover, and three different soil drainage layers. This study led to
a Nash–Sutcliffe coefficient equal to 0.74 for the validation set for the Athabasca River at Fort McMurray.
Similar results are reported by Droppo et al. [15]; the authors adopted the VIC model in an analogous
fashion to Eum et al. [5], using climate (temperature and precipitation), snow accumulation, snowmelt,
potential infiltration into frozen ground, land cover, and three different soil drainage layer data to
perform flow forecasting of the Athabasca River at Fort McMurray. The Nash–Sutcliffe coefficient for
this study was found to be 0.74, which is similar to the Eum et al. [5] study.

Even though physical-based models can provide a wider understanding of the separate
hydrological processes that govern the watershed as a whole, data inputs may often be unavailable,
expensive, and time consuming to collect. Moreover, some variables might still need to be obtained
through model calibration. Thus, physical-based models can be difficult to operate and implement.
Meanwhile, real-time forecasting can be simpler to manage by using data-driven models because
sophisticated physical models often need a large amount of input data, potentially long computational
times for model calibration, and skilled professionals to properly use the appropriate software.
Data-driven models might be more suitable for understanding the underlying physical mechanisms
that are not fully understood by physical-based models and in the case where input and output data are
sufficiently available to assess the input–output relationship, while bypassing the physical explanation
of their dependence [10].
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This study adopts the adaptive neuro-fuzzy inference system (ANFIS) with different methods and
compares the results with the existing literature to understand if it is possible to employ a data-limited
modeling approach that can accurately forecast daily water flow at Fort McMurray. The ANFIS has been
largely used in the literature for streamflow forecasting worldwide, primarily in mild and temperate
areas. Anusree and Varghese [16] compared the performance of the ANFIS, artificial neural networks
(ANN) and multiple nonlinear regression (MNLR) for predicting daily flow at the outlet of Karuvannur
River Basin, India. The results showed that the ANFIS model predicts daily flow more accurately
compared to the ANN and MNLR models. Sabzi et al. [17] investigated how data preprocessing
and data mining techniques can improve the accuracy of streamflow predictive models, such as
autoregressive integrated moving average (ARIMA), ANN, a hybrid model of ANN and ARIMA
(ANN–ARIMA), and the ANFIS. The authors concluded that the ANFIS model achieved a superior
streamflow prediction performance overall. Dariane and Azimi [18] successfully combined two ANFIS
methods: subtractive (sub)-ANFIS and fuzzy C-means (FCM)-ANFIS to forecast streamflow in two
sub-basins of the Urmia Lake Basin, which is located within two Azerbaijan provinces in northwest
Iran. Poul et al. [19] adopted multi-linear regression (MLR), ANN, the ANFIS, and k-nearest neighbors
(KNN) to predict the monthly flow in the St. Clair River between the US and Canada. The authors
demonstrated that the performances of three nonlinear models of ANN, the ANFIS, and KNN were
highly satisfying and that among them, the ANFIS model was superior. Ehteram et al. [20] used the
ANFIS to predict the Aidoughmoush monthly streamflow in Iran. Their results demonstrated the high
capability of the ANFIS in capturing the variability in streamflow based on different climatic indices
inputs. The literature demonstrated that the ANFIS generally would perform more accurately than
ANN for river flow forecasting. In fact, the ANFIS can overcome the disadvantages of ANN models,
such as the disregard for data-related uncertainty, which leads ANN models to correlate inputs to
outputs using a strict if–then set of rules. At the same time, ANN models are very efficient in adapting
and learning. By using the learning capability of ANN and introducing ambiguity in the data inputs
by fuzzification, the ANFIS can automatically generate fuzzy if–then rules and optimize its parameters
from mathematical algorithms. More details regarding the ANFIS is provided in the Materials and
Method section.

Three different methods were adopted in this study using the ANFIS: “Nonsequential”,
“Sequential”, and “Multi-input”. The “Nonsequential ANFIS” uses flow data inputs from one
station upstream to predict river flow at the station of interest located downstream. The “Sequential
ANFIS” uses gauging data collected near the source to sequentially predict flow at different stations
downstream. The “Multi-input ANFIS” simultaneously uses multiple gauged flow data located
upstream to predict flow at the downstream station of interest.

Existing hydrological models for the ARB usually require a large amount of data in the form of
explanatory variables for calibration. Moreover, physical hydrological models are often expensive and
necessitate expert personnel in order to properly function. This study proposes a novel application of
the ANFIS for streamflow forecasting in cold weather regions using a data-limited modeling approach
that can accurately forecast daily water flow over an extended area.

2. Materials and Methods

2.1. Study Area and Data Source

The Athabasca River Basin is approximately 159,000 km2 and it represents about 24% of Alberta’s
landmass. The Athabasca River is the second largest river in Alberta and its average flows are
2.79 × 109 m3 at Jasper, 1.36 × 1010 m3 at Athabasca, and 2.09 × 1010 m3 at Fort McMurray, per year.
The river originates at the Columbia Glacier in Jasper National Park, flowing northeast across Alberta
for over 1300 km into Lake Athabasca (Figure 1). The upper reaches of the Athabasca River are
located within a mountainous topography characterized by alpine, sub-alpine, and montane ecoregions.
This area is historically significant as a waterway for First Nations and the fur trade, as well as the
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mapping of western Canada. For this reason, the portion of the Athabasca River located within Jasper
National Park has been designated a Canadian Heritage River. Industrial developments such as forestry,
open pit coal mines, limestone quarries, and growing agricultural areas are located in the middle
portion of the Athabasca River Basin. The lower reaches of the Athabasca River begin at Fort McMurray
and finish with the confluence of the Peace and Athabasca rivers with Lake Athabasca, forming a vast
wetland called the Peace–Athabasca delta. This is known as one of the world’s most ecologically
significant wetlands and has been designated as a Ramsar Convention wetland and a United Nations
Education, Scientific and Cultural Organization (UNESCO) World Heritage Site [21,22]. The lower
portion of the Athabasca river basin has undergone an extensive urban and industrial development
over the past 40 years due to the extraction of energy resources, primarily oil and gas. Here, surface
water assessment is crucial to understand what impact this development is having on the area, because
the oil and gas industry relies on the water uptake from the Athabasca River for operational purposes.
In addition, the growing energy sector results in specific land uses that influence surface water quality
and, subsequently, affect settlements and a variety of people who live along the river.
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Figure 1. Area of study inclusive of the four gauging stations used for data acquisition. The image
shows the Athabasca River from source to Fort McMurray, which is located near the mouth.

Generally, the Athabasca River flow is influenced by the large variations in climatic conditions
over the year, with long, cold winters and short, warm summers. Near the source of the river in Jasper,
the months with the lowest average high temperature are December and January (−6 ◦C) while the
warmest month is July (21 ◦C). The average precipitation is highest in July (69 mm) and lowest in April
(29 mm). In Fort McMurray, closer to the mouth of the river, the month with the lowest average high
temperature is January (−12.2 ◦C) while the warmest month is July (23.7 ◦C). The average precipitation
is highest in July (80.7 mm) and lowest in January (0.4 mm). In cold regions, climatic conditions dictate
a river’s water sources: there is no contribution of precipitation and snowmelt during the winter, while
an abundant rainfall–runoff and snowmelt occur during spring and summer [23]. The large annual
variability of water systems in cold weather regions represents a challenge in hydrological modeling.
Thus, a data-driven modeling technique that can capture such variability, and bypasses the need to
model the complex underlying hydrologic processes governing the flow at Fort McMurray, is selected.

Fort McMurray is the largest urbanized center in the Regional Municipality of Wood Buffalo.
This area draws attention from around the world as the residential and commercial focal point of
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Canada’s oil sands industry. The Regional Municipality of Wood Buffalo counts 111,687 people over
66,361 km2, where approximately 82,724 people live in Fort McMurray [24,25]. This area is of global
significance, as it represents the third largest oil deposit in the world. Although its significance has been
recognized for decades, the economic and technological conditions necessary for commercial production
have only been recently developed. Moreover, the strong demand for oil and gas, the population
and economic growth around the community of Fort McMurray, and the tension between industrial
development and environmental protection have attracted attention. Oil sands development requires
large amounts of water and energy; the current surface water intake is two to five barrels of water to
produce one barrel of oil by mining. The industrial processes used, and the large scale of oil sands
development, can result in negative impacts on the aquatic environment if deliberate action is not
taken to protect these ecosystems [26–28].

The historical average daily flow data from 1971 to 2014 were downloaded from the Water
Survey of Canada (WSC) at four stations: Jasper (07AA002), Hinton (07AD002), Athabasca (07BE001),
and below Fort McMurray (07DA001) [29]. These locations were selected based on the data consistency
and completeness. Table 1 provides general information regarding the four gauging stations used
in this study to calibrate and validate the models. To forecast flows at Fort McMurray, antecedent
flows at Jasper, Hinton, and Athabasca, which are located along the Athabasca River, were used as
independent variables. Two sets of calibration–validation data were selected to forecast river flow at
Fort McMurray: (1) data between 1971 and 2000 were used to calibrate the models, while data from
2001 to 2014 were used for model validation and (2) data from odd years (i.e., 1971, 1973, 1975, . . . ,
2013) were used to calibrate the models, while data from even years (i.e., 1972, 1974, 1976, . . . , 2014)
were used for model validation. The results of these two different approaches should help to detect
possible bias in the calibration data.

Table 1. Summary of the information for the four gauging stations used to gather hydrometric data
along the Athabasca River for model calibration and validation.

Station Name Station ID Latitude Longitude Drainage Area (km2)

Athabasca River near Jasper 07AA002 52◦54′36” N 118◦03′31” W 3870
Athabasca River at Hinton 07AD002 53◦25′27” N 117◦34′09” W 9760

Athabasca River at Athabasca 07BE001 54◦43′19” N 113◦17′16” W 74,600
Athabasca River below Fort McMurray 07DA001 56◦46′49” N 111◦24′07” W 133,000

2.2. Methods

This study focuses on developing a hydrological model to forecast river flow using different
methods to the ANFIS, a method that has been successfully used in hydrologic modeling because
of its high capability in representing nonlinear natural systems [16–20,30–33]. The disadvantages
of the ANFIS often include a large amount of input data, a long computational time and memory,
and mathematical complexity. This study aims to simplify the use of the ANFIS for hydrological
modeling, while maintaining a similar level of accuracy.

Figure 2 provides a conceptual diagram to show the methods considered in this study.
After gathering data and pre-processing into calibrating and validating sets, the flow between
stations was compared and correlated to identify the optimal lead time (n), which indicates the
amount of time (in days) that is necessary for water to pass from a station upstream to another station
downstream. Once the optimal lead time between stations was estimated, three different modeling
methods were developed using the ANFIS: “Nonsequential”, “Sequential”, and “Multi-input”. Finally,
the models were validated and their performance compared. Among the three types of models,
the Sequential ANFIS represents a novel approach. The details and assumptions of these models are
described in the following subsections.
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2.2.1. Identification of Optimal Lead Time

A correlation analysis was carried out between the flow at Fort McMurray at time t and the flow
at other gauging stations (i.e., Jasper, Hinton, and Athabasca) in order to determine the optimal lead
time for each pair of stations. Time lags between 1 and 10 days (i.e., t-1, t-2, . . . , t-10) were considered
in this analysis. The selection of 10 days was based on the different regimes within the catchment
that primarily depend on regional rainfall, topography, and land use. As result, the runoff generated
downstream would be influenced by upstream catchments. Considering more than 10 days would
not provide much contribution on the catchment of interest. The highest correlation coefficient was
considered as the optimal lead time between Fort McMurray and the other stations. Historical daily
flow records at Jasper, Hinton, Athabasca, and Fort McMurray between 1971 and 2000 were used to
determine the optimal lead time for the first approach, and between 1971 and 2014, only considering
odd years (1971, 1973, 1975, . . . , 2013), for the second approach. By estimating the optimal lead time,
it is possible to understand how far into the future a model can predict.
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2.2.2. Models Calibration Using the ANFIS

Suparta and Alhasa [34] and Jang [35] thoroughly described the mechanisms and the mathematics
underlying the ANFIS and how this technique is well-suited for highly nonlinear systems. This study
considers the ANFIS using grid partitioning (supervised learning algorithm) and adopting the
Takagi–Sugeno type inference system. A hybrid algorithm, which is a combination of a least squares
estimator and the gradient descent method, is adopted. This means that, during the model training
process, a forward (from Layer 1 to Layer 5) and backward (from Layer 5 to Layer 1) propagation
algorithm (Figure 3) adjusts the parameters of the membership functions. The gradient descent
method is used to find the nonlinear function minimum, resulting from the weights generated by the
fuzzy rules.

Layer 1: For each input variable, there is a set of membership functions that contain function
parameters. Each node generates an output that is a degree of membership value given by the input of
the membership functions. In this study, membership functions are set as Gaussian distributions because
it requires the least number of parameters for calibration compared to other membership function
types and the smoothness of the curve allows for a more homogeneous trend in the validation phase.
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µ(x) = exp

−(x− b
2a

)2 (1)

where µ is the degree of membership functions for the given fuzzy set, x is one of the input variables,
and a and b are the parameters of a membership function.

Layer 2: Every node is fixed (non-adaptive), and the circle node is labeled as Π. The output node
results from the multiplication of incoming signals and is delivered to the next node. The T-norm
operator with general performance (AND) is applied to obtain the output, because all the explanatory
variables occur simultaneously.

w j = fVi j
× fVi j

(2)

where w j is the output that represents the firing strength of each rule, j represents each node in this
layer, and fVi indicates the various forms of membership functions.

Layer 3: Every node is fixed (non-adaptive), and the circle node is labeled as N. Each node
represents the ratio between the j-th rule firing strength and the sum of all firing strengths. It is also
called the normalized firing strength.

w j=
w j∑
j w j

(3)

Layer 4: Every node is an adaptive node to an output, with a node function defined as follows:

w j f j = w j
(
p jx + q jy + r j

)
(4)

where w j is the normalized firing strength from the previous layer and
(
p jx + q jy + r j

)
is a parameter

in the node. The parameters in this layer are referred to as consequent parameters.
Layer 5: The single node is a fixed (non-adaptive) node that computes the overall output as the

sum of all the incoming signals from the previous node. This circle node is labeled as
∑

.

∑
j
w j f j =

∑
j w j f j∑

j w j
(5)

The first and the fourth layer contain the parameters that can be modified over time until
the gradient descent converges to a minimum error. The first layer contains a nonlinear set of
premise parameters, while the fourth layer includes linear consequent parameters. To update both
parameter types, a learning algorithm is necessary so that they can adapt to the model’s environment.
A hybrid algorithm is used in this study. The hybrid learning algorithm consists of two parts: the
forward and the backward propagation. The premise parameters in the Gaussian function (a and
b) must be steady in Layer 1. A recursive least square estimator (RLSE) method is applied to repair
the consequent parameters in the fourth layer. After the consequent parameters are computed,
the backward propagation allows for comparison between the generated output and the observed
output through the adaptive network input of initial data. The error obtained during the comparison
between the generated and actual output is propagated back to the first layer. At the same time,
the premise parameters in Layer 1 are updated. One level of hybrid learning (one forward and one
backward propagation) is called epoch. Using a hybrid learning algorithm, which combines RLSE
and the gradient descent methods, the convergence can be reached faster than using the backward
propagation algorithm only, because the dimensional search space of the error is reduced. More details
regarding the ANFIS can be found in [36–39]. Figure 3 shows an example of the fuzzy reasoning
mechanisms for this study using the “Multi-input” approach, which employs three input variables
simultaneously for forecasting river flow. The “Nonsequential” and “Sequential” models only use one
input variable, which simplifies the software’s computation exercise.

Three different methods were adopted in this study using the ANFIS: “Nonsequential”,
“Sequential”, and “Multi-input”. The “Nonsequential ANFIS” predicts river flow at Fort McMurray
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using flow inputs from one single station upstream (i.e., Fort McMurray–Jasper, Fort McMurray–Hinton,
and Fort McMurray–Athabasca, in three different sets). The “Sequential ANFIS” uses gauging data
at Jasper, near the source, to predict flow at Hinton. Subsequently, the forecasted flow at Hinton
is automatically entered to predict flow at Athabasca, which in turn is used to predict flow at
Fort McMurray. The “Multi-input ANFIS” uses measured data at Jasper, Hinton, and Athabasca
simultaneously to predict flow at Fort McMurray. Table 2 provides an overview of the ANFIS settings
used per each model. Although the ANFIS codes could be replicated with any programming language,
MATLAB® was adopted in this study with running times between 2 and 10 s using a regular laptop.
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Figure 3. Example of the fuzzy reasoning mechanisms for this study using the “Multi-input” approach.
V1, V2, and V3 are input variables i.e., river flow at Jasper, Hinton, and Athabasca). A, B, and C are the
membership functions for each input variable. Π represents the firing strength of the fuzzy logic rules
and N is the ratio between the i-th rule firing strength and the sum of all firing strengths.

∑
is the sum

of all the incoming signals from the previous node.

Table 2. Overview of the Adaptive Neuro-Fuzzy Inference System (ANFIS) settings used per each
model for the two different calibration–validation dataset approaches.

Model Type Input–Output Membership Function
Type and Number

Number of
Epochs

Output
Type

Approach 1: Calibration 1971–2000/Validation 2001–2014

Nonsequential
Jasper—Fort McMurray Gauss, 6 230 L
Hinton—Fort McMurray Gauss, 4 300 L

Athabasca—Fort McMurray Gauss, 4 320 C
Sequential Jasper—Hinton—Athabasca—Fort McMurray Gauss, 4—5—5 195—500—500 L—L—C

Multi-input Jasper/Hinton/Athabasca—Fort McMurray Gauss, 4/3/5 300 C

Approach 2: Calibration 1971–2014 odd years/Validation 1971–2014 even years

Nonsequential
Jasper—Fort McMurray Gauss, 6 150 C
Hinton—Fort McMurray Gauss, 4 220 C

Athabasca—Fort McMurray Gauss, 4 215 C
Sequential Jasper—Hinton—Athabasca—Fort McMurray Gauss, 3—3—3 450—240—350 C—C—C

Multi-input Jasper/Hinton/Athabasca—Fort McMurray Gauss, 3/3/3 350 C

L = linear, C = constant.
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2.2.3. Model Validation

The developed models were compared in terms of performance by using quantitative statistical
metrics, including the coefficient of determination (r2), the root mean square error (RMSE), and the
Nash–Sutcliffe coefficient of efficiency (ENS). The estimated statistics were also used to compare
model performance to the existing literature. The r2 indicates the goodness-of-fit between measured
and predicted flow, while the RMSE is the normalized error represented by the distance between
the predicted and the measured flow at Fort McMurray. ENS is a widely used statistic for assessing
specifically the goodness of fit of hydrologic models. The quantitative statistical metrics are calculated
as follows:

r2 =


∑n

i=1(X −X)
(
Y −Y

)
√∑n

i=1

(
X −X

)2
√∑n

i=1

(
Y −Y

)2


2

(6)

RMSE =

√
1
n

∑n

i=1
(X −Y)2 (7)

ENS = 1−

∑n
i=1(X −Y)2∑n
i=1

(
X −X

)2 (8)

where, Y is the predicted flow; Y is the mean of the predicted flows; X is the observed antecedent flow;
X is the mean of the observed antecedent flows; n is the number of observations. Note that the r2

ranges between 0 and 1, where 1 indicates a perfect fit between the observed and predicted values.
The ENS can range between −infinity (−∞) and 1, where 1 corresponds to a perfect fit. Finally, RMSE
should be close to zero to indicate good model performance and its magnitude can vary between
+infinity (+∞) and −infinity (−∞).

3. Results and Discussion

3.1. Model Calibration and Validation

Figure 4 shows the annual hydrographs at the four gauging stations for model calibration and
validation using two calibration–validation approaches, i.e., panels a–b show the calibration and
validation hydrographs for Approach 1 (calibration data: 1971–2000, validation data: 2001–2014),
while panels c–d show the calibration and validation hydrographs for Approach 2 (calibration data:
1971–2014 odd years, validation data: 1971–2014 even years).

Although the flow follows a similar trend in the four instances (see Figure 4), small changes in
river flow over time can be detected. Figure 4a shows that between 1971 and 2000 the average daily
flow during the colder months (i.e., January, February, March, and December, with no contribution
from precipitation and snowmelt) at Fort McMurray is larger (194.73 m3/s) than that in Figure 4b for
the 2001–2014 period (157.53 m3/s). At the same time, the average flow for the remaining months
(i.e., April, May, June, July, August, September, October, and November) has the opposite trend, where
the flow in Figure 4b (i.e., 920.02 m3/s) is larger than the flow in Figure 4a (i.e., 772.64 m3/s). Moreover,
the springtime increase in discharge shown in Figure 4b is both later to start and faster to progress
when compared to Figure 4a. This difference in flow between the calibration and validation datasets
could potentially represent a limitation for flow forecasting at Fort McMurray. Using a different set
of calibration–validation data that is not time dependent (calibration data: 1971–2014 odd years and
validation data: 1971–2014 even years), shown in Figure 4c,d for calibration and validation, respectively,
would probably overcome this limitation. The average daily flow during the colder months at Fort
McMurray in Figure 4c (i.e., 178.58 m3/s) is similar to Figure 4d (187.28 m3/s), which shows a more
similar base flow. The difference in flow detected during the remaining months is likely due to
a different amount of snowmelt and precipitation between the calibration and validation data. There is
also no sign of earlier springtime increase in the Figure 4c,d sets.
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Figure 4. Average daily river flow at each gauging station during the period: (a) 1971–2000;
(b) 2001–2014; (c) 1971–2014, odd years; and (d) 1971–2014, even years. (a,b) are the calibration
and validation data for Approach 1, respectively; (c,d) are the calibration and validation data for
Approach 2, respectively.

3.2. Identification of the Optimal Lead Time

A correlation analysis was performed to estimate the time (in days) required for a mass of water
to flow from one station to another. This quantity is also called optimal lead time. The coefficients
of determination were calculated by comparing the flow at Fort McMurray with the flow at station
i (i = Jasper, Hinton, and Athabasca) at different time lags such as t (same day), t-1, t-2, . . . , t-10.
A similar analysis was carried out for Approach 2. Table 3 shows the correlation parameters between
each station from t to t-10 for Approach 1 and 2.

Between Jasper and Fort McMurray, r2 shows a poor correlation, where the highest coefficient of
determination is observed at 5 days. Similar results indicate that between Hinton and Fort McMurray,
the optimal lead time is 4 days. A strong correlation was found between Athabasca and Fort McMurray,
where the highest r2 was 0.92 with two-day lead time. A similar correlation analysis was carried out
between Jasper and Hinton and Hinton and Athabasca to estimate the optimal lead time between
each station along the river. The optimal lead time between Jasper and Hinton is 1 day (r2 = 0.96),
while that between Hinton and Athabasca is 3 days (r2 = 0.63). Figure 5 schematically summarizes
the main findings in terms of how far in advance each developed model can predict flow at Fort
McMurray. It should be noted that between Jasper and Fort McMurray, the best correlation was found
at 5 days, while when summing the optimal lead time between each station (i.e., Jasper–Hinton = 1 day,
Hinton–Athabasca = 3 days, and Athabasca–Fort McMurray = 2 days) the total optimal lead time is
6 days. This might be due to the actual optimal lead time between Jasper and Fort McMurray being in
between 5 and 6 days (for Jasper-Fort McMurray, r2 = 0.504 at t-5 and r2 = 0.502 at t-6).
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Table 3. Summary of correlation parameters estimated for various station pairs to determine the optimal lead time using: (a) Approach 1, and (b) Approach 2.

(a) Approach 1: Calibration 1971–2000

Day, t Sample Size
Regression Equation, y =mx + c (r2)

Jasper—Fort McMurray Hinton—Fort McMurray Athabasca—Fort McMurray Jasper—Hinton Hinton—Athabasca

t 10,958 3.84x + 330.31 (0.492) 2.23x + 281.01 (0.548) 1.18x + 133.60 (0.873) 1.76x + 18.18 (0.944) 1.84x + 134.38 (0.592)
t-1 10,957 3.81x + 332.61 (0.485) 2.24x + 280.38 (0.550) 1.21x + 121.11 (0.914) 1.78x + 16.79 (0.961) 1.87x + 128.96 (0.613)
t-2 10,956 3.79x + 334.10 (0.481) 2.25x + 277.82 (0.558) 1.21x + 118.75 (0.922) 1.75x + 19.14 (0.932) 1.90x + 123.95 (0.632)
t-3 10,955 3.80x + 333.79 (0.482) 2.28x + 273.60 (0.570) 1.19x + 128.83 (0.888) 1.70x + 23.24 (0.883) 1.90x + 123.68 (0.633)
t-4 10,954 3.82x + 331.46 (0.488) 2.29x + 270.73 (0.578) 1.16x + 143.89 (0.839) 1.66x + 27.15 (0.837) 1.87x + 129.1 (0.612)
t-5 10,953 3.85x + 329.45 (0.494) 2.28x + 272.49 (0.573) 1.13x + 158.24 (0.794) 1.62x + 30.46 (0.799) 1.82x + 136.92 (0.583)
t-6 10,952 3.84x + 330.48 (0.491) 2.25x + 278.39 (0.556) 1.10x + 170.61 (0.755) 1.59x + 33.28 (0.768) 1.78x + 144.45 (0.555)
t-7 10,951 3.79x + 334.66 (0.479) 2.21x + 285.91 (0.534) 1.07x + 181.32 (0.723) 1.56x + 35.68 (0.741) 1.74x + 150.92 (0.532)
t-8 10,950 3.72x + 340.41 (0.462) 2.16x + 293.26 (0.514) 1.05x + 190.80 (0.695) 1.54x + 37.78 (0.719) 1.71x + 156.18 (0.513)
t-9 10,949 3.65x + 346.31 (0.446) 2.12x + 299.79 (0.496) 1.03x + 199.64 (0.669) 1.52x + 39.71 (0.698) 1.69x + 160.25 (0.499)
t-10 10,948 3.59x + 351.75 (0.431) 2.09x + 305.20 (0.481) 1.02x + 208.18 (0.645) 1.49x + 41.55 (0.679) 1.67x + 163.54 (0.499)

(b) Approach 2: Calibration 1971–2014 odd years

Day, t Sample Size
Regression Equation, y =mx + c (r2)

Jasper—Fort McMurray Hinton—Fort McMurray Athabasca—Fort McMurray Jasper—Hinton Hinton—Athabasca

t 8030 4.11x + 280.31 (0.483) 2.36x + 230.01 (0.549) 1.24x + 102.34 (0.875) 1.78x + 18.92 (0.927) 1.89x + 106.44 (0.616)
t-1 8029 4.10x + 282.63 (0.486) 2.36x + 228.89 (0.552) 1.26x + 90.59 (0.914) 1.79x + 17.79 (0.941) 1.92x + 101.63 (0.635)
t-2 8028 4.08x + 284.14 (0.482) 2.38x + 226.23 (0.560) 1.27x + 87.47 (0.925) 1.77x + 20.08 (0.913) 1.94x + 97.41 (0.651)
t-3 8027 4.08x + 284.15 (0.482) 2.40x + 222.36 (0.571) 1.25x + 95.66 (0.897) 1.72x + 23.94 (0.866) 1.94x + 97.36 (0.652)
t-4 8026 4.10x + 282.64 (0.487) 2.42x + 219.68 (0.579) 1.22x + 108.88 (0.853) 1.68x + 27.64 (0.822) 1.91x + 102.38 (0.632)
t-5 8025 4.11x + 281.56 (0.490) 2.41x + 221.11 (0.575) 1.19x + 122.06 (0.810) 1.64x + 30.74 (0.787) 1.87x + 109.61 (0.604)
t-6 8024 4.10x + 283.02 (0.486) 2.38x + 226.55 (0.559) 1.16x + 134.05 (0.773) 1.61x + 33.31 (0.758) 1.83x + 116.80 (0.577)
t-7 8023 4.05x + 287.27 (0.474) 2.33x + 233.81 (0.539) 1.14x + 144.95 (0.739) 1.58x + 35.51 (0.733) 1.79x + 123.37 (0.553)
t-8 8022 3.98x + 293.11 (0.458) 2.29x + 241.29 (0.519) 1.12x + 154.82 (0.709) 1.56x + 37.44 (0.712) 1.75x + 129.12 (0.532)
t-9 8021 3.91x + 299.18 (0.441) 2.25x + 248.36 (0.500) 1.09x + 164.09 (0.682) 1.54x + 39.29 (0.693) 1.73x + 133.96 (0.515)
t-10 8020 3.84x + 304.9 (0.426) 2.21x + 254.71 (0.484) 1.07x + 173.16 (0.655) 1.52x + 41.03 (0.674) 1.70x + 138.20 (0.498)
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The correlation analysis performed on the calibration–validation datasets for Approach 2 showed
results identical to those for Approach 1. This indicates that the optimal lead time is independent of
the calibration dataset.
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3.3. Evaluation of the Results

The performance of the developed models was compared and the results are summarized in Table 4.
Overall, “Nonsequential Jasper–Fort McMurray” and “Nonsequential Hinton–Fort McMurray” can
poorly predict river flow at Fort McMurray because, although their r2 values indicate a good correlation
between the measured and predicted flow, the RMSE is considerably large in both approaches. A good
performance is observed in the “Nonsequential Athabasca–Fort McMurray” model (ENS = 0.99 and
RMSE = 49 m3/s for Approach 1 and ENS = 0.99, and RMSE = 46 m3/s for Approach 2), which can
predict river flow at Fort McMurray over 2 days. Although this model is accurate, the limited predictive
capability represents a disadvantage. The “Sequential” model helps to cope with this limitation,
providing accurate predictions over 6 days (ENS = 0.98 and RMSE = 66 m3/s for Approach 1, and ENS

= 0.99 and RMSE = 43 m3/s for Approach 2). Among the models proposed in this study, the most
accurate is “Multi-input”, with ENS = 0.98 and RMSE = 39 m3/s using Approach 2. However, similarly
to “Nonsequential Athabasca–Fort McMurray”, this model allows predictions over 2 days.

Table 4. Summary of the results to show the models’ performance in terms of coefficient of determination
(r2), Nash–Sutcliffe efficiency coefficient (ENS), root mean square error (RMSE), and predictive capability.

Model Type r2 ENS RMSE [m3/s] Predictive Capability

Approach 1: Calibration 1971–2000/Validation 2001–2014

Nonsequential
Jasper—Fort McMurray 0.74 0.68 237 5 days
Hinton—Fort McMurray 0.81 0.73 215 4 days

Athabasca—Fort McMurray 0.99 0.99 49 2 days

Sequential Jasper—Hinton—Athabasca—Fort McMurray 0.98 0.98 66 6 days

Multi-input Jasper/Hinton/Athabasca—Fort McMurray 0.99 0.98 53 2 days

Approach 2: Calibration 1971–2014 odd years/Validation 1971–2014 even years

Nonsequential
Jasper—Fort McMurray 0.84 0.81 183 5 days
Hinton—Fort McMurray 0.87 0.85 164 4 days

Athabasca—Fort McMurray 0.99 0.99 46 2 days

Sequential Jasper—Hinton—Athabasca—Fort McMurray 0.99 0.99 43 6 days

Multi-input Jasper/Hinton/Athabasca—Fort McMurray 0.99 0.98 39 2 days
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Figure 6 shows the hydrographs comparing the measured to the predicted flow at Fort McMurray
using Approach 1. The scatter plots are shown in Figure 7. In general, the “Sequential” and
“Multi-input” models perform more accurately during the springtime increase and late summer
decrease than the “Nonsequential” models. The advantage of using the “Sequential” model is the
higher predictive capability, as indicated in Figure 8. The “Nonsequential Athabasca–Fort McMurray”
model is more accurate in predicting the base flow in the colder months, when there is no contribution
of rainfall and snowmelt, while the “Multi-input” model could not perform as accurately. The scatter
plots in Figure 7 show the low accuracy of the “Nonsequential” method using the Jasper and Hinton
stations to predict river flow at Fort McMurray.
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The results for Approach 2 are shown in Figure 8 in the form of annual hydrographs, and in Figure 9
as scatter plots. The predictive performance of the ANFIS improved in all methods (i.e., “Nonsequential”,
“Sequential”, and “Multi-input”) adopted in this study when using a calibration dataset that is time
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independent. The “Multi-input” method was able to perform accurately during the colder months,
which represents an improvement from Approach 1, shown in Figure 6. In addition, the “Nonsequential”
models were capable of better predicting the late summer decrease when compared to Approach 1.
Similar to Approach 1, the scatter plots in Figure 9 show the lower accuracy of the “Nonsequential”
method when the Jasper and Hinton stations were used to predict river flow at Fort McMurray. Table 5
provides the results to show the inter-annual variations in terms of r2, ENS, and RMSE.
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Generally, the ANFIS is superior to other modeling techniques reported in the literature to predict
the Athabasca River flow at Fort McMurray. All the three methods used in this study, namely the
“Nonsequential Athabasca–Fort McMurray”, “Sequential”, and “Multi-Input” ANFISs, performed
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better than other modeling techniques previously explored by other authors on the ARB, using both
Approach 1 and 2. This indicates that the ANFIS is highly capable of capturing the nonlinearity of the
natural river cycles over the year in cold weather regions, while bypassing the physical explanation of
the input–output variables’ dependence. Not only can the ANFIS predict more accurately, it also uses
a simpler set of input–output variables compared to the more complex dataset used by the VIC or
SWAT, which employ a large amount of data for climate and runoff information to calibrate the model.
Previous studies carried out in the ARB, which were discussed in the introduction section, show a lower
performance in terms of Nash–Sutcliffe coefficient, compared to the method proposed in this paper. By
using SWAT, Shresta et al. [14] achieved the highest accuracy level among past attempts found in the
literature for the ARB, despite their highly data-demanding set of explanatory variables. Eum et al. [1]
also showed a highly valuable modeling performance using a combination of VIC and GCM, although
this approach could lead to longer computational times and more expensive budgets. The method
proposed in this study shows that it is possible to achieve a higher accuracy when a limited number
of inputs are employed, and a more simplistic input–output relationship is outlined. Interestingly,
the use of the two calibration–validation dataset pairs (Approach 1 and 2) led to a difference in
performance using the ANFIS for the three methods adopted in this study. This was also indicated
by Zheng et al. [40], who investigated the statistical behavior of data splitting methods to achieve
representative evaluation performance for flow forecasting [40–42]. Other modeling techniques should
be investigated in a similar fashion to better understand the contribution of calibration–validation
datasets on the accuracy of the model output. Finally, Approach 2 provided more accurate results for
the three ANFIS methods, possibly because the model’s outcome is not influenced by time-dependent
variables. For example, the variation in rainfall and snowmelt contributions, earlier springtime
increases or late summer decreases, and the growing water uptake from the oil and gas industry from
more recent years should be investigated and correlated to the river flow variations overtime.

Table 5. Summary of statistical performance indices estimated for model predictions of inter-annual
variations using: (a) Approach 1 (b) Approach 2.

(a) Approach 1: Calibration 1971–2000/Validation 2001–2014

Validation
Year

Regression Equation,
y =mx + c (r2) ENS

RMSE
[m3/s]

Validation
Year

Regression Equation,
y =mx + c (r2) ENS

RMSE
[m3/s]

2001 0.67x + 265.55 (0.51) 0.40 371.21 2008 0.91x + 87.35 (0.74) 0.69 234.77

2002 1.57x − 14.27 (0.86) −0.24 294.07 2009 1.16x + 24.81 (0.88) 0.72 190.75

2003 1.05x + 55.93 (0.86) 0.77 188.26 2010 1.36x − 58.26 (0.85) 0.41 230.67

2004 0.89x + 45.85 (0.77) 0.75 254.55 2011 0.49x + 218.27 (0.75) 0.64 471.08

2005 0.81x − 10.44 (0.82) 0.74 254.55 2012 0.65x + 124.24 (0.82) 0.75 307.49

2006 1.33x − 48.72 (0.74) 0.15 266.10 2013 0.53x + 168.89 (0.77) 0.64 440.13

2007 0.58x + 198.89 (0.55) 0.54 389.44 2014 0.79x + 96.36 (0.76) 0.76 242.92

(b) Approach 2: Calibration 1971–2014 odd years/Validation 1971–2014 even years

Validation
Year

Regression Equation,
y =mx + c (r2) ENS

RMSE
[m3/s]

Validation
Year

Regression Equation,
y =mx + c (r2) ENS

RMSE
[m3/s]

1972 0.60x + 179.76 (0.77) 0.70 353.08 1994 0.85x + 128.74 (0.89) 0.88 170.11

1974 0.52x + 183.69 (0.69) 0.54 480.40 1996 0.61x + 112.05 (0.86) 0.69 374.13

1976 0.70x + 143.48 (0.57) 0.53 328.23 1998 1.12x + 52.95 (0.75) 0.45 253.13

1978 0.70x + 76.25 (0.75) 0.67 312.82 2000 1.01x + 164.00 (0.83) 0.61 247.81

1980 0.65x + 153.92 (0.68) 0.65 333.83 2002 1.53x + 66.13 (0.84) −0.69 343.80

1982 0.64x + 200.96 (0.75) 0.74 307.15 2004 0.90x + 107.44 (0.80) 0.78 206.82

1984 0.94x + 56.12 (0.80) 0.78 199.60 2006 1.30x + 32.13 (0.73) −0.08 299.97

1986 0.56x + 224.96 (0.63) 0.61 394.78 2008 0.88x + 174.58 (0.70) 0.58 273.30

1988 0.94x + 177.73 (0.82) 0.68 241.49 2010 1.37x + 8.82 (0.88) 0.25 260.42

1990 0.62x + 172.89 (0.81) 0.75 322.99 2012 0.63x + 203.96 (0.79) 0.76 305.67

1992 1.26x + 19.80 (0.78) 0.26 265.56 2014 0.76x + 182.60 (0.72) 0.71 266.34
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4. Conclusions

This study used the adaptive neuro-fuzzy inference system (ANFIS), which is an artificial
intelligence (AI) technique for machine learning, to forecast river flow at Fort McMurray, located on
the lower reaches of the Athabasca River in Alberta, Canada.

Different techniques using the ANFIS were developed and compared to the existing literature.
Initially, a correlation analysis was carried out between the flow at Fort McMurray and the flow at
other gauging stations at different times. The highest correlation coefficient indicated the optimal lead
time between Fort McMurray and the stations upstream. Three distinct techniques were then adopted:
“Nonsequential”, “Sequential”, and “Multi-input”. Although the “Nonsequential” and “Multi-input”
models were capable of accurately predicting river flow at Fort McMurray (r2 = 0.99, ENS > 0.98), they
only allowed predictions with a two-day notice, while the “Sequential ANFIS” could forecast accurate
flow regimes and allowed modeling with a six-day notice. Subsequently, a different set of calibration
and validation data were adopted to perform the same analyses and compare the accuracy of the
results. The latter approach provided more accurate results for the three ANFIS methods, possibly
because the model’s outcome was not influenced by time-dependent variables (i.e., variation in rainfall
and snowmelt contributions, earlier springtime increases or late summer decreases, and the growing
water uptake from the oil and gas industry from more recent years).

In conclusion, the “Sequential” ANFIS modeling technique is recommended to forecast daily river
flow at Fort McMurray because of its capability in capturing the nonlinearity of the natural river cycles
over the year in cold weather regions, while bypassing the physical relationship of the input–output
variables. This study thus demonstrates the successful application of the ANFIS for sequential river
flow forecasting in cold weather over an extended geographical area. The simplistic approach and the
lower computational resources and time required for this exercise could find a use of this model in
assisting governmental agencies and communities to improve flood prevention and the planning of
water resource systems, operations, maintenance, and administration.
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