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Abstract: Digital Elevation Models (DEMs) contribute to geomorphological and hydrological
applications. DEMs can be derived using different remote sensing-based datasets, such as Interferometric
Synthetic Aperture Radar (InSAR) (e.g., Advanced Land Observing Satellite (ALOS) Phased Array
type L-band SAR (PALSAR) and Shuttle Radar Topography Mission (SRTM) DEMs). In addition,
there is also the Digital Surface Model (DSM) derived from optical tri-stereo ALOS Panchromatic
Remote-sensing Instrument for Stereo Mapping (PRISM) imagery. In this study, we evaluated
satellite-based DEMs, SRTM (Global) GL1 DEM V003 28.5 m, ALOS DSM 28.5 m, and PALSAR DEMs
12.5 m and 28.5 m, and their derived channel networks/orders. We carried out these assessments
using Light Detection and Ranging (LiDAR) Digital Surface Models (DSMs) and Digital Terrain
Models (DTMs) and their derived channel networks and Strahler orders as reference datasets at
comparable spatial resolutions. We introduced a pixel-based method for the quantitative horizontal
evaluation of the channel networks and Strahler orders derived from global DEMs utilizing confusion
matrices at different flow accumulation area thresholds (ATs) and pixel buffer tolerance values
(PBTVs) in both±X and±Y directions. A new Python toolbox for ArcGIS was developed to automate
the introduced method. A set of evaluation metrics—(i) producer accuracy (PA), (ii) user accuracy
(UA), (iii) F-score (F), and (iv) Cohen’s kappa index (KI)—were computed to evaluate the accuracy of
the horizontal matching between channel networks/orders extracted from global DEMs and those
derived from LiDAR DTMs and DSMs. PALSAR DEM 12.5 m ranked first among the other global
DEMs with the lowest root mean square error (RMSE) and mean difference (MD) values of 4.57 m
and 0.78 m, respectively, when compared to the LiDAR DTM 12.5 m. The ALOS DSM 28.5 m had
the highest vertical accuracy with the lowest recorded RMSE and MD values of 4.01 m and −0.29 m,
respectively, when compared to the LiDAR DSM 28.5 m. PALSAR DEM 12.5 m and ALOS DSM
28.5 m-derived channel networks/orders yielded the highest horizontal accuracy when compared
to those delineated from LiDAR DTM 12.5 m and LiDAR DSM 28.5 m, respectively. The number of
unmatched channels decreased when the PBTV increased from 0 to 3 pixels using different ATs.

Keywords: Vertical accuracy of DEMs; channel networks; LiDAR; confusion matrix; ArcGIS Python
toolbox

1. Introduction

Current advances in remote sensing techniques are essential in producing high-quality Digital
Elevation Models (DEMs). Because of the general availability of different optical and microwave
satellite data-based DEMs, many authors have extensively used these elevation datasets for a
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wide range of applications, particularly for various hydrological and geomorphological models.
The outcomes of these models depend mainly on the accuracy and quality of the utilized DEMs [1–6].

In general, a DEM is an umbrella term for any electronically accessible elevation datasets,
such as Digital Terrain Models (DTMs) and Digital Surface Models (DSMs). It includes elevation
measures of the Earth’s terrain, in addition to natural- and human-based objects above a certain
vertical datum [7]. Some researchers apply the terms bare-earth DEM and DTM interchangeably,
because of their opposite usage in the United States of America (USA) and Europe [8]. A DEM
(hereinafter referred to as both DTM and DSM) can be represented mainly by vector- and raster-based
spatial representations [9]. The elevation datasets required to create a DEM can be collected using
various ground- and satellite-based techniques, including conventional topographic surveys [10],
digitizing and interpolation of contours [11], kinematic global navigation satellite system surveys [12],
stereo-photogrammetry [13], Synthetic Aperture Radar (SAR) interferometry [14], airborne laser
scanning [15], and fusion of data from different sources [16].

The spatial resolution of a DEM is expressed by the geometric size of a cell in the X and Y
horizontal directions, in addition to the distance between two adjacent cells [17]. The accuracy of
a DEM in representing the land surface mainly depends on its source data’s spatial resolution [18].
The more accurate the information, the higher the spatial resolution the DEM can have. A DEM’s spatial
resolution has been shown to affect the outcomes of many hydrological parameters. For example,
it was found that the DEM resolution had a significant effect on the prediction outputs of different
hydrologic models, such as the topography-based hydrological model [19] and the soil and water
assessment tool model [20]. Furthermore, different DEM sources introduce various levels of spatial
details and accuracies (either horizontal or vertical). Therefore, many hydrological studies fail to
provide consistent results. For instance, the DEM source profoundly affected the accuracy of river
hydrodynamic modeling outputs, particularly flood extents and depths [21]. The difference between
DEM sources and extracted channel networks explicitly affected the outputs of different hydrological
models [22,23]. Schumann et al. 2014 [24] noted the impact of an accurate bare-earth DEM on flood
modeling. Li and Wong 2010 [3] reported that the simulation results of flood inundation areas varied
significantly using channel networks derived from different DEM datasets (Shuttle Radar Topography
Mission (SRTM), Light Detection and Ranging (LiDAR), and the National Elevation Dataset). They
emphasized the need for evaluating the channel networks extracted from different DEM sources before
utilizing them in further hydrologic applications. Vaze et al. 2010 [25] confirmed that a LiDAR-based DTM
with high accuracy and resolution improved the overall quality of the extracted hydrological features.

In this article, two abbreviations are used to describe DEMs. First is the DTM, which provides
information about the heights of bare soil in terms of X, Y, and Z coordinates [26]. X and Y stand for
the horizontal position of a point that can be defined by geographic coordinates or by grid coordinates
in a map projection system, while Z represents the orthometric or ellipsoidal elevation. Second is the
DSM, which represents top faces of all objects situated on a terrain, such as human-made features and
natural canopy, in addition to the bare ground itself in open areas [27].

Most of the available global DEM datasets can be considered as compromises between DTM and
DSM. For instance, the SRTM DEM was originally generated to provide near-global DTMs for the
Earth’s land surface. However, a significant positive bias in the SRTM (C-band) DEM was observed in
areas with extensive tree and/or shrub coverage (e.g., boreal and Amazon regions) [28]. In addition,
the C-band radar imagery used by the NASA Jet Propulsion Laboratory to generate the SRTM DEM
could not fully penetrate the vegetation canopy for a region of the Amazon Basin to the ground [29].
Consequently, the SRTM C-band DEM might be more appropriately identified as a DSM. Moreover,
for DTM-based applications requiring accurate estimates of bald-earth elevations, the SRTM DEM may
prove unsuitable in its current form [30].

A channel network consists of a set of tributaries and master streams along which the water and
sediments are transported under the effect of gravity from higher- to lower-elevation landscapes
in a drainage basin [31,32]. Extracting channel networks from DEMs is mandatory in various
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hydrological [33] and geomorphological [32] studies. In fact, a drainage system’s evolution over time
is profoundly affected by different variables, such as geomorphology, geologic units, soil, tectonics,
landscape topography, and land cover [34]. The detailed morphometric analysis of a channel network
and its watershed can help to characterize the impact of channel morphometry on the landforms [35].
Furthermore, it was used to explicate the hydrological behavior of drainage basins and to quantify
surface water potentialities [36].

The widespread availability of remote sensing-based DEMs facilitates the development of new
approaches to extract channel networks (e.g., References [32,37–40]), as well as precise algorithms
to derive surface flow direction (e.g., References [37,39,41,42]). DEMs-derived channel networks
proved to be more efficient for computing hillslope travel distances [43] and measuring hydrological
proximities [44] than traditionally mapped channel networks (i.e., derived from topographic maps,
aerial photographs, and field surveying). Vaze et al., 2010 [25] stated that channel networks extracted
from LiDAR-based DEMs should be used instead of those derived from contour-derived DEMs.
Furthermore, the direct delineation of the channel networks from DEMs significantly reduces the
amount of human labor [45].

The horizontal assessment of channel networks was rarely discussed in the literature, where
Anderson et al. 2014 [46] and Mozas-Calvache et al. 2017 [47] proposed two vector-based approaches
for the horizontal evaluation of stream networks. However, both methods had some constraints in the
selection and preparation of the channels for the evaluation.

Requirements for accurate DTMs and DSMs with enhanced spatial details are mandatory
for different fields of environmental applications. DSMs are of considerable interest for various
applications, such as urban planning [48] and three-dimensional (3-D) city modeling [49]. DTMs
are more applicable to different hydrological-related research than DSMs. The DTMs have been
applied successfully to determine the spatial distributions of many topographic (e.g., aspect, slope,
surface curvature, and gully morphology) [50–53] and hydrologic (e.g., flow direction, length,
and accumulation) attributes [40]. Furthermore, many hydrologists have used DTMs to extract
channel networks accurately [50,54,55]. Different geomorphometric measures (e.g., stream order,
frequency, density) can be estimated utilizing channel networks. These topographic, hydrologic, and
geomorphometric parameters contribute as the primary inputs to various physical and conceptual
hydrological models that address the link between hydrological and geomorphic processes operating
on the Earth’s surface [10,51].

Recently, airborne LiDAR-based DTMs have been broadly used for various hydrological modeling
studies [54,56,57], as well as channel network delineation [58,59]. LiDAR point cloud datasets can be
obtained by using airborne or terrestrial instruments. It is a surveying method that measures distances
to a target frequently and precisely, and usually LiDAR point cloud measurements render a so-called
DSM. It is possible to derive a DTM from a DSM if the distinction between ground and non-ground
pixels can be automated (e.g., Sharma et al., 2010 [60]).

Note that airborne LiDAR-based DEMs are only available over a small percentage of the Earth’s
landmass, due to their high cost. Therefore, for many studies—particularly for flood monitoring and
flood hazard zoning—researchers have used the freely available remote sensing-based DEMs with
global coverage (e.g., Reference [61–68]). However, most of these researchers did not investigate the
nature of the DEM used (i.e., either a DSM or a DTM) and errors that could profoundly affect their
developed models. In addition, most of these studies did not evaluate the horizontal accuracy of the
channel networks extracted from different global DEMs to select the optimum channel network for
their environmental research.

Each DEM source has intrinsic errors, because of data acquisition technology and processing
methodology in relation to specific terrains and land cover types [69]. Many studies have evaluated
the vertical elevation accuracy of various DEM datasets using ground truth points of known accurate
elevations [14] and pairwise comparisons of different DEMs and/or their surface derivatives (e.g.,
slope and aspect) by means of conventional statistical metrics, such as root mean square error (RMSE)
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or mean difference (MD) [25,69]. Other researchers have assessed different DEMs’ vertical accuracy by
evaluating the channel network-derived geomorphometric parameters [69–72].

Considering the above-mentioned issues, our objectives were five-fold: (i) To evaluate the
pixel-based vertical elevation accuracies of spaceborne-based global DEMs (i.e., SRTM DEM 28.5 m,
Advanced Land Observing Satellite (ALOS) DSM 28.5 m, and Phased Array type L-band SAR (PALSAR)
DEMs 28.5 m and 12.5 m) based on LiDAR-based DTM and DSM utilizing traditional statistical metrics,
such as the root mean square error (RMSE) and mean difference (MD), (ii) to introduce a pixel-based
technique to assess the horizontal spatial variability in the channel networks/orders extracted from
the global elevation sources using those delineated from LiDAR DTM and DSM at similar spatial
resolutions and at different pixel buffer tolerance values (PBTVs), (iii) to develop a new Python toolbox
for ArcGIS to automate the previous objectives, (iv) to determine which global DEM dataset would
be closer in performance to the airborne LiDAR DTM or LiDAR DSM in the study area, and (v) to
compare the outcomes of the first and the second objectives to depict the degree of matching between
the results achieved from both methods.

2. Materials

2.1. Study Area

We used an area covering 235.56 km2 in San Luis Obispo County along the western coast of
California, USA, to test our method. The study area is geographically located between 672,000 m E to
696,000 m E and 3,924,000 m N to 3,940,000 m N (Figure 1). It is moderately rugged and has significant
variations in the relief height, ranging from −1 m to +437 m above sea level. Geomorphologically, the
area is characterized by a narrow coastal area of steep cliffs, in addition to a coastal range sculpted by
hills and valleys [73]. It is also characterized by the presence of the Whale Rock Reservoir to the south.
It has a watershed area of 53 km2, and the reservoir has a capacity of 50.156 m3 and the maximum
water height of 66 m [74]. Geologically, the study area is dominated mainly by sandstone, in addition
to exposures of serpentinites, rhyolite, basalt and alluvium terraces [75]. The dominant forests are
evergreen, deciduous, and mixed, and their density varies from low to scattered [76,77]. Furthermore,
the area is covered by grassland, and scattered vegetation is present on both sides of the lake.
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Figure 1. The study area in San Luis Obispo County, the western part of the central coast of California,
USA. (1–4) refer to Cambria, Harmony, Cayucos, and Whale Reservoir, respectively. The source of the
satellite imagery (top left) is ESRI, 2018 [78].
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2.2. Data Requirements

In this study, we used two types of data. One was the global DEM datasets [13,79–81]; their
major characteristics are summarized in Table 1. The other was the LiDAR point cloud datasets that
were acquired for the Diablo Canyon Power Plant (DCCP) San Simeon project for the Pacific Gas and
Electric Company (PG&E) [82], California, USA. Although these data were over an area of 810 km2,
this study deals with an area of 235.56 km2 in order to demonstrate the effectiveness and applicability
of our proposed approach. The airborne LiDAR point cloud datasets were acquired, calibrated, and
verified by Quantum Spatial for the funder PG&E. These LiDAR data were made available to the public
through OpenTopography (a public data domain: https://opentopography.org/) on 29 March 2013.

Table 1. Descriptions of the three global Digital Elevation Models (DEMs). SRTM, Shuttle Radar
Topography Mission; ALOS, Advanced Land Observing Satellite; PALSAR, Phased Array type L-band
Synthetic Aperture Radar; DSM, Digital Surface Model; ASF DAAC, Alaska Satellite Facility Distributed
Active Archive Data Center; JAXA, Japan Aerospace Exploration Agency.

Feature SRTM GL1 V003 DEM ALOS PALSAR DEM ALOS World 3D
(ALOS DSM)

Spatial Extent Near global
(60◦ N to 56◦ S)

Near global
(60◦ N to 59◦ S)

Near global
(60◦ N to 60◦ S)

Spatial Resolution ≈28.5 m 12.5 m ≈28.5 m
Horizontal Reference WGS 1984 NAD 83 WGS 1984

Vertical Reference WGS 1984/EGM 96 NAVD 88 WGS 1984/EGM 96

Sensor Type Radar (C band) Radar (L band) Optical
(pan-chromatic band)

Generation Techniques SAR interferometry SAR interferometry Optical stereo matching
Data Access OpenTopography ASF DAAC OpenTopography

Owner Agency NASA, NGA, DLR JAXA, NASA JAXA
Data Type 16-bit signed integer 16-bit signed integer 16-bit signed integer

File Format GeoTIFF GeoTIFF GeoTIFF
Temporal Extent 02/11/2000–02/21/2000 2006–2011 2017

Additional Details [79] [80] [13,81]

The LiDAR survey was accomplished using a Leica ALS70 sensor mounted on a Cessna Grand
Caravan. The ALS70 system was set to capture a scan angle of 15◦ from nadir to yield high-resolution
data of more than 15 pulses per square meter and a swath width of 191 m over terrestrial surfaces.
It flew 1100 m above ground level and acquired at least 240,000 laser pulses per second. The LiDAR
scanning was achieved without data voids and gaps, excluding non-reflective surfaces (e.g., open
water, wet asphalt). The LiDAR data were acquired under optimum conditions with minimal to
no cloud cover (i.e., less than 10% cloud shadow) and maximum solar zenith angles. In addition,
consistent aircraft altitude over the terrain was obtained to eliminate the potential for data gaps related
to acquisition and laser shadowing of targets. Furthermore, an accurate ground survey was achieved
by Watershed Sciences Inc. in parallel with the airborne LiDAR scanning.

The absolute vertical accuracy of the LiDAR datasets was initially assessed using ground
checkpoints collected from bare earth surfaces of constant slope. For this project, the reported RMSE
and MD values of the absolute and average relative vertical accuracies of the LiDAR datasets were
2.6 cm and 5 cm, respectively (see Wilson and Steinberg 2013 [82] for additional details).

3. Methods

Figure 2 shows our proposed method in the form of a schematic diagram. It consisted of 4 distinct
components: (i) Data preparation, (ii) evaluation of the vertical elevation accuracy of the global DEMs
utilizing LiDAR DTM/DSM, (iii) extraction of the channel networks, and (iv) development of ArcGIS
Python toolbox for the geometric assessment of channel networks/orders. They are described in the
following sub-sections.

https://opentopography.org/
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Figure 2. Methodology flow chart for the per-pixel geometric evaluation of channel networks/
Strahler orders.

3.1. Data Preparation

We obtained the global SRTM DEM and ALOS DSM from the OpenTopography (High-Resolution
Topography Data and Tools) website in GeoTIFF format with a horizontal resolution of approximately
1 arcsec/28.5 m (Table 1). The PALSAR DEM was downloaded from the Alaska Satellite Facility
Distributed Active Archive Data Center (ASF DAAC) in geographic information systems (GIS)-ready
GeoTIFF format with a horizontal resolution of 12.5 m. For full coverage of the area under study,
two dual-polarization (HH + HV) PALSAR scenes operating in fine beam mode (FBD) were obtained
from an ascending path on 15 June 2007.

We downloaded the ground and unclassified LiDAR point cloud data, with a point density of
3.1 and 21 pts/m2, from the OpenTopography domain in a compressed LAS file format. LAS is a
public file format for the interchange of 3-D LiDAR point cloud datasets. The LAS binary file format
is an alternative to proprietary systems or a generic ASCII file interchange system and is compatible
with many commercial and open source software packages. Each point within the LiDAR datasets was
classified by whether it was returned from the ground, vegetation, or building/structure. The vertical
and horizontal references of the LiDAR point cloud data are NADV 88 and NAD 83. The LiDAR
point cloud datasets were geocoded to the Universal Transverse Mercator (UTM) projection system,
Zone 10N.
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Both ground and unclassified LiDAR points were gridded, resampled, and averaged based on the
spatial extent and resolution of the SRTM DEM 28.5 m, ALOS DSM 28.5 m, PALSAR DEM 12.5 m, and
resampled PALSAR DEM 28.5 m.

Before the global elevation datasets (SRTM DEM V003 28.5 m, ALOS DSM 28.5 m, and PALSAR
DEMs 12.5 m and 28.5 m) could be directly compared with LiDAR DTM/DSM of similar spatial
resolution, it was imperative to have them in a common reference system. The global elevation
products were transformed into the LiDAR reference system. Additionally, we made the projected
coordinate systems consistent among the global elevation products and LiDAR datasets. Each pair of
comparable DEMs had the same number of rows and columns and were well aligned.

3.2. Evaluating the Vertical Elevation Accuracy of Global DEMs Based on LiDAR DTM/DSM

We assessed elevation differences among LiDAR DTM and DSM (reference datasets) and the
other global DEMs by computing the traditional statistical metrics (RMSE and MD) grids at the
co-located pixels.

Validation accuracy measures the closeness of observation to a true value [7]. RMSE has become a
standard statistical tool for analyzing DEM accuracy and has been used in many studies to quantify
the vertical accuracy in DEMs [83,84]. RMSE is a single measure that characterizes the error surface,
while MD indicates the bias of the error surface and their equations are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(LDEMref −GDEM), (1)

MD =
1
N

N

∑
i=1

(LDEMref −GDEM), (2)

where N is the number of pixels; LDEMref is the reference LiDAR DEM (DTM or DSM); and GDEM is
the global DEM (SRTM DEM V003, ALOS DSM, or PALSAR DEM).

For the purpose of this paper, the elevations values are represented by the geometric centers of all
DEM cells included in the evaluation.

3.3. Extraction of the Channel Networks/Orders

The channel network is the most significant terrain parameter derived from DEMs; along its
tributaries, fluvial processes act to transport water and sediments from an upstream high-elevated
region by gravity downslope to a lower, flat landscape [32]. We used the hydrology geoprocessing
tools assembled in the ArcGIS ModelBuilder [85] to extract channel networks/orders from the global
DEMs, as well as from LiDAR DTM and DSM.

Delineating a channel network depends mainly on detecting the flow path of every cell in the
DEM grid through a series of consecutive steps [38,86]. The first step was to create a depression-less
DEM by filling the pits [37]. The presence of sinks within DEMs is a common problem that affects the
proper detection of flow directions. Therefore, to have a hydrologically-corrected DEM, it is necessary
to first fill these sinks [32,39]. The algorithm developed by Jenson and Dominque 1988 [39] has been
widely used in many GIS software packages for sink filling [39], where every depression is converted
to a flat area by raising each cell’s elevation to the lowest elevation of its neighbors.

Based on the availability of high-resolution remote sensing-based DEMs, many authors developed
accurate flow direction algorithms. They derived paths of surface flow using a nondispersive single
(e.g., References [39,41,42]) and dispersive multiple (e.g., Reference [87]) flow direction methods.
Orlandini and Moretti 2009 [42] stated that nondispersive algorithms should be used when the
extraction of channel systems and surface flow directions is the main focus of the study. Furthermore,
Zhu et al., 2013 [88] mentioned that most pit filling algorithms were based on a 1-D single flow direction
(e.g., Reference [32,39]). Therefore, in the second step, we derived the flow direction grid from the
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conditioned DEM by using the nondispersive eight-direction (D8) surface flow method [39]. The flow
path was determined by comparing each cell’s elevation with its eight adjacent or diagonal 3 × 3 cell
neighbors, where the cell with the steepest downward direction is identified as the flow path based on
the underlying topography [39,42]. The direction of flow determines the ultimate destination of the
surface water flowing across the land toward downslope zones.

Third, using the predetermined flow direction spatial layer, it was possible to define cells with
high flow concentration to detect how the flow would be accumulated and where small groups of
cells could turn into streams [37,39]. In fact, cells with flow accumulation values greater than a
certain threshold would constitute an effective part of the stream. The threshold is called the flow
accumulation area threshold (AT), and it defines the minimum contributing area required to initiate the
channels [32,86,89]. The AT is the main factor in extracting the channel networks, where it determines
the channels’ initiation and differentiates between stream and non-stream pixels. The AT is strongly
affected by topography, geomorphology, geology, climate, vegetation, and human influence [40,90].
The determination of the AT is a matter of debate, but utilizing a constant value for delineating
DEM-based channels network has been well-accepted among different researchers [32,91]. Most GIS
software used 1% of the maximum flow accumulation value as a default to determine the AT [92].
Orlandini et al. 2011 [86] specified the AT by comparing the predicted and observed channel heads
determined from LiDAR DEM and field measurements, respectively. Tarboton et al. 1991 [37] extracted
channel networks of high density from DEMs that satisfy the scaling laws computed from the contour
DEMs-derived networks (blue lines). Tribe 1992 [90] selected the optimum AT when there was a
close match between the channel networks extracted from DEMs and manually drawn blue lines.
Jones 2002 [93] visually determined the flow accumulation support AT by a trial and error approach.

The channel network extracted from LiDAR DEM had higher accuracy than that delineated from
contour-based DEM [25]. The Google Earth Pro tool provides rich spatial details for determining
individual objects [94]. Therefore, it is widely and efficiently used in different remote sensing
applications, in particular for land use/cover mapping (e.g., Reference [94–96]). In this study, we
used the approach of a trial and error [93] with a subsequent visual verification using Google Earth
imagery to detect 4 ATs to test our method for evaluating the horizontal accuracy of channel networks.
The ATs were equal to at least 0.004 km2, 0.008 km2, 0.012 km2, and 0.016 km2, and 0.020 km2,
0.041 km2, 0.061 km2, and 0.081 km2 for spatial resolutions of 12.5 m and 28.5 m, respectively. The ATs
corresponded to at least 25, 50, 75, and 100 pixels at spatial resolutions of 12.5 m and 28.5 m. Applying
the predetermined threshold values to the flow accumulation grid, the real channels of the network
began to be defined. We then converted the extracted channel grids to vector layers and then exported
them to keyhole markup language (KML) format to visually check the quality of the extracted channels
using Google Earth Pro. The delineated channels were well matched with the actual watercourses
of Google Earth 3-D imagery. To obtain the equivalent AT values among multiple DEM grids with
different spatial resolutions, we used a simple derived mathematical relationship as follows:

CAT =

(
LRD
HRD

)2
×OAT, (3)

where CAT is the comparable area threshold that needs to be estimated; LRD is the lower-resolution
DEM (test DEM); HRD is the higher-resolution DEM (reference DEM); and OAT is the original area
threshold based on which the channel network/orders were extracted.

Finally, we generated the channel segment links with unique identifications by using the most
common [34] stream order designation method (i.e., the Strahler method [97], modified from Horton
1945 [98]), which was applied to delineate the order of stream segments in the network. The channel
order is in direct proportion to the channel size, watershed dimension, and discharge of water and
sediments [97]. The Strahler ordering approach [97] assigned a numeric order for each channel
segment based on a hierarchy of tributaries. In this method, the unbranched fingertip tributaries are
designated as first order, and the order increases to the next higher one when branches of the same
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orders are joined. For instance, the joining of 2 first-order channels at a specific point will generate a
second-order channel (Figure 3a,b), and so on. The stream ordering method can be simplified using
the following relationships:

OrderA “v” OrderB = OrderA or B If A = B, (4)

OrderA “v” OrderB = OrderHighest of A & B If A 6= B, (5)

where A and B denote the numbers of channel orders and “v” refers to the joining between 2 channels.
The trunk stream through which water and sediments discharge downstream was assigned the highest
order [97].

3.4. Developing ArcGIS Python Toolbox for Geometric Assessment of Channel Networks

We developed a new Python toolbox for ArcGIS for the purpose of pixel-based geometric
evaluation of the channel networks/orders derived from open-source global DEMs based on those
extracted from LiDAR DTMs/DSMs. The availability of numerous GIS software packages enabled the
extraction of channel networks from remote sensing-based DEMs such as ArcGIS [85], Geographic
Resources Analysis Support System (GRASS) GIS [99], and Quantum GIS [100]. In this study, we used
the ArcGIS environment to introduce our toolbox, because ArcGIS and its powerful geoprocessing
toolboxes have been widely used by different authors in different hydrological and geomorphological
related research (e.g., References [57,66,101]).

Accuracy assessment is a mandatory step in evaluating the results of different remote sensing
related studies [102,103]. Users with different applications should be able to assess whether the
accuracy of their outcomes (e.g., map) fits their objectives [104]. In the remote sensing literature,
the confusion matrix is the most commonly endorsed and utilized method (i.e., the core) of the
accuracy assessment [102,103]. It consists of a simple cross-tabulation that introduces the foundation
to define the classification accuracy and characterize errors (Tables 2 and 3). It has been widely
used by different authors to evaluate the accuracy of different remote sensing-based models (e.g.,
fragmented agricultural landscapes [105], automatic classification of LiDAR datasets in an urban
area [106], global climatic maps [107], object extraction [108], change detection [109], and land
cover/use classifications [110–112]).

In this study, the calculated two-class (Figure 3c and Table 2) and multiclass (Figure 3d and
Table 3) confusion matrices arranged the channel networks (Table 2), and channel orders (Table 3) of
the reference data in the rows and the test datasets in the columns. The PBTVs (Figure 4) around the
LiDAR DTMs/DSMs 12.5 m and 28.5 m-derived networks/orders were set to 0, 1, 2, and 3 pixels,
to detect the horizontal matching with those derived from global DEMs in both ±X and ±Y directions
and at comparable spatial resolutions.
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In general, a confusion matrix is a statistical technique for summarizing the performance of a
classification algorithm [113,114]. In this study, an N × N error matrix (Figure 3 and Table 2) was used
to geometrically evaluate the channel networks, where N is equal to the number of classes (whole
channel networks) in the case of the simplest 2 × 2 array (Table 2). When separately evaluating the
channels having the same order, N was equal to the number of classes (orders) (Table 3). Each row and
column of the matrix corresponds to the test (one of the global DEMs-derived networks/orders) and
reference (one of the LiDAR DTMs/DSMs-based networks/orders) classes, respectively. The counts
of correct and incorrect agreements (i.e., disagreements) were then filled into the confusion matrices
(Tables 2 and 3).

The results of the geometric evaluation of the channel networks/orders derived from global DEMs
(test data) and LiDAR DTMs/DSMs (reference data) were arranged in a matrix format (Tables 2 and 3)
with the following 4 outcomes: (i) True positive (TP), where the matched pixels were correctly classified
as the same channel segment of the networks/orders of both test and reference datasets, (ii) true
negative (TN), where co-located pixels were correctly classified as non-channel networks/orders of
both test and reference classes (iii) false positive (FP), where pixels of the test data were unmatched
with the reference data (i.e., the test pixels corresponded to a channel of another order or to the
background), and (iv) false negative (FN), where pixels of the reference data were incorrectly matched
by the test data (i.e., the reference pixels corresponded to the background or to a channel belonging to
another order).

Table 2. Outcomes of classification matrix resulting from comparing a LiDAR DTM/DSM-derived
channel network (reference class) and a global DEM-based network (test class); where Net
denotes network.

Test Class

Reference Class Net0 Net1

Net0
Net0,0 (TN) = Number of Net0
pixels classified correctly as Net0

Net0,1 (FP) = Number of Net0
pixels classified incorrectly as Net1

Net1
Net1,0 (FN) = Number of Net1
pixels classified incorrectly as Net0

Net1,1 (TP) = Number of Net1
pixels classified correctly as Net1

Table 3. Outputs of multiclass error matrix resulting from comparing a LiDAR DTM/DSM (reference
data)-derived channel orders and a global DEM (test data)-based orders with a channel having a higher
order of n; where Ord denotes channel order and B0 refers to the background of 0 value.

Test Data
Global DEMs-Based Channel Orders

B_0 Ord_1 Ord_2 Ord_3 Ord_4 Ord_5 Ord_n

R
ef

er
en

ce
D

at
a

B_0 B0, B0 B0, Ord1 B0, Ord2 B0, Ord3 B0, Ord4 B0, Ord5 B0, Ordn

Li
D

A
R

D
TM

/D
SM

-b
as

ed
O

rd
er

s

Ord_1 Ord1, B0 Ord1,1 (TP) Ord1,2 Ord1,3 Ord1,4 Ord1,5 Ord1,n

Ord_2 Ord2, B0 Ord2,1 Ord2,2 (TP) Ord2,3 Ord2,4 Ord2,5 Ord2,n

Ord_3 Ord3, B0 Ord3,1 Ord3,2 Ord3,3 (TP) Ord3,4 Ord3,5 Ord3,n

Ord_4 Ord4, B0 Ord4,1 Ord4,2 Ord4,3 Ord4,4 (TP) Ord4,5 Ord4,n

Ord_5 Ord5, B0 Ord5,1 Ord5,2 Ord5,3 Ord5,4 Ord5,5 (TP) Ord5,n

Ord_n Ordn, B0 Ordn,1 Ordn,2 Ordn,3 Ordn,4 Ordn,5 Ordn,n (TP)
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The auto-extracted channel networks/orders from global DEM grids were geometrically evaluated
using those derived from LiDAR DTMs and DSMs at similar spatial resolutions. The maximum PBTVs
around each channel segment-based reference LiDAR DTMs/DSMs were set to 0, 1, 2, and 3 pixels
(Figure 4). These PBTVs were equal to horizontal distances of 0 m, 12.5 m, 25 m, and 37.5 m, and 0 m,
28.5 m, 57 m, and 86.5 m, at spatial resolutions of 12.5 m and 28.5 m, respectively. Our developed
algorithm was first checked for the matched co-located non-classified or classified (i.e., ordered)
channels’ pixels (i.e., a PBTV of 0) from the test data with respect to the reference datasets. If there
were no more matched pixels, the algorithm kept running to locate the closest horizontal matching
between the remainder of the deviated pixels within the subsequent nearest 1-pixel, 2- pixels, and
3-pixels neighbors with respect to the reference datasets (i.e., PBTV of 1 to 3 pixels) (Figure 4).

3.5. Categorical Performance Measures for Assessing the Horizontal Accuracy of Channel Networks/Orders

In this study, we derived different evaluation measures, such as producer accuracy (PA), user
accuracy (UA), F-score (F), and Cohen’s kappa index (KI), from the error matrices at different ATs
and PBTVs to quantify the reliability and accuracy of the matching between networks/orders. Many
studies have used these measures to evaluate the accuracy of various remote sensing datasets and
models (e.g., References [106,108,115,116]).

The PA and UA [114] were calculated using the marginal row or column of the matrix, respectively.
PA (i.e., row values) was computed considering the agreement of a particular class with the summation
of all classes in that row (Tables 2 and 3). The rows of the table represent the actual class (global
DEM-derived network/orders), while the columns represent the test class (LiDAR DTM/DSM-based
network/orders). TP and TN (Tables 2 and 3) denote the correctly classified pixels, while FP and FN
represent the incorrectly classified cells.

UA (i.e., column values) was similarly calculated, but with respect to the summation of all classes
in that column (Tables 2 and 3). PA and UA represent measures of completeness and correctness,
respectively. The difference between PA and UA lies in the definitions of how well the channel
networks/orders can be matched (PA) versus how reliable the matching accuracy is (UA). Therefore,
both PA and UA are of interest and considered as important accuracy metrics. In particular, the
accuracy of each channel order using PA and UA is useful in determining how different models
perform (see Congalton 1991 [102] and Stehman 1997 [117]) for an in-depth discussion). In Table 3,
for channels of order 1 (i.e., Ord_1 class), the TP, FN, FP, and TN outcomes were labeled in yellow,
green, orange, and gray, respectively. In other words, the total number of FN outputs for an Ord_1 (i.e.,
channels that had the order of 1) (Table 3) equalled the summation of values in the corresponding row,
excluding the TP. If a channel pixel of order 1 was located in the reference class (LiDAR DEM-based
orders), and no corresponding channel pixel of the same order was reported in the test data (global
DEM-based orders) (i.e., a channel of another order or a background pixel of 0 value was recorded),
this cell was assigned the value of (1, the other order recorded in the test data) or (1, 0) in the error
matrix, respectively. In the same way, the total number of the FP outcomes for an Ord_1 (Table 3)
equalled the summation of values in the corresponding column, excluding the TP. If a channel pixel of
order 1 was not located in the reference data, but was recorded in the test data, this cell was assigned
the value of (0, the other order recorded in the test data) or (0, 1), in the matrix.

The F metric represents the harmonic mean (i.e., weighted average) of PA and UA [118].
It measures the accuracy of the compared whole networks, as well as the channels with the same
order. The F value provides the balance between precision (UA) and recall (PA). Therefore, it takes
both FP and FN into account, and it addresses how similar the PA and UA values are. The F-score can
summarize UA and PA into a single value, which makes it simple to determine the level of matching
between the networks/orders extracted from different DEMs at different ATs and PBTVs.

The higher the PA, UA, and F values, the better the performance of the matching between the
channel networks/orders. A score of 1 means perfect matching. The lowest possible score of the PA,
UA, and F is 0, which denotes no horizontal matching between the networks/orders.



Remote Sens. 2019, 11, 235 13 of 33

The KI is a measure of the overall agreement of a matrix, calculating the proportion of agreement
beyond chance agreement and expected disagreement [119]. It was introduced to the remote sensing
community in the early 1980s [113,120] and has become a widely accepted measure for classification
accuracy [102]. The KI provides an overall assessment of the accuracy of the classification [121]. It has
a negative value if the chance agreement increases, a positive value if the strength of the agreement
increases, and a value of zero when the agreement between reference and test datasets equal the chance
agreement (i.e., no agreement) [122]. The KI uses both the overall accuracy of the model and the
accuracy within each class; therefore, it has the advantage of statistically comparing two classification
outcomes. In contrast to the overall accuracy [113], the KI takes the non-diagonal elements into
consideration as expressed by Equation (9) [119]. The equations for computing PA [114], UA [114], KI,
and F [118] are as follows:

PA =
TP

(TP + FN)
(6)

UA =
TP

(TP + FP)
(7)

F =
2× TP

(2× TP + FP + FN)
(8)

KI =
N ∑m

i=1 sii −N ∑m
i=1(si+ × s+i)

N2 −∑m
i=1(si+ × s+i)

. (9)

where m is the numbers of rows; sii is the numbers of channel network/order pixels in row i and
column i (on the major diagonal); si+ is the total number of the channel network/order pixels in row i;
s+i is the total number of the observations in column i; and N is the total number of observations.

4. Results

4.1. Traditional Statistical Indices for Evaluating the Vertical Height Accuracy of Global DEMs

We assessed the vertical accuracies of the global DEMs (SRTM DEM V003 28.5 m, ALOS DSM
28.5 m, and PALSAR DEMs 12.5 m and 28.5 m) by computing the per-pixel difference with the LiDAR
DTMs/DSMs at similar spatial details. The continuous elevation differences were generated and
pairwise RMSE and MD values were calculated for each error surface in meters (Figure 5). In general,
LiDAR DTMs and DSMs had higher elevation values than PALSAR DEMs with spatial resolutions of
12.5 m and 28.5 m. We observed significant positive height differences in the northwestern part of the
study area, comparing the PALSAR DEM 12.5 m to LiDAR DTM and DSM (Figure 5c,d). Negative
elevation differences were dominant in the comparison between SRTM DEM 28.5 m and ALOS DSM
28.5 m against LiDAR DTM 28.5 m and DSM 28.5 m, respectively.

Based on the comparison results using LiDAR DTM (Table 4), the PALSAR DEM 12.5 m reported
the lowest overall RMSE of 4.57 m. The ALOS DSM 28.5 m and PALSAR DEM 28.5 m provided
acceptable RMSE values of approximately 4.6 m and 4.9 m, respectively. The SRTM DSM ranked last,
with the lowest accuracy and the highest RMSE of 5.172 m. The ALOS DSM 28.5 m showed better
vertical accuracy, with RMSE of 4.012 m than the SRTM DEM 28.5 m and PALSAR DEMs 12.5 m and
28.5 m when compared to the LiDAR DSMs at comparable spatial resolution, with RMSE values of
4.53 m, 5.19 m, and 5.43 m, respectively.
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Figure 5. Elevation surface differences between: (a) LiDAR DTM and PALSAR DEM 28.5 m, (b) LiDAR
DSM and PALSAR DEM 28.5 m, (c) LiDAR DTM and PALSAR DEM 12.5 m, (d) LiDAR DSM and
PALSAR DEM 12.5 m, (e) LiDAR DTM and SRTM DEM 28.5 m, (f) LiDAR DSM and SRTM DEM
28.5 m, (g) LiDAR DTM and ALOS DSM 28.5 m, and (h) LiDAR DSM and ALOS DSM 28.5 m.

Table 4 shows four positive MD values, with PALSAR DEMs with spatial resolutions of 12.5 m
and 28.5 m overestimating the LiDAR DTMs 12.5 m and 28.5 m by 0.78 m and 1.93 m, respectively.
In addition, the ALOS DSM 28.5 m showed the lowest MD (−0.29 m) when compared to LiDAR DSM
28.5 m. Furthermore, the SRTM DEM 28.5 m ranked last when compared to LiDAR DTM 28.5 m with
an MD of −2.66 m. The differences between the remote sensing-based elevation products were likely
due to the nature and capabilities of the acquired sensors and generation algorithms [69]. On the other
hand, four negative MD values were recorded (Table 4) in the evaluation of SRTM DEM 28.5 m and
ALOS DSM 28.5 m using LiDAR DTM 28.5 m and DSM 28.5 m. SRTM DEM 28.5 m and ALOS DSM
28.5 m underestimated the elevation values of LiDAR DTM and DSM, respectively. The best-matched
elevation values were recorded in the comparison of ALOS DSM 28.5 m against LiDAR DSM, with an
MD value of −0.29 m.

Table 4. Statistical vertical differences between global DEMs and LiDAR DTMs/DSMs expressed in
terms of RMSE and MD in m.

Reference Data Test Data Spatial Resolution RMSE (m) MD (m)

LiDAR DTM ALOS DSM 28.5 m 4.695 −1.260
LiDAR DTM SRTM DEM 28.5 m 5.172 −2.655
LiDAR DTM PALSAR DEM 28.5 m 4.988 0.952
LiDAR DTM PALSAR DEM 12.5 m 4.571 0.777
LiDAR DSM ALOS DSM 28.5 m 4.012 −0.288
LiDAR DSM SRTM DEM 28.5 m 4.537 −1.699
LiDAR DSM PALSAR DEM 28.5 m 5.434 1.929
LiDAR DSM PALSAR DEM 12.5 m 5.186 1.741

4.2. Horizontal Evaluation of the Channel Networks

We evaluated the whole networks using the four categorical measures (PA, UA, F, and KI)
derived from the two-class pixel-based confusion matrix outcomes (Table 2 and Figure 3c). The flow
accumulation ATs were set to correspond to at least 25, 50, 75, and 100 pixels. Figure 6 shows some
examples of the outcomes of the confusion matrices (TP, FP, TN, and FN) resulting from comparing
the whole networks extracted from global DEMs based on those derived from LiDAR DTMs/DSMs.
In general, the values of these metrics were improved with the increase the PBTVs from 0 to 3 pixels.
Slight differences were recorded among these measures in the comparison between networks extracted
from global DEMs 28.5 m and LiDAR DTM/DSM 28.5 m at comparable ATs and PBTVs (Tables 5–8).
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Figure 6. Confusion matrix outcomes resulting from comparing channel networks extracted from:
(a,b) LiDAR DTM and PALSAR DEM 12.5 m at an area threshold (AT) corresponding to 25 pixels and
pixel buffer tolerance value (PBTV) of 0 and 3 pixels, respectively; (c,d) LiDAR DSM and PALSAR DEM
12.5 m using an AT corresponding to 25 pixels and PBTV of 0 and 3 pixels, respectively; (e,f) LiDAR
DTM and PALSAR DEM 28.5 m using an AT corresponding to 100 pixels and PBTV of 0 and 3 pixels,
respectively, and (g,h) LiDAR DSM and PALSAR DEM 28.5 m using an AT corresponding to 100 pixels
and PBTV of 0 and 3 pixels, respectively.

In general, the values of these metrics were improved with the increase the PBTVs from 0 and
up to 3 pixels. Slight differences were recorded among these measures in the comparison between
networks extracted from global DEMs 28.5 m and LiDAR DTMs and DSMs at comparable ATs and
PBTVs (Tables 5–8).

Table 5. Performance accuracy metrics computed based on a comparison between whole channel
networks/orders extracted from the LiDAR DTM/DSM 28.5 m and the ALOS DSM 28.5 m at different
ATs expressed in the corresponding number of pixels and PBTV in pixels.

Reference
LiDAR-Based

Net
DTM DSM DTM DSM DTM DSM DTM DSM

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100
PA_Net 0.505 0.518 0.938 0.929 0.453 0.476 0.916 0.919
UA_Net 0.483 0.506 0.897 0.907 0.456 0.476 0.920 0.919

F_Net 0.494 0.512 0.917 0.918 0.455 0.476 0.918 0.919
KI_Net 0.431 0.444 0.907 0.907 0.423 0.446 0.913 0.914

KI_Ords 0.389 0.403 0.766 0.766 0.395 0.419 0.816 0.827
PA_Ord1 0.423 0.417 0.751 0.733 0.426 0.439 0.771 0.784
PA_Ord2 0.371 0.380 0.588 0.581 0.382 0.425 0.736 0.757
PA_Ord3 0.354 0.389 0.605 0.610 0.287 0.345 0.638 0.680
PA_Ord4 0.294 0.340 0.544 0.563 0.280 0.262 0.585 0.627
PA_Ord5 0.222 0.147 0.452 0.347 0.113 0.160 0.437 0.564
PA_Ord6 0.057 0.178 0.179 0.377
UA_Ord1 0.385 0.393 0.683 0.691 0.432 0.443 0.781 0.790
UA_Ord2 0.372 0.381 0.590 0.583 0.379 0.416 0.730 0.742
UA_Ord3 0.360 0.399 0.616 0.626 0.287 0.334 0.637 0.659
UA_Ord4 0.316 0.315 0.585 0.521 0.251 0.273 0.523 0.652
UA_Ord5 0.135 0.195 0.275 0.460 0.143 0.187 0.554 0.659
UA_Ord6 0.167 0.280 0.520 0.593

For the evaluation using the networks extracted from LiDAR DTM 28.5 m, the networks derived
from PALSAR DEM 28.5 m (Table 7) reported the highest performance measure values. There
were a few insignificant exceptions where the ALOS DSM 28.5 m-based network (Table 5) slightly
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outperformed that derived from PALSAR DEM 28.5 m (Table 7) using a PBTV of 3. The PA, UA, F,
and KI values computed in the assessment of the PALSAR DEM 28.5 m-based network (Table 7) were
higher than those estimated from evaluating the ALOS DSM 28.5-derived network (Table 5) by 0.025,
0.064, 0.045, and 0.052 and 0.056, 0.081, 0.068, and 0.073, respectively, using a PBTV of 0 and ATs
corresponding to 25 and 100 pixels. Additionally, using the previously mentioned conditions, but
employing a PBTV of 3, the differences were −0.039, 0.029, −0.005, and −0.005 and −0.025, 0.019,
−0.003, and −0.003, respectively.

The SRTM DEM-derived network ranked third in comparison with the LiDAR DTM 28.5 m-based
network (Table 6). Employing the previously mentioned conditions, the measures were 0.910, 0.891,
0.900, and 0.887 and 0.891, 0.912, 0.902, and 0.896, respectively, in the comparison between networks
extracted from SRTM DEM and LiDAR DTM (Table 6). The performance metrics calculated from
comparing the networks delineated from PALSAR DEM and LiDAR DTM at a spatial resolution of
28.5 m (Table 7) were higher than those reported at spatial details of 12.5 m (Table 8) by average values of
0.068 and 0.075 using a comparable PBTV of 3 and ATs corresponding to 25 and 100 pixels, respectively.

Table 6. Performance accuracy metrics computed based on a comparison between whole channel
networks/orders extracted from the LiDAR DTM/DSM 28.5 m and the SRTM DEM 28.5 m at different
ATs expressed in the corresponding number of pixels and PBTV in pixels.

Reference
LiDAR-Based

Net
DTM DSM DTM DSM DTM DSM DTM DSM

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100
PA_Net 0.429 0.439 0.910 0.905 0.384 0.406 0.891 0.895
UA_Net 0.420 0.438 0.891 0.904 0.394 0.414 0.912 0.913

F_Net 0.425 0.438 0.900 0.905 0.389 0.410 0.902 0.904
KI_Net 0.354 0.369 0.887 0.892 0.354 0.377 0.896 0.898

KI_Ords 0.305 0.319 0.721 0.725 0.326 0.348 0.793 0.797
PA_Ord1 0.311 0.311 0.675 0.667 0.355 0.369 0.759 0.764
PA_Ord2 0.300 0.310 0.534 0.523 0.322 0.338 0.675 0.670
PA_Ord3 0.287 0.311 0.499 0.500 0.188 0.239 0.515 0.529
PA_Ord4 0.190 0.293 0.422 0.501 0.203 0.245 0.683 0.679
PA_Ord5 0.109 0.130 0.343 0.317 0.115 0.147 0.522 0.603
PA_Ord6 0.101 0.110 0.336 0.407
UA_Ord1 0.298 0.308 0.647 0.662 0.353 0.364 0.753 0.754
UA_Ord2 0.298 0.307 0.529 0.518 0.349 0.361 0.730 0.716
UA_Ord3 0.315 0.345 0.550 0.554 0.233 0.288 0.639 0.638
UA_Ord4 0.193 0.256 0.428 0.437 0.132 0.184 0.443 0.512
UA_Ord5 0.056 0.145 0.176 0.355 0.144 0.170 0.654 0.697
UA_Ord6 0.147 0.087 0.488 0.321

Using different PBTVs and ATs, the metrics computed from comparing networks extracted from
ALOS and LiDAR DSM 28.5 m (Table 5) were almost equal to those reported from evaluating networks
derived from ALOS DSM and LiDAR DTM 28.5 m (Table 5), with a maximum absolute difference of
0.024. The channel network-based ALOS DSM 28.5 m (Table 5) reported the best evaluation metrics
when compared to that extracted from LiDAR DSM. The PALSAR DEM 28.5 m and SRTM DEM 28.5 m
(Table 6)-derived networks ranked second and third in accuracy performance when compared to the
LiDAR DSM 28.5 m-based network.

The average of the differences between the performance measures reported from comparing the
network delineated from ALOS DSM 28.5 m (Table 5) against networks extracted from PALSAR DEM
28.5 m (Table 7) and SRTM DEM 28.5 m (Table 6) was 0.006 and 0.016, and 0.074 and 0.014 using an
AT corresponding to 25 pixels and PBTV of 0 and 3, respectively. Under the previously mentioned
conditions, but with using an AT corresponding to 100 pixels, the average of differences was 0.012 and
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0.018, and 0.066 and 0.015, respectively. The PALSAR DEM 12.5 m-derived channel network (Table 8)
reported the lowest accuracy measures compared to that extracted from LiDAR DSM.

4.3. Performance Evaluation Metrics of the Geometric Assessment of Channel Orders

We computed three performance measures (PA, UA, and KI) using the outcomes of the multiclass
error matrices (Figure 3d and Table 3) derived from the comparison between channels of similar orders
(Tables 5–8).

In general, comparing the PALSAR DEM 28.5 m and LiDAR DTM 28.5 m-derived orders (Table 7)
at similar ATs and PBTVs showed the best evaluation measures with few exceptions. Using a PBTV
of 3 and an AT corresponding to 100 pixels, the estimated PA and UA values for channels of orders
1, 2, 3, 4, and 5 were equal to 0.790, 0.699, 0.691, 0.568, and 503 and 0.806, 0.809, 0.682, 0.548, 0.742,
respectively (Table 7). Using the previously mentioned conditions, the measures computed from
assessing the orders extracted from PALSAR DEM (Table 7) were slightly higher than those estimated
from evaluating orders derived from ALOS DSM (Table 5) and SRTM DEM (Table 6), when compared
to the LiDAR DTM 28.5 m-based orders with absolute differences ranging from 0.017 to 0.188 and from
0.025 to 0.177, respectively. The estimated KIs per orders using a PBTV of 3 confirmed the previous
results, since they were equal to 0.766, 0.721, and 0.769 and 0.816, 0.793, and 0.828 in the evaluation
of orders delineated from ALOS DSM (Table 5), SRTM DEM (Table 6), and PALSAR DEM (Table 7)
using those extracted from LiDAR DTM 28.5 m at ATs corresponding to 25 and 100 pixels, respectively.
The average of the differences between the PA and UA values for channels of orders 1 to 5 resulting
from comparing orders delineated from PALSAR DEM 28.5 m (Table 7) and LiDAR DTM was 0.184 and
0.181 using an AT corresponding to 25 pixels and PBTV of 0 and 3, respectively. Using the previously
mentioned conditions, but with an AT corresponding to 100 pixels, the average of differences was 0.266
and 0.300, respectively (Table 7). The PA and UA values estimated from evaluating orders extracted
from PALSAR DEM 28.5 m (Table 7) were higher than those computed from assessing PALSAR DEM
12.5 m-derived orders (Table 8), when compared to those delineated from LiDAR DTMs, at equivalent
spatial resolutions, with average values of 0.117 and 0.123 at an AT corresponding to 100 pixels,
respectively. In addition, the estimated KI from evaluating orders delineated from PALSAR DEM
28.5 m was higher than that reported from assessing orders derived from PALSAR DEM 12.5 m when
compared to LiDAR DTMs by difference values of 0.127 and 0.112 utilizing a PBTV of 3 and ATs
corresponding to 25 and 100 pixels, respectively.

The performance metrics of the orders derived from ALOS DSM 28.5 m (Table 5) had the highest
accuracy when compared to those extracted from LiDAR DTM. Employing a PBTV of 3 and an AT
corresponding to 25 pixels, the PA and UA values calculated from comparing ALOS and LiDAR
DSMs-derived channels having orders of 1 to 6 were equal to 0.733, 0.581, 0.610, 0.563, 0.347, and 0.377
and 0.691, 0.583, 0.626, 0.521, 0.460, and 0.593, respectively (Table 5). Using a PBTV of 3 and an AT
corresponding to 100 pixels, the differences between the PA values of channels having orders 1 to
5 reported from evaluating ALOS DSM 28.5 m (Table 5) and those derived from SRTM DEM (Table 6)
and PALSAR DEM (Table 7) were 0.020, 0.087, 0.151, −0.052, and −0.040 and 0.015, 0.067, 0.037, 0.135,
and 0.127, respectively, when compared to those derived from LiDAR DSM 28.5 m. Additionally, the
UA differences for channels of orders 1 to 5 were 0.036, 0.025, 0.022, 0.140, and 0.039 and 0.009, −0.047,
0.043, 0.101, and 0.066, respectively. There were minor exceptions where the performance of orders
delineated from SRTM DEM 28.5 m (Table 6) exceeded that of PALSAR DEM 28.5 m-derived orders
(Table 7), particularly for PA values of orders 4 and 5 and UA of order 5, using an AT corresponding to
100 pixels and PBTV of 0 and 3, respectively. The estimated KIs per orders assured the previous results,
since they were equal to 0.766, 0.725, and 0.749 and 0.827, 0.797, and 0.806, respectively, when assessing
orders delineated from ALOS DSM (Table 5), SRTM DEM (Table 6), and PALSAR DEM (Table 7) based
on those extracted from LiDAR DSM using a PBTV of 3 and ATs corresponding to 25 and 100 pixels.
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Table 7. Performance accuracy metrics computed based on a comparison between whole
networks/orders extracted from the LiDAR DTM/DSM 28.5 m and the PALSAR DEM 28.5 m at
different ATs expressed in the corresponding number of pixels and PBTV in pixels.

Reference
LiDAR-Based

Net
DTM DSM DTM DSM DTM DSM DTM DSM

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100
PA_Net 0.530 0.491 0.899 0.880 0.509 0.452 0.892 0.880
UA_Net 0.547 0.517 0.927 0.926 0.537 0.475 0.940 0.923

F_Net 0.538 0.504 0.913 0.902 0.523 0.463 0.915 0.901
KI_Net 0.483 0.444 0.902 0.890 0.496 0.433 0.910 0.895

KI_Ords 0.440 0.404 0.769 0.749 0.471 0.409 0.828 0.806
PA_Ord1 0.438 0.414 0.731 0.695 0.475 0.428 0.790 0.769
PA_Ord2 0.407 0.370 0.585 0.555 0.430 0.410 0.699 0.690
PA_Ord3 0.403 0.368 0.576 0.546 0.437 0.336 0.691 0.643
PA_Ord4 0.404 0.340 0.570 0.541 0.360 0.176 0.568 0.492
PA_Ord5 0.355 0.147 0.466 0.341 0.221 0.112 0.503 0.436
UA_Ord1 0.433 0.424 0.722 0.712 0.484 0.434 0.806 0.781
UA_Ord2 0.436 0.396 0.626 0.595 0.497 0.469 0.809 0.788
UA_Ord3 0.476 0.437 0.679 0.649 0.431 0.322 0.682 0.617
UA_Ord4 0.402 0.292 0.568 0.464 0.347 0.197 0.548 0.551
UA_Ord5 0.186 0.168 0.244 0.390 0.325 0.153 0.742 0.593

4.4. Effect of Global DEM Spatial Resolution on the Evaluation of Channel Networks/Orders

Although the previously mentioned results, the PALSAR DEM 12.5 m-derived channel network
and Strahler orders (Table 8) was still the most accurate and had the best agreement with those
extracted from LiDAR DTM, with taking into the account the fine spatial resolution it had.

Table 8. Performance accuracy metrics computed based on the comparison between whole
networks/orders extracted from the LiDAR DTM/DSM 12.5 m and the PALSAR DEM 12.5 m at
different ATs expressed in the corresponding number of pixels and PBTVs in pixels.

Reference
LiDAR-Based

Net
DTM DSM DTM DSM DTM DSM DTM DSM

PBTV_AT 0_25 0_25 3_25 3_25 0_100 0_100 3_100 3_100
PA_Net 0.378 0.347 0.852 0.831 0.331 0.291 0.813 0.782
UA_Net 0.367 0.345 0.826 0.825 0.354 0.318 0.870 0.853

F_Net 0.373 0.346 0.838 0.828 0.342 0.304 0.841 0.816
KI_Net 0.294 0.263 0.817 0.805 0.305 0.265 0.832 0.805

KI_Ords 0.243 0.218 0.643 0.627 0.275 0.239 0.716 0.686
PA_Ord1 0.250 0.229 0.607 0.579 0.271 0.243 0.661 0.623
PA_Ord2 0.221 0.200 0.422 0.399 0.248 0.215 0.544 0.507
PA_Ord3 0.212 0.194 0.382 0.375 0.219 0.188 0.497 0.499
PA_Ord4 0.208 0.189 0.386 0.391 0.216 0.188 0.475 0.484
PA_Ord5 0.215 0.189 0.381 0.380 0.191 0.074 0.462 0.240
PA_Ord6 0.233 0.088 0.412 0.217 0.253 0.062 0.625 0.192
PA_Ord7 0.253 0.144 0.515 0.313
UA_Ord1 0.223 0.209 0.543 0.528 0.273 0.254 0.667 0.652
UA_Ord2 0.224 0.214 0.428 0.426 0.270 0.245 0.591 0.577
UA_Ord3 0.237 0.229 0.428 0.442 0.256 0.230 0.581 0.610
UA_Ord4 0.241 0.227 0.448 0.470 0.279 0.177 0.616 0.454
UA_Ord5 0.263 0.176 0.466 0.355 0.227 0.090 0.548 0.293
UA_Ord6 0.264 0.112 0.467 0.277 0.274 0.155 0.676 0.481
UA_Ord7 0.274 0.155 0.557 0.335
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We used an AT corresponding to 519 pixels (equivalent to an AT corresponding to 100 pixels at a
spatial resolution of 28.5 m) using Equation (3) to compare the channel network and orders extracted
from PALSAR DEM versus those derived from LiDAR DTM 12.5 m (Table 9). It was found that the
calculated performance measures were improved. These measures were found to be closer to those
estimated from the comparison between networks extracted from ALOS DSM (Table 5) and PALSAR
DEM (Table 7) with that delineated from LiDAR DTM 28.5 m. Furthermore, the differences between
PA and UA values resulted from comparing channels of orders 1 to 5 delineated from PALSAR DEM
12.5 m, PALSAR DEM 28.5 m, and ALOS DSM 28.5 m were 0.020, −0.026, 0.151, −0.005, and 0.081
and 0.002, 0.011, 0.098, 0.011, and 0.014, respectively, when compared to those derived from LiDAR
DTMs using a PBTV of 3 and ATs corresponding to 519 and 100 for spatial resolutions of 12.5 m and
28.5 m, respectively (Table 9). Additionally, the UA differences for channels of orders 1 to 5 were
−0.064, −0.072, −0.022, −0.002, and 0.195 and −0.088, −0.151, −0.068, −0.026, and 0.007, respectively
(Table 9). Moreover, the KI differences were 0.061 and −0.052 using the same previously mentioned
conditions (Table 9).

Table 9. Performance metrics computed based on the comparison between networks/orders extracted
from LiDAR DTMs and global DEMs at different ATs expressed in the corresponding number of pixels,
PBTV in pixels, and spatial resolution in m.

Reference Nets LiDAR DTMs-Based Nets

Test Nets PALSAR DEMs-based Nets ALOS
DSM-based Net

SRTM
DEM-based Net

Spatial
Resolution 12.5 m 12.5 m 12.5 m 28.5 m 28.5 m 28.5 m

PBTV_AT 3_519 3_25 3_100 3_100 3_100 3_100
PA_Net 0.804 0.852 0.813 0.892 0.916 0.891
UA_Net 0.900 0.826 0.870 0.940 0.920 0.912

F_Net 0.849 0.838 0.841 0.915 0.918 0.902
KI_Net 0.846 0.817 0.832 0.910 0.913 0.896

KI_Ords 0.776 0.643 0.716 0.828 0.816 0.793
PA_Ord1 0.792 0.607 0.661 0.790 0.771 0.759
PA_Ord2 0.710 0.422 0.544 0.699 0.736 0.675
PA_Ord3 0.789 0.382 0.497 0.691 0.638 0.515
PA_Ord4 0.580 0.386 0.475 0.568 0.585 0.683
PA_Ord5 0.518 0.381 0.462 0.503 0.437 0.522
PA_Ord6 0.412 0.625
PA_Ord7 0.515
UA_Ord1 0.717 0.543 0.667 0.806 0.781 0.753
UA_Ord2 0.658 0.428 0.591 0.809 0.730 0.730
UA_Ord3 0.615 0.428 0.581 0.682 0.637 0.639
UA_Ord4 0.522 0.448 0.616 0.548 0.523 0.443
UA_Ord5 0.749 0.466 0.548 0.742 0.554 0.654
UA_Ord6 0.467 0.676
UA_Ord7 0.557

In the comparison of channel network and orders extracted from PALSAR DEM 12.5 m with
those derived from LiDAR DTM at an AT corresponding to 100 pixels, we found that the performance
metrics started to noticeably improve after utilizing only one pixel as a buffer tolerance. This means
that we would only need to approximately deviate one pixel (corresponding to a horizontal distance
of 12.5 m) to directly gain an obvious improvement in the matching accuracy. A horizontal offset of
three pixels (corresponding to a horizontal distance of 87.5 m) was required to achieve an apparent
enhancement in matching during the assessment of the networks/orders extracted from ALOS DSM
and PALASR DEM based on those delineated from LiDAR DTM at a spatial resolution of 28.5 m
(Table 9).
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4.5. Characterizing the Horizontal Offset between the Extracted Channel Networks

Figure 7 shows the histograms estimated based on the comparison between channel networks
extracted from global DEMs based on those derived from the reference LiDAR DTMs/DSMs. They
displayed each channel segment’s displacement in both ±X and ±Y directions, at PBTVs ranging
from 0 to 3 pixels and four ATs (corresponding to at least 25, 50, 75, and 100 pixels). The number of
co-located channels’ pixels using a PBTV of 0 was always higher than that reported using other PBTVs
(1 to 3 pixels). Employing larger ATs and a PBTV of 3, the number of unmatched pixels decreased
(Figure 7). Moreover, using different ATs, the number of displaced channels’ pixels reduced with the
increase of PBTV from 0 to 3 pixels (Figure 7). The number of channels’ pixels that remained without
displacement (i.e., had 0 PBTV) was always greater when comparing the networks extracted from
global DEMs based on those derived from LiDAR DTMs rather than LiDAR DSMs. The highest, and
a nearly equal number of co-located pixels (using a PBTV of 0) were reported from evaluating the
networks derived from ALOS DSM (Figure 7c) and PALSAR DEM (Figure 7e) when compared to that
extracted from LiDAR DTM with a similar spatial resolution of 28.5 m. Due to the fine spatial details
of the PALSAR DEM 12.5 m, the number of matched pixels using a PBTV of 0 was higher than that
with a spatial resolution of 28.5 m.

Using a PBTV of 3 pixels and ATs corresponding to 25 and 100, the PALSAR DEM 28.5 m-derived
channel segments shifted 1689 and 973 pixels in +X direction and 1151 and 541 pixels in +Y direction,
and 159 pixels and 54 pixels in −X direction and 653 and 325 pixels in −Y direction, respectively; with
respect to LiDAR DTM-based channels’ pixels (Figure 7e).

The number of unmatched pixels was higher in evaluating the network extracted from PALSAR
DEM 12.5 m (Figure 7g), due to its finer details than at a spatial resolution of 28.5 m (Figure 7e). Using
a PBTV of 3 and an AT corresponding to 100 pixels, we found shifting in the channel segments by 8342
and 5655 pixels toward the +X and +Y directions, and 754 and 2300 pixels toward the −X and −Y
directions, respectively, in the assessment of channels’ pixels derived from PALSAR DEM and LiDAR
DTM 12.5 m (Figure 7g).

In the comparison between the channels extracted from ALOS DSM and LiDAR DSM 28.5 m,
the ALOS DSM-derived network was displaced by 1163 and 667 pixels in the +X and +Y directions,
and 82 and 366 pixels in the −X and −Y direction, respectively, with respect to LiDAR DSM-based
network at a PBTV of 3 pixels and an AT corresponding to 100 pixels (Figure 7d).Remote Sens. 2019, 11, 235  23  of  33 
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Figure 7. Deviations of channels’ pixels in in both ±X and ±Y directions at different ATs and PBTVs
in a comparison between the networks extracted from both: (a) LiDAR DTM and SRTM 28.5 m,
(b) LiDAR DSM and SRTM 28.5 m, (c) LiDAR DTM and ALOS DSM 28.5 m, (d) LiDAR DSM and ALOS
DSM 28.5 m, (e) LiDAR DTM and PALSAR DEM 28.5 m, (f) LiDAR DSM and PALSAR DEM 28.5 m,
(g) LiDAR DTM and PALSAR DEM 12.5 m, and h. LiDAR DSM and PALSAR DEM 12.5 m.

5. Discussion

5.1. Vertical Accuracy of Global DEMs

The use of LiDAR DEMs with fine spatial resolutions as benchmarks to assess global spaceborne
DEM sources has been well documented by previous studies. Dewitt et al. 2015 [123] employed
the LiDAR DEM as a reference to evaluate the SRTM DEM 30 m over a heavily forested section in
West Virginia, USA. The SRTM DEM showed low accuracy with an RMSE of 16.77 m and systematic
negative bias. Acharya et al. 2018 [124] evaluated both SRTM DEM and ALOS DSM using LiDAR
DEM 30 m in Chuncheon, Korea. The ALOS DSM outperformed the SRTM DEM when compared to
the LiDAR DTM, with RMSE values of 12.232 m and 16.843 m, respectively. Furthermore, Liu et al.
2016 [125] found that the vertical difference between ALOS DSM and resampled LiDAR DSM 30 m
ranged from 0 to 2.75 m with a standard deviation of 1.58 m over Tsengwen, Taiwan.
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Many other researchers have used ground control points (GCPs) to evaluate different open DEM
sources. Alganci et al. 2018 [126] computed the relative accuracies of the SRTM DEM V03 30 m and
ALOS DSM 30 m utilizing different sets of ground checkpoints in the Istanbul metropolitan area,
Turkey. Under bare terrain condition, the ALOS DSM had better performance than the SRTM DEM,
with RMSE values of 2.41 m and 3.53 m, respectively. With respect to different land cover classes, the
ALOS DSM still provided higher accuracy than the SRTM DEM. Santillan and Makinano-Santillan
2016 [127] conducted vertical accuracy assessment of recent releases of the ALOS DSM 30 m and SRTM
DEM 30 m using scattered control points in Mindanao, Philippines. Their results showed that the
ALOS DSM 30 m and SRTM DEM 30 m had RMSE values of 5.68 m and 8.28 m, respectively.

Tadono et al. 2014 [13] estimated the vertical height difference between ALOS DSM and SRTM-3
V02 over different sites and the computed RMSE values ranged from 1.91 m to 5.19 m. Takaku et al.
2014 [81] reported that the height difference between the ALOS DSM and SRTM-3 V02 had RMSE
values ranging from 1.93 m to 11.38 m. In addition, an evaluation of the LiDAR DSM using GCPs
resulted in an RMSE of 3.94 m. Moreover, the ALOS DSM 30 m showed similar accuracy to the
SRTM 1 DEM 30 m when compared to a 1: 50,000 cm reference DEM over different types of terrain
in China [128]. Alganci et al. 2018 [126] explained the higher accuracy of the ALOS DSM 30 m by its
generation process through down-sampling of a 5 m mesh version utilizing statistical central tendency
measures (i.e., average and median).

To our knowledge, there have been no studies to evaluate the PALSAR DEM 12.5 m using LiDAR
datasets. However, the higher accuracy of the PALSAR DEM 12.5 m could be interpreted by the use
of high-quality DEMs with fine spatial resolutions (i.e., the National Elevation Dataset (NED)) in
the detailed radiometric and geometric correction of PALSAR imagery (see References [80,129] for
more details).

Some previous studies reported findings that were similar to our results, but with different
RMSE values. Therefore, a number of factors would be worthwhile to consider when quantifying
the vertical height accuracy of optical and radar satellite data-based DEMs„ such as the presence of:
(i) An extensive topographic change (e.g., due to surface mining excavations) (e.g., Reference [126]),
(ii) rugged mountainous regions, particularly for interferometric SAR returns that may potentially be
affected by foreshortening, layover, and shadow [130], (iii) vegetation canopy of varied roughness
(e.g., References [126,131]), (iv) different dates for collecting the original data to generate various DEMs,
possible land use changes, and growth of trees during extended time spans (e.g., Reference [128]),
(v) slope change due to abrupt change in relief, where it was proved that DEM errors rapidly increased
if the slope was greater than 20◦ [69], (vi) significant differences in the elevation ranges (i.e., difference
between minimum and maximum relief) within a particular study area, where a high elevation variance
can reduce the DEM’s vertical accuracy [69], and (vii) various versions of the same global elevation
dataset with different levels of accuracy.

5.2. Horizontal Accuracy of Channel Networks

To our knowledge, there are two similar studies in the literature, in which Anderson et al.
2014 [46] and Mozas-Calvache et al. 2017 [47] introduced two methods for the quantitative comparison
of vector-based stream networks. Anderson et al. 2014 [46] mentioned that it is a complex and
challenging task to compare and evaluate the degree of matching between two networks of several sets
of polylines. They proposed the relative sinuosity, and longitudinal root mean square error (LRMSE)
techniques for the quantitative evaluation of the quality and variation in linear stream features. They
found that matched sinuosity could indicate a similar level of meandering, but did not imply that
both channel network polylines were well matched. Therefore, they recommended using the LRMSE
technique to evaluate the horizontal similarity between channel lines rather than sinuosity deviation.
However, they stated that both techniques must be carefully reviewed before being used to avoid the
no-data anomalies, such as significantly unequal polyline lengths.
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Mozas-Calvache et al. 2017 [47] proposed a method to determine the maximum and mean
positional displacements of DEMs-based drainage networks. They used the adapted Hausdorff
distance (i.e., a 2-D maximum distance between channels) and vertex influence (i.e., weighting each
vector of the 3-D channel by the segments’ lengths adjacent to each vertex) methods [132] to determine
the horizontal displacement between the networks. Their findings demonstrated their method’s
applicability to determine the positional displacement of the selected channels [47]. However, the
proposed methods by Mozas-Calvache et al. 2017 [47] and Anderson et al. 2014 [46] had similar
limitations in the selection and preparation of channels for evaluation. They selected only a subset of
channels; also, they checked that there were a one-to-one correspondence and proximity between the
channels’ polylines in both the reference and test datasets. Moreover, they edited the selected channels,
and if a particular channel was missed in the test data, they either ignored or deleted the reference
channel of interest. The last consideration was that they manually trimmed the more extended channels
around the missing branches.

In this study, our introduced method overcame all the previously mentioned constraints, so it is a
practical method that can be used without any prior selection, adjustment, trimming, and deletion of
the comparable channel networks/orders. It directly considered all the channels in both the reference
and test datasets, whether they were co-located or not. Furthermore, our method and the developed
toolbox can automate the quantification and visualization of the horizontal spatial variations between
channel networks/orders, as well as they have the advantage of evaluating unmatched pixels using
different PBTVs (any number of pixels).

5.3. Similarity Between the Findings of the Vertical Assessment of Global DEMs and the Horizontal Evaluation
of Their Derived Channel Networks/Orders

The achieved results in Section 4 demonstrated that the findings of both methods (pixel-based
vertical accuracy of global DEMs and horizontal accuracy of their derived networks/orders) were
similar in some cases, but not in others.

Using traditional statistical indices (RMSE and MD), it was found that PALSAR DEM 12.5 m
had the best performance with respect to the PALSAR DEM 28.5 m, ALOS DSM 28.5 m, and SRTM
DEM 28.5 m, when compared to the LiDAR DTMs at comparable spatial resolutions. The channel
network/orders derived from PALSAR DEM 28.5 m had the highest accuracy, followed by those
extracted from ALOS DSM 28.5 m and SRTM DEM 28.5 m in comparison with those derived from
LiDAR DTM 28.5 m. The findings of both methods were similar, except for the performance of
networks/orders delineated from PALSAR DTM 12.5 m using ATs corresponding to at least 25, 50,
75, and 100 pixels. However, employing an equivalent AT to that at a spatial resolution of 28.5 m,
it was found that the performance of channel network/orders extracted from PALSAR DEM 12.5 m
was obviously improved. We suggest selecting the channel network/orders extracted from the DEM
with the finest spatial resolution for using in geomorphological and hydrological applications if the
accuracy metrics evaluating both original DEMs and their derived drainage networks/orders were
high and close to each other. Consequently, the channel network and Strahler orders extracted from
PALSAR DEM 12.5 m were considered to have the best accuracy performance (see Section 4.4 for more
details) when compared to those delineated from LiDAR DTM (i.e., the findings of both methods were
considered similar in the cases mentioned above).

Employing the RMSE and MD statistical measures, the ALOS DSM showed the highest vertical
accuracy, followed by SRTM DEM 28.5 m, PALSAR DEM 12.5 m, and PALSAR DEM 28.5 m, when
compared to the LiDAR DSMs at comparable spatial resolutions. Channel networks/orders derived
from ALOS DSM 28.5 m and PALSAR DEM 12.5 m also showed the highest and lowest performance,
respectively, when compared to those extracted from LiDAR DSMs at similar spatial resolutions.
Therefore, the reported results from both methods were similar in the latter case. However, there were
two exceptions where the networks/orders extracted from PALSAR DEM 28.5 m and SRTM DEM
28.5 m ranked second and third in the horizontal accuracy, respectively, contrary to the performance
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of the original DEMs. Therefore, the findings of the two methods were dissimilar when comparing
PALSAR DEM 28.5 m and SRTM DEM 28.5 and their derived networks/orders with LiDAR DSM
28.5 m and its extracted network/orders.

5.4. Potential Applications of the Introduced Method

In terms of other potential applications related to remote sensing research, the introduced method
can also be used to: (i) Determine the optimum AT by comparing the extracted drainage network
from any remote sensing technology-based DEM with a reference network derived from high-quality
DEM source (e.g., high-quality satellite imagery and aerial photographs, with the help of topographic
maps and field measurements), (ii) assess the effectiveness of different channel networks’ extraction
algorithms, and (iii) quantify the degree of horizontal variation between other linear geologic and
geomorphological features (e.g., structural lineaments, surface geologic contacts, and shorelines)
extracted from remote sensing-based geospatial datasets of simultaneous or different temporal series,
after converting them to raster format. For extended applications, and even if the LiDAR point cloud
datasets are not available elsewhere in the world, other accurate DEM sources and their derived
channel networks/orders can be used as benchmarks to quantify the vertical height accuracy of the
DEMs used, as well as the horizontal accuracy of their channel networks/orders.

6. Conclusions

This paper presents a pixel-based method to evaluate the horizontal accuracy of channel networks
and Strahler orders delineated from three global DEMs with four spatial resolutions using reference
LiDAR DTMs/DSMs and their derived networks/orders at comparable spatial resolutions and
different ATs and PBTVs. We quantified the horizontal displacements between the extracted channels
in both the ±X and ±Y directions. The pixel-based vertical elevation accuracies of SRTM DEM
28.5 m, ALOS DSM 28.5 m, and PALSAR DEMs 12.5 m and 28.5 m were also determined using
traditional statistical metrics (RMSE, MD). In particular, the vertical accuracy of the newly released
ALOS PALSAR DEM with two spatial resolutions, 12.5 and 28.5 m, as well as their derived channel
networks/orders were thoroughly studied. We examined the similarity between the findings of the
vertical assessment of the remote sensing-based DEMs and the horizontal variation of their delineated
channel networks/orders. We also developed a new Python toolbox for ArcGIS to automate the
introduced method. The presented method effectively determines the horizontal accuracy of the
different networks/orders. It was able to detect the performance of the networks/orders beyond
the co-located channels’ pixels using different PBTVs. In general, the PALSAR DEM 12.5 m and
ALOS DSM 28.5 m and their derived channel networks/orders were very close in performance to the
LiDAR DTM 12.5 m and DSM 28.5 m and their extracted networks/orders, respectively, at comparable
spatial resolutions.

The evaluations of the vertical accuracy of spaceborne DEMs and their derived channel networks
and Strahler orders revealed the following:

1. The ALOS DSM 28.5 m and PALSAR DEM 12.5 m had the best performance when compared to
the LiDAR DSM 28.5 m and LiDAR DTMs 12.5 m, respectively.

2. The categorical performance measures were improved with the increase of PBTVs from 0 to
3 pixels. When evaluating the horizontal accuracy using LiDAR DTM 28.5 m derived-channel
networks/orders, it was found that networks/orders delineated from PALSAR DEM 28.5 had the
highest performance, followed by those from ALOS DSM 28.5 and SRTM DEM 28.5 m. However,
taking into consideration the high spatial details of the PALSAR DEM 12.5 m, there was an
extended possibility for observing more unmatched pixels, particularly with the use of an AT
corresponding to 100 pixels. However, using an AT corresponding to 519 pixels (equivalent to an
AT corresponding to 100 pixels at a spatial resolution of 28.5 m), the evaluation performance of
the network/orders derived from LiDAR DEM 12.5 m was noticeably improved with the use
of only one pixel as a PBTV. Therefore, the channel network and Strahler orders derived from
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PALSAR DEM 12.5 m were considered to have high horizontal accuracy (see Sections 4.4 and 5.3
for additional details).

3. Using a PBTV of 0, the number of co-located channels’ pixels was higher than those resulting
from the use of more PBTVs. The number of unmatched pixels decreased with the increase of
PBTV from 0 to 3 at different ATs. The number of channels that remained without displacement
(a PBTV of 0) was greater when evaluating the networks delineated from global DEMs using
those derived from LiDAR DTMs rather than LiDAR DSMs at comparable spatial resolutions.
Furthermore, the highest number of matched co-located pixels was recorded in the comparison
of the PALSAR DEM 28.5 m- and ALOS DSM 28.5 m-derived networks with that derived from
LiDAR DTM 28.5 m.

4. The findings of the two methods (pixel-based vertical accuracy of global DEMs and horizontal
accuracy of their derived channel networks/orders) were mostly similar, but there were
exceptions, particularly in comparison with LiDAR DSM 28.5 m and its derived network/orders.

We recommend that other researchers evaluate DEMs and their channel networks/orders before
involving them in their geomorphological and hydrological studies. Additionally, we suggest using our
method over areas of different land covers, geomorphic units, lithology, and climatic zones elsewhere
in the world.
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