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Abstract: Land use and land cover (LULC) change analysis is a critical instrument for studying urban
growth across the world. Our objectives were to produce historical LULC maps during the 1988–2016
period for spatial and temporal analysis, forecast future LULC until 2040 by using the Markov model,
and identify the impact of LULC on urbanization. Two scenes of Landsat-5 TM for 1988 and 2001 and
one scene of Landsat-8 OLI for 2016 were processed and used. The Normalized Difference Vegetation
Index (NDVI) model with precise class value ranges was applied to produce land cover maps
with six classes of water, built-up, barren land, shrub and grassland, sparse vegetation, and dense
vegetation. LULC maps for the years of 1988 and 2001 were used to develop an LULC transformation
matrix. It was used to drive an LULC transformation probability matrix using a Markov model
for future forecasting of LULC in 2014, 2027, and 2040. The accuracy of 2016 LULC classes was
estimated by comparing it against Markov modeled classes. It was found that the areas for: (i) water
decreased from 1.43% to 0.51%; (ii) built-up increased from 9.58% to 20.80%; (iii) barren land decreased
from 29.50% to 13.40%; (iv) shrub and grass land decreased from 30.57% to 21.10%; (v) sparse
vegetation increased from 18% to 20.10%; and (vi) dense vegetation increased from 10.57% to 24.10%.
The variations in LULC classes could be noticed by 2040 as compared to 1988. This LULC variation
revealed that the water could decrease to 5.32 km2 from 25.37 km2; the built-up could increase
to 625.16 km2 from 168.29 km2; the barren land could decrease to 137.53 km2 from 514.13 km2;
the shrub and grassland could decrease to 297.68 km2 from 539.46 km2; the sparse vegetation could
decrease to 297.68 km2 from 539.46 km2; and the dense vegetation could increase to 409.65 km2

from 191.51 km2. The LULC classification accuracy was 90.27% and 95.11% for 1988 and 2001,
respectively. The co-efficient of determination (R2) was found to be 0.90 for 2016 LULC classes
obtained from Landsat-8 and derived from a Markov model. For District Lahore, the LULC changes
could be related to increasing population and intense migration trends, which had progressive
impact on infrastructure development, industrial and economic growth, and detrimental effects on
water resources.
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1. Introduction

Land use and land cover (LULC) change analysis provides useful information for studying the
urban land changes for growing cities of the world [1–3]. Lahore is a rapidly developing economic
hub of Pakistan, which faces many challenges that include: (i) population increase; (ii) infrastructure
development; (iii) road construction; (iv) rising transportation; (v) urban built-up sprawl; (iv) pressure
on natural resources; (v) natural hazards; and (vi) climatic changes. Urban growth leads to land
development, industrialization, and urbanization, but creates problems related to population, traffic,
and environmental degradation [4].

These challenging factors have effects on past, current, and future urban land in terms of
urbanization and economic activities. It is therefore important to use historical satellite data using
remote sensing techniques and an authentic model for future forecasting of LULC [5,6]. The major
premise of change detection through remote sensing is that it can identify the aberrant and normal
transitions in land cover between two or more dates [7]. Remote sensing data is extremely useful
due to its repetitive coverage, synoptic view and real time data acquisition. Digital data of satellite
images can accurately compute LULC classes. It aids in maintaining spatial infrastructure, which is
profoundly required to monitor urban expansion and land use transitions. Monitoring and modeling
of spatial data has become a trend, in order to satisfy the need of policy makers and planners for
precisely and accurately achieving LULC information [8]. There are different indices, which were
developed for LULC mapping and analysis. For example, the normalized difference vegetation
index (NDVI) [9], soil-adjusted vegetation index (SAVI) [10], normalized difference built-up index
(NDBI) [11], and an indexed-based built-up index (IBI) [12]. The latest techniques were also developed
recently for quantifying land cover changes (e.g., modified change vector approach by Xu et al.) [13].
In addition, image classification techniques, such as maximum likelihood approach, Random Forest
(RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM) were also employed [14,15].
For understanding future scenarios of LULC, different statistical and mathematical models were used.
Among them, a Markov model was widely utilized [16,17].

Some studies were accomplished to conduct LULC changes and performed spatio-temporal
analysis by considering historical trends as well as forecast future LULC. A study was completed for
Bangladesh to predict LULC during 2010–2030 using formerly developed Dynamics of Land Systems
models on the basis of land use maps (30 m resolution) obtained from China Globe Cover and affecting
factors of geophysical, climatic, proximity, and socioeconomic. The findings indicated a decline of
cultivated land and increase in built-up area. The future scenarios indicated increases in forest area and
grassland under ecological protection, with expansion in built-up areas under economic growth [16].
In another study, spatio-temporal variability was obtained during 1998–2006 using Indian Remote
Sensing Satellite (IRS) images, and a Markov model was used to predict future spatial distribution of
land for 2014 and 2022 for Tiruchirappalli city of India. The results indicated an increase in built-up
area and a decrease in waste land [17]. A Land Transformation Model coupled with geographic
information systems (GIS) and artificial neural networks was used for forecasting LULC in Michigan’s
Grand Traverse Bay Watershed in the United States. The land use data was obtained from Michigan
Resource Information System (1:24,000 aerial photography of 1980). The land use change pattern was
understood at different scales and relative effect of site and situation variables were identified [18].
The simulation of land use spatial patterns of towns and villages were accomplished for 2001, 2006,
and 2008 on the basis of land use data for Fangshan district of Beijing, China. Cellular Automata and
the Markov model were used for simulating the spatial pattern of land use in 2015. Overall, the results
were satisfactory and the land use classes could preserve their changes [19]. The scenario simulation
and the prediction of LULC change in Beijing, China was accomplished by using a CLUE-S model
with a Markov model for 2010 to 2020. The driving factors in this study were related to land-adaptive,
regional spatial, and socio-economic. It was found that the cultivated land could be converted into
urban built-up land in the future [20]. The urban growth and urban living environment were simulated
by using a logistic regression model for Jeju and Chuncheon of South Korea, and the driving factors



Remote Sens. 2019, 11, 105 3 of 15

were topography, economy, society, and environment. The results indicated a continuous increase in
built-up area and surface temperature by 2025 [21].

In Lahore, rapid economic growth has led to urbanization, which changed the usage of existing
land and it also built pressure on the available resources. The increase in population, better economy,
and proximity of inhabitants to basic facilities and resources are the potential factors for urban sprawl.
It resulted in greater land utilization and disintegration of natural and man-made features [22]. Due to
all these factors, District Lahore was selected for studying the land cover change analysis. In this paper,
our objectives were to: (i) produce historical LULC maps during the 1988–2016 period for spatial and
temporal analysis; (ii) forecast future LULC until 2040 by using a Markov model; and (iii) identify the
impact of LULC on urbanization.

2. Study Area and Data

2.1. Study Area

The study area (District Lahore) is located in the north-eastern side of Punjab province of Pakistan,
as shown in Figure 1. It is the capital of the province and the second largest city in the country with a
total area of 1772 km2 [23]. The climate of the study area is semi-arid. The mean annual temperature
ranges from 13.09 ◦C to 24.71 ◦C in winter and from 25.73 ◦C to 36.09 ◦C in summer. The mean annual
precipitation varies from 88.28 mm in summer to 17.04 mm in winter. The major river flowing through
study area is River Ravi, which originates from the Himalayan region. Lahore city has a flat slope with
a general altitude of 208 to 213 m [23]. The total population of the district of Lahore in 2017 is almost
11.12 million [24].
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2.2. Satellite Image Acquisition

Three scenes of Landsat satellite imageries were used for different dates during the period
of 1988–2016, which were: (i) Landsat-5 TM multispectral image acquired on November 5, 1988;
(ii) Landsat-5 TM multispectral image acquired on September 22, 2001; and (iii) Landsat-8 OLI
multispectral image acquired on October 17, 2016. The intent was to use images at 10-year intervals,
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however, the effort was given to select cloud-free images that were acquired during the same season.
The approximate sizes of images are 183 km × 170 km and 185 km × 172 km, respectively. The spectral
bands used in this study were red (R) and near infrared (NIR). The temporal resolution is 16 days
and the spatial resolution is 30 m for both types of satellites. All the scenes utilized in this study
were obtained from GLOVIS in GeoTIFF format with the Level 1T correction, which includes the
radiometric, geometric, and topographic accuracies. The projection for all satellites was Universal
Transverse Mercator (UTM). In addition, the Google Earth images (during 2001 and 2016) and digital
topographic map of 1988, available from Urban Unit of the Punjab Government, were used to aid the
process of generating the LULC maps during the 1988–2016 period. In particular, the 2011 Google Earth
Images and 1988 digital topographic map were used to acquire ground sample plots for validation
purposes, as no other alternative was available in our hand.

3. Methods

3.1. Satellite Image Pre-Processing

The satellite images were processed for classification in this study. The different mathematical
models used in processing of the satellite imagery were obtained from Landsat 7 Science Data Users
Handbook [25]. The digital number values of Landsat-5 TM imagery were converted into planetary
reflectance for red and near infrared spectral bands, using the model given in Landsat 7 Science Data
Users Handbook [25]. In this process, the model required the following parameters: (i) minimum
and maximum quantized calibrated pixel values; (ii) spectral radiance scaled to minimum and
maximum quantized calibrated pixel values; (iii) earth–sun distance; (iv) mean solar exo-atmospheric
irradiance values; and (v) solar zenith angle. All of the parameters were available from metadata
files of satellite imageries; except for the earth-sun distance, available from Landsat 7 Science
Data Users Handbook [25] and solar exo-atmospheric irradiance values, available from Chander
and Markham [26]. For Landsat-8 OLI images, the model given in Landsat 8 Science Data Users
Handbook [27] was used for transforming the digital number values into planetary reflectance. In this
case, the required parameters were: (i) multiplicative rescaling factor; (ii) additive rescaling factor;
and (iii) solar elevation angle; where all of them were available from metadata files.

The images acquired at different times have different atmospheric conditions and view angles.
In order to make these temporal images spectrally resemble each other, Dark Object Subtraction
correction was applied, using an equation as given in Landsat 8 Data User Handbook [27]. The different
input parameters required in this equation were path radiance, band-specific multiplicative rescaling
factor, and band-specific additive rescaling. The values for all these parameters were obtained from
the metadata of the satellite images.

Upon accomplishing the above steps, we opted to generate NDVI images using the Landsat
images acquired in 1988, 2001, and 2016 using the following expression [9]:

NDVI =
ρNIR − ρR
ρNIR + ρR

(1)

where, ρ is the surface reflectance-values for the near infrared (NIR) and red (R) spectral bands.

3.2. Development of LULC Maps and Spatio-Temporal Analysis

The classes of land cover were: (i) water; (ii) built-up; (iii) barren land; (iv) shrub and grass land;
(v) sparse vegetation; and (vi) dense vegetation. In this study, six major classes were considered.
As these were the main classes where land cover changes and transitions were noticed for the last
few decades. In another research for Lahore, five classes were taken which incorporates built-up,
vegetation, open area, water bodies and mixed class [28]. The further classification was only possible
with sparse and dense vegetation by further classifying them into different types of crop classes.
For crop classification, training data set was required through extensive field survey, which was not
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possible for previous years (i.e., 1988, 2001 and 2016). Due to these factors, only six land cover classes
were possible which were considered in this study.

In generating the LULC map, we opted to adapt an NDVI-based classification method,
as recommended by U.S. Geological Services (USGS) [29], due to its simplicity. Also, NDVI has
been used for various classification schemes in recent times [30–33]. As a first step, we considered the
2016 NDVI image that was arbitrarily divided into 80 classes. Then, we used the 300 sample plots and
Google Earth images of 2016 in order to merge or divide these classes, which eventually resulted in
the final six LULC classes. Consequently, we generated the LULC class-specific NVDI ranges upon
exploiting the 2016 NDVI image, which was then applied over both of the 2001 and 1988 NDVI images.
As the 2016 NDVI image was used for calibration purposes, we therefore opted to use both 2001 and
1998-derived LULC maps for validation. In doing so, we acquired 1800 sample plots for each of the
years 2001 and 1988, based on visual interpretation of “Google Earth images of 2001” and “digital
topographic map of 1988”. Finally, the confusion matrices were generated in order to demonstrate the
effectiveness of our adapted method.

The areas for LULC classes were calculated in km2 and percentages for the years 1988, 2001,
and 2016 using LULC maps. The classes were compared with each other, both for the same years and in
different years. The graphs and maps were developed to show the spatial and temporal LULC changes.

3.3. Future Prediction of LULC Changes

A transformation matrix is the means to define quantities of transformations from a specific
land cover to another land cover category at a later date. LULC maps for the years of 1988 and 2001
were used to develop an LULC transformation matrix. This matrix provided us the transformation
of each LULC class for the year 1988 into six classes for the year 2001. A Markov model was applied
for development of a transformation probability matrix and predicting future changes for LULC.
A Markov Model is a useful tool for simulating LULC changes. It helps to predict future changes on
the basis of current data. A Markov model was used in many studies [16,17,19,34]. The accuracy of
Markov models were verified in some studies [19,35]. On the basis of the LULC transformation matrix
developed, an LULC transformation probability matrix was derived using a Markov Model during the
period 1988–2001. It was assumed that the probability of changes for built-up class to other classes
is zero. This assumption is considered on the basis that the built-up areas cannot be converted into
any other LULC class [17]. This model was applied to analyze LULC changes from one period (1988)
to another period (2001), which was made basis of projecting future LULC changes for 2014, 2027,
and 2040 at the same interval of 13 years. A comparison was made between the LULC areas of classes
obtained from Landsat-8 and Markov model for the year 2016. The model values for year the 2016
were achieved by linear interpolation of the model projected-values between the years of 2014 and
2027. The co-efficient of determination (R2) was finally calculated by plotting modeled and Landsat-8
extracted values on a linear graph.

Note that our aim was to use Landsat images at 10-year intervals, however, the effort was given
to select cloud-free images that were acquired during the same season. As a result, we found useful
images at 13-year intervals. Consequently, we used 13-year intervals for implementing the Markov
Chain Model.

4. Results

4.1. Land Cover Classification and Spatio-Temporal Analysis

On the basis of the methodology described in Section 3.2, precise NDVI value ranges for six LULC
classes derived from the 2016 Landsat-8 OLI image are provided in Table 1. Upon implementing
these NDVI ranges, we generated the 1988 and 2001 LULC maps and evaluated them against the 1800
sample plots in each of the events, as reported in Tables 2 and 3.
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Table 1. Suitable normalized difference vegetation index (NDVI) ranges identified for the land
cover classes.

Class NDVI Range

Water −0.28–0.015
Built-up 0.015–0.14

Barren Land 0.14–0.18
Shrub and Grassland 0.18–0.27

Sparse Vegetation 0.27–0.36
Dense Vegetation 0.36–0.74

The overall accuracy was 90.27% for the 1988 LULC map and it was 95.11% for 2001. The Kappa
statistics were 0.88 and 0.94 for 1988 and 2001, respectively. From Table 2, it is obvious that in the case
of 1988, according to the producer’s accuracy, the percentages of accuracy were 93.33%, 90%, 87%, 96%,
83.33%, and 92.33% for water bodies, built up, barren land, shrub and grassland, sparse vegetation,
and dense vegetation, respectively. The percentages for user’s accuracy were 100%, 85.12%, 86%,
90.03%, 92.59%, and 89.64% for LULC classes, respectively. For 2001, Table 3 presents the percentages
of producer’s accuracy as 97.3%, 92%, 94%, 96%, 94.66%, and 96.66% for water bodies, built up, barren
land, shrub and grassland, sparse vegetation, and dense vegetation, respectively. The percentages for
user’s accuracy were 100%, 96.15%, 88%, 94.44%, 95.94%, and 96.98% for LULC classes, respectively, in
2001. The accuracies for both years were high enough to validate methodology for LULC classification.

Figure 2 shows the dynamics of the NDVI-derived LULC maps for the years of 1988, 2001,
and 2016. The percentages of LULC changes in 1988, 2001, and 2016 for all land cover classes can be
deduced from this figure. The results show that overall there was an increasing trend for built up,
sparse, and dense vegetation and a decreasing pattern for barren land. The changes in built-up area
were 9.58% in 1988, 14.3% in 2001, and 20.8% in 2016. The decrease in area was detected for barren
land; it was decreased from 29.50% to 13.40%. Shrub and grassland was decreased from 30.7% to
23.60% in 2001 and 21.10% in 2016. It was comprehended that sparse vegetation had increased from
18% in 1988 to 20.60% in 2001, but it had slightly decreased to 20.10%. There was higher variation in
dense vegetation. It was 10.7% in 1988, 26.60% in 2001, and 24.10% in 2016.
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Table 2. Accuracy assessment of land use and land cover (LULC) classification for 1988.

Landsat LULC Classes
Total Count User’s Accuracy

Water Bodies Built-up Barren Land Shrub and
Grassland

Sparse
Vegetation

Dense
Vegetation

Classified
LULC Classes

Water Bodies 280 0 0 0 0 0 280 100%
Built-up 9 269 38 0 0 0 316 85.12%

Barren Land 1 31 260 11 0 1 304 86%
Shrub and Grassland 10 0 0 289 20 2 321 90.03%

Sparse Vegetation 0 0 0 0 250 20 270 92.59%
Dense Vegetation 0 0 2 0 30 277 309 89.64%

Total Count 300 300 300 300 300 300 1800 100%

Producer’s Accuracy 93.33% 90% 87% 96% 83.33% 92.33%

Total Correct: 1625 Total Samples: 1800 Overall Accuracy: 90.27% Kappa Statistics: 0.88.

Table 3. Accuracy assessment of land use and land cover (LULC) classification for 2001.

Landsat LULC Classes
Total Count User’s Accuracy

Water Bodies Built-up Barren Land Shrub and
Grassland

Sparse
Vegetation

Dense
Vegetation

Classified
LULC Classes

Water Bodies 292 0 0 0 0 0 292 100%
Built-up 1 275 10 0 0 0 286 96.15%

Barren Land 7 24 282 5 0 3 321 88%
Shrub and Grassland 0 1 1 289 10 5 306 94.44%

Sparse Vegetation 0 0 4 6 284 2 296 95.94%
Dense Vegetation 0 0 3 0 6 290 299 96.98%

Total Count 300 300 300 300 300 300 1800 100%

Producer’s Accuracy 97.3% 92% 94% 96% 94.66% 96.66%

Total Correct: 1712 Total Samples: 1800 Overall Accuracy: 95.11% Kappa Statistics: 0.94.
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4.2. Transformation Analysis and Future Prediction of LULC Changes

The LULC transformation matrix, prepared for the period 1988–2001, is given in Table 4. From
this table, it is obvious that the dominant transformation was found in built-up areas. It was noticed
that the area transformed into built-up was: (i) 61.93 km2 from shrub and grassland; (ii) 57.34 km2 from
barren land; (iii) 18.49 km2 from sparse vegetation; and (iv) 8.71 km2 from dense vegetation. The other
noticeable transformation was for sparse vegetation. The area transformed into sparse vegetation was:
(i) 126.72 km2 from shrub and grassland; and (ii) 95.40 km2 from barren land. The area transformed
into dense vegetation was: (i) 114.22 km2 from barren land; (ii) 150.17 km2 from shrub and grassland;
and (iii) 119.18 km2 from sparse vegetation. This transformation matrix was considered a primary
matrix for future prediction of LULC in 2014, 2027, and 2040.

Table 4. LULC transformation matrix during the period 1988–2001 (km2).

1988
2001

Water Built-up Barren Land Shrub and Grassland Sparse Vegetation Dense Vegetation

Water 4.26 3.98 6.79 5.48 2.34 2.53
Built-up 5.38 102.19 21.81 19.71 10.91 8.27

Barren Land 6.37 57.34 105.09 135.71 95.40 114.22
Shrub and Grassland 2.25 61.93 57.72 140.67 126.72 150.17

Sparse Vegetation 0.37 18.49 27.20 74.52 80.19 119.18
Dense Vegetation 0.33 8.71 19.43 44.00 44.47 74.57

The transformation speed of conversion from one state to other state is required for future
states. For this purpose, the LULC transformation probability matrix was derived from the LULC
transformation matrix using a Markov Model, as given in Table 5. This matrix provides the
transformation probability of six classes. It is unusual that the built-up areas are converted to other
classes. Consequently, we assumed that its probability of changes to other classes are ‘zero’ [17].
Table 5 provides the primary transformation probability of six LULC classes during 1988–2001.

Table 5. LULC transformation probability matrix derived from the LULC transformation matrix
presented in Table 4.

Water Built-Up Barren Land Shrub and Grassland Sparse Vegetation Dense Vegetation

Water 0.168 0.157 0.268 0.216 0.092 0.100
Built-up 0.000 1.000 0.000 0.000 0.000 0.000

Barren Land 0.012 0.112 0.204 0.264 0.186 0.222
Shrub and Grassland 0.004 0.115 0.107 0.261 0.235 0.278

Sparse Vegetation 0.001 0.058 0.085 0.233 0.251 0.372
Dense Vegetation 0.002 0.045 0.101 0.230 0.232 0.389

Table 6 indicates LULC classes for 1988 and 2001 derived from the Landsat-5 satellite data. On the
basis of this data, a Markov model was applied to obtain LULC classes for 2014, 2027, and 2040,
as given in Table 6. There is a decreasing trending of water, with 25.37 km2 in 1988 and 5.32 km2 in
2040. There is strong increasing tendency of built-up areas. The built-up area was 168.29 km2 in 1988,
and it could increase to 532.74 km2 in 2027 and 625.16 km2 in 2040. The decreasing trend in barren land
was noticed. It was 514.13 km2 in 1988 and it could decrease to 149.61 km2 in 2027 km2 and 137.53 km2

in 2040. Similarly, a decreasing pattern was also found in shrub and grassland, for which the area was
539.46 km2 in 1988 and it showed a reduction to 322.36 km2 in 2027 and 297.68 km2 in 2040. The sparse
vegetation exhibited a decreasing trend from 319.96 km2 in 1988 to 283.37 km2 in 2040. The trend of
dense vegetation showed an increasing tendency from 191.51 km2 in 1988 to 470.27 km2 in 2014, and it
could decrease to 441.77 km2 in 2027 and 409.65 km2 in 2040.
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Table 6. Projected LULC acreages (km2) during the period 1988–2040. The first two rows show the
dynamics as derived from the Landsat-5 satellite data.

Water Built-up Barren Land Shrub and Grassland Sparse Vegetation Dense Vegetation

1988 25.37 168.29 514.13 539.46 319.96 191.51
2001 13.58 318.74 216.22 400.38 349.12 460.67
2014 7.82 432.07 167.08 351.57 329.90 470.27
2027 6.04 532.74 149.61 322.36 306.19 441.77
2040 5.32 625.16 137.53 297.68 283.37 409.65

Figure 3 indicates the correlation between LULC classes derived from Landsat-8 and a Markov
model for 2016. The results indicated a strong relationship between them, with co-efficient of
determination (R2) as 0.90. High accuracy assessment results for the year 2016 demonstrated that the
classification technique used for the study area is sufficiently precise and applicable for the images
from other years and study areas with similar characteristics.
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Figure 3. Comparison of the acreages of the LULC classes derived from Landsat-8 satellite data
and modelling using a Markov model, during the year 2016. Model-values are obtained by linear
interpolations of the projected-values between 2014 and 2027, as described in Table 6. The dash and
solid lines represent 1:1 and regression lines, respectively.

5. Discussion

5.1. Accuracy of LULC Maps

We used an NDVI-based classification technique for generating LULC maps, due to its simplicity
in applicability, authenticity in accuracy, and usage in recent studies [30–33]. The Landsat-8 OLI
2016 image was used to develop an LULC map by specifying NDVI values for six LULC classes
on the basis of Google Earth images of 2016. The methodology, adopted for 2016, was applied to
produce LULC maps for 1988 and 2001. The confusion matrices were produced for 1988 and 2001,
using Kappa Statistics on the basis of 1800 sample points for each of these years, as given in Tables 2
and 3, respectively. The overall accuracy was 90.27% and 95.11% for 1988 and 2001, respectively. This
accuracy was better as compared to the accuracies of NDVI-based output maps produced in other
studies; it was 81.74%, 83.91%, and 83.91% for different band combinations in a study accomplished
by [30]; it was 87%, 91%, and 88% for different years in a study completed by [31]; and it was 86.15%,
and 89.31% for different sub-regions in a study performed by [34]. The user and producer accuracies
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for individual classes were from 83.33% to 100% in both years. The accuracies for other advanced
techniques used for producing maps were 80–85% [1], 78.47% [2], and 83.5% [3]. In addition, it would
be worthwhile to mention that our observed overall accuracy (i.e., in the range 90.27 to 95.11%) was
similar in comparison to other sophisticated approaches like KNN, SVM, and RF, as reported in Thanh
Noi and Kappas [15]. The higher value of R2 indicated strong correlation between LULC classes
derived from Landsat-8 and a Markov model for 2016. It further strengthens the accuracy of our
methodology for LULC classification.

5.2. Impact of LULC Changes on Urbanization and Economy

The built-up area for District Lahore is continuously rising, and it increased by 1.89, 2.56, 3.16,
and 3.71 fold, when comparing the 1988 built-up area to 2001, 2014, 2027, and 2040 respectively.
A similar increasing trend of built-up area was also noticed in future forecasting for other growing
cities, like Beijing in China [20]. The increasing built-up area could be related to the increasing pressure
of population during different decades since 1981, as found in the case of Bangladesh [16]. According
to population censuses from Pakistan Bureau of Statistics, the population of Lahore was 3.54 million
in 1981, 6.34 million in 1998, and 11.12 million in 2017 [24]. The projected population could be
14.95 million in 2027 and 21.32 million in 2040, which was projected using the 2017 census population
at an annual population growth rate of 3.46% [24]. To further strengthen our output of built-up sprawl
with population increase, the LandScanTM data 2015 was used to plot population expansion patterns
in the form of a GIS map, as given in Figure 4. LandScanTM is a global population distribution data
with the finest available spatial resolution of 1 km (30′′ × 30′′). It is developed by using best available
demographic and geographic data with remote sensing imagery analysis techniques, on the basis of a
multivariate dasymetric modeling framework [36]. The sprawl pattern of built-up areas, as presented
in Figure 2, is comparable with the population sprawl trend obtained on the basis of LandScanTM data,
as given in Figure 4. The increasing built-up trend matches with the increasing population pattern,
which could be related to urbanization [7].

LULC changes affect the utilization of land for objectives that could be associated with population
increase and economic growth [14]. The trend of construction of new housing societies in Lahore
could be a contributing factor for increase in the built-up area with the passage of time. From Figure 4,
it is obvious that the population concentration is higher in the inner part of Lahore. The population
expansion trend is emerging from the inner city towards southern parts of Lahore. The construction
and establishment of new societies is in this southern region. Since sufficient land was available at
a reasonable cost in this area, it was utilized for construction of new luxurious residential societies,
which provided comfortable and improved living standards for people. It was noticed that barren
land and shrub and grassland was utilized to construct housing societies. It was observed that from
1988 to 2001, 37.42% of total barren land and grassland was transformed into built-up land. In the case
of Beijing, the increasing trend for usage of cultivated land for urban built-up areas was noticed [20].
Irrigated croplands were converted into built-up areas for Hyderabad [1]. A similar transformation
trend could be expected by 2040. The utilization of such land boosted the prices of residential and
commercial areas and increased the real estate business in Lahore, which was also perceived in
Hyderabad city in India [1]. The increase in built-up areas and agriculture was observed for the Sierra
Leone city of Syria [5].
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The increasing built-up area could be related to an excellent network of roads, which are multi-lane
and are built to international standards. The roads are well maintained and these are expanded on the
requirement of the area. Growing industries and infrastructure construction projects attracted many
people from other cities and provinces around the country for better job opportunities, comfortable
residence, and quality schooling. It resulted in a higher trend of migration, which eventually increased
the population of Lahore. The urban migration pattern from all divisions of Pakistan to Lahore was
plotted on a chord diagram, which is a graphical method for displaying the inter-relationships between
migration data in a matrix. The migration data was obtained from labor force survey data for 2014–2015
through Pakistan Bureau of Statistics [24]. The results of migration patterns are presented in Figure 5.
The results indicated that 35% of migrants migrated to Lahore from different districts of the Lahore
division. The noticeable percentages of migration to Lahore from other divisions include: (i) 12.7%
from Sahiwal; (ii) 8.9% from Faisalabad; (iii) 8.8% from Multan; (iv) 8.8% from Gujranwala; (v) 4.8%
from Sargodha; (vi) 2.8% from Bahawalnagar; (vii) 2.6% from Rawalpindi; and (viii) 2.6% from Hazara
Division. The percentage of migration from the rest of the divisions was from 0.2% to 1.9%.

These migration patterns show the attraction of migrants to Lahore due to better job opportunities
and businesses. All these factors could have positive effects on urbanization and the economy of Lahore.
Major cities in India are rapidly developing due to industrialization and rural–urban emigration [1].
The urban expansion in Hyderabad city in India had an impact on LULC and various land uses were
transformed into built-up areas [1].

Lahore is Pakistan’s second largest economic hub after Karachi. It contributes 11.5% and 20.5% to
the national and provincial economies, respectively. During 2010–2017, the share of Lahore increased
by 1.2% points in the national economy. Its economy depends upon different sectors, which include
telecommunication, information technology, manufacturing industry, engineering, pharmaceuticals,
steel, chemicals, and construction material. It has planned industrial areas with an estimated 9000
industries. It is considered an important industrial city of the country and it has the largest Information
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Technology Park [37]. 42% of the work force is employed in the services industry, which includes
finance, banking, real estate, community, cultural, and social services. It has the country’s largest
software producing centers and computer industry [37].
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From Table 6, it is obvious that the area for surface water could decrease to a level of 5.32 km2

from 25.37 km2 by 2040. The decrease in water area could be up to 79% during the period 1988–2040.
The continuous depletion of surface water for District Lahore could be a major concern. A similar trend
of decreasing water was observed for Hyderabad City in India due to increasing urban sprawl [1].
There is increasing pressure on the environment due to human displacement [5].

The surface water is mainly used for agricultural purposes in Lahore. Groundwater is extracted
for drinking, domestic, industrial, and commercial purposes. Due to depletion of surface water,
10,000 tube wells were installed for agricultural purposes using groundwater. The mean annual rainfall
of Lahore is 715 mm. The recharge to groundwater in the urban area is insufficient, due to built-up
areas and urbanization. The groundwater discharge was higher than recharge, and it was the main
factor for groundwater depletion [23]. The impact of urbanization on water resources was found to be
negative. The planners and decision makers should give priority to wise usage of existing water and
identifying new water resources for future generations. Another potential effect of the LULC changes
is the creation of an urban heat island, due to the increase of built-up areas in particular [38].

6. Conclusions

In this study, the spatial distribution of existing and future urban land changes was investigated
using remote sensing satellite data and Markov modelling for District Lahore of Pakistan. The spatial
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and temporal analysis was accomplished for last the twenty-eight years, during the period 1988–2016.
It was revealed that there was an increase in built up, sparse, and dense vegetation, whereas there
was a decrease in water, barren, and shrub and grassland. The transformations among various land
cover classes were also explored during the period 1988–2001. The noticeable transformations were
for dense vegetation, sparse vegetation, and built-up areas. The classes which were transformed
into built-up areas were shrub and grassland, barren land, sparse vegetation, and dense vegetation.
By 2040, the total percentage increase could be: (i) 271.48% for built-up; and (ii) 113.90% for dense
vegetation; and the total percentage decrease could be: (i) 73.25% for barren land; (ii) 44.81% for
shrub and grassland; (iii) 11.44% for sparse vegetation; and (iv) 79% for water. The commonalities in
outcomes for 2016 and 2040 were constant rise in built-up areas and dense vegetation and depletion
of barren land, shrub and grassland, and water. The decrease in barren land could be related to its
transformation into shrub and grassland, sparse vegetation, built-up areas, and dense vegetation,
as revealed in the transformation matrix.

The implication is that overall, the land cover changes and transformations were seen on a huge
scale in Lahore. The different types of classes were converted mainly into built-up urban land. The entire
change has greatly enhanced the standard of living for the inhabitants of Lahore, which influenced the
real estate business. A large part of the barren land was utilized and converted into useful structures
like housing societies, commercial buildings, and industries, which boosted industrialization and
urbanization. On the other hand, this transformation likewise contributed to population increase due to
relocation of individuals from the surrounding regions. Due to population increase, the pressure and
threat on the available natural resources of land and water has likewise expanded.
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