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Abstract: The objective of  the study was to develop a remote sensing (i.e., Landsat-8 and MODIS)-based 
agricultural drought indicator (ADI) at 30 m spatial resolution and 8-day temporal resolution and also to evaluate 
its performance over heterogeneous agriculture dominant semi-arid region in Jordan. Firstly, we used principal 
component analysis (PCA) to evaluate the correlations among six commonly used remote sensing-derived 
agricultural drought related variables. The variables included normalized difference water index (NDWI), 
normalized difference vegetation index (NDVI), visible and shortwave drought index (VSDI), normalized 
multiband drought index (NMDI), moisture stress index (MSI), and land surface temperature (LST). Secondly, we 
integrated the relatively less correlated variables (that were found to be NDWI, VSDI, and LST) to generate four 
agricultural drought categories/conditions (i.e., wet, mild drought, moderate drought, and severe drought). Finally, 
we evaluated the ADI maps against a set of  8-day ground-based standardized precipitation index values (i.e., SPI-1, 
SPI-2,…, SPI-8) by use of  confusion matrices and observed the best results for SPI-4 (i.e., overall accuracy and 
Kappa-values were 83% and 76%, respectively) and SPI-5 (i.e., overall accuracy and Kappa-values were 85% and 
78%, respectively). The results demonstrated that the method would be valuable for monitoring agricultural 
drought conditions in semi-arid regions at both a reasonably high spatial resolution (i.e., 30 m) and a short time 
period (i.e., 8-day). 

Keywords: spatio-temporal image fusion model (STI-FM); land surface temperature (LST); surface reflectance; standardized 
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1  Introduction 

Agricultural drought is a natural hazard that usually occurs when the available water content goes 
below the optimal needs of the proper growth of plants during its growing season (Wilhite et al., 
2007). In monitoring agricultural drought, one of the most commonly employed methods is the 
use of ground-based hydro-meteorological variables (e.g., precipitation, temperature, evaporation, 
and soil moisture). Some examples of the variables include: (i) Palmer drought severity index 
(PSDI) that uses precipitation and temperature (Palmer, 1965); (ii) crop moisture index (CMI) 
that incorporates soil moisture, precipitation and temperature (Palmer, 1968); (iii) crop water 
stress index (CWSI) that is based on actual and potential evaporation (Jackson et al., 1981); (iv) 
standardized precipitation index (SPI) that uses precipitation regimes (Mckee et al., 1993), and (v) 
multivariate standardized drought index (MSDI) that employs soil moisture and precipitation 
(Hao and AghaKouchak, 2013). These indices usually provide very accurate estimates of 
agricultural drought conditions at the point locations. However, the uneven spatial distribution of 
the hydro-meteorological stations across the landscape often results uncertainties in delineating 



   Khaled HAZAYMEH et al.: A remote sensing-based agricultural drought indicator and its implementation…  

 

 

spatial context. In order to address these uncertainties, geographic information system 
(GIS)-based interpolation techniques (e.g., inverse distance, Krigging, nearest neighbor, etc.) are 
usually employed. These techniques often generate less-certain outcomes because the input 
variables for the interpolation are often obtained from limited point locations (Li and Heap, 
2014). 

In order to address the above-mentioned issues, one of the alternates is the use of remote 
sensing techniques (Hao et al., 2014; AghaKouchak et al., 2015; Hazaymeh and Hassan, 2016). In 
general, such approaches are developed on the basis of exploiting one or more of the following 
criteria. Firstly, vegetation greenness-related variables (e.g., normalized difference vegetation 
index (NDVI), enhanced vegetation index (EVI), modified perpendicular drought index (MPDI), 
vegetation condition index (VCI), etc.) were derived as a function of visible and near infrared 
(NIR) spectral bands. Such approaches were widely used in monitoring drought conditions over 
various ecosystems across the world (Tucker and Choudhury, 1987; Kogan, 2002; Samanta et al., 
2011; Shahabfar et al., 2012; Zhou and Lyu, 2016). Secondly, meteorology-related variables (e.g., 
temperature condition index (TCI), normalized difference temperature index (NDTI), etc.) were 
calculated using thermal spectral band-derived land surface temperature (LST) and used in 
assessing vegetation water stress and drought monitoring (McVicar and Jupp, 1998; Kogan, 2002). 
Thirdly, surface wetness conditions were derived in two ways. The first one was based on 
exploiting inherent relationship between surface temperature and vegetation greenness and some 
examples include temperature-vegetation dryness index (TVDI), vegetation temperature condition 
index (VTCI), evaporative stress index (ESI), temperature-vegetation index (TVX), etc. (Lambin 
and Ehrlich, 1996; Sandholt et al., 2002; Anderson et al., 2011). The second one was based on 
integrated visible, NIR, and shortwave infrared (SWIR) spectral bands. And some example 
include reduced simple ratio (RSR), visible and shortwave infrared drought index (VSDI), four 
bands drought index (FBDI), moisture adjusted vegetation index (MAVI), etc. (Brown et al., 2000; 
Zhang et al., 2013; Zhu et al., 2014; Rangan, 2015). Fourthly, vegetation wetness (e.g., moisture 
stress index (MSI), normalized difference water index (NDWI), normalized multiband drought 
index (NMDI), etc.) were derived from NIR and SWIR spectral bands; and used to comprehend 
drought conditions through the vegetation moist status (Hunt and Rock, 1989; Gao, 1996; 
Chowdhury and Hassan, 2015). 

In general, there are several issues in case of implementing a single one of the 
above-mentioned criteria in agricultural drought monitoring. Firstly, vegetation greenness-related 
variables showed an apparent time lag in responding to water stress (Gao, 1996; Chakraborty and 
Sehgal, 2010). In addition, they were unable to accurately reflect the actual water condition in 
vegetation as different factors might affect the vegetation status, such as phenology, insects, 
vegetation type, temperature, and chlorophyll (Anjum et al., 2011). Secondly, meteorological 
variables were affected by sensor configurations, derivation algorithm, and heterogeneity of 
landscape (Benmecheta et al., 2013). Thirdly, the computation of wetness surface 
condition-related variables was complicated and highly dependent on the researcher personal 
skills and image specific date (Wang et al., 2011) and topography (Akther and Hassan, 2011a). 
Fourthly, vegetation wetness indices were affected by land cover types, vegetation intensity, and 
land surface heterogeneity (Ghulam et al., 2008). Therefore, a combination of remote 
sensing-based variables from different approaches might provide more comprehensive assessment 
of drought conditions (Jang et al., 2006; Gu et al., 2008). For example, Kogan (2002) combined 
VCI (i.e., vegetation greenness) and TCI (i.e., meteorological variable) to calculate vegetation 
health index (VHI). Another example came from Jang et al. (2006) and Gu et al. (2008) who 
calculated normalized moisture index (NMI) and normalized difference drought index (NDDI), 
respectively, as a function of combining NDWI (i.e., vegetation wetness) and NDVI (i.e., 
vegetation greenness). It would be worthwhile to mention that the combination approach was also 
applied in other water stress related applications. For example, the combination approach was 
employed to forecast forest fire danger conditions (Akther and Hassan, 2011b; Chowdhury and 
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Hassan, 2013, 2015). In those cases, three combinations were adopted: (i) LST, NMDI, and 
temperature-vegetation wetness index (TVWI) (Akther and Hassan, 2011b); (ii) LST, NMDI, and 
NDVI (Chowdhury and Hassan, 2013); and (iii) LST, NMDI, NDVI, and perceptible water (PW) 
(Chowdhury and Hassan, 2015). However, in the previous studies, the relationships among the 
input variables were neglected despite the possibilities of having high correlations among input 
variables. In fact, such correlations might potentially generate uncertainties in model outputs 
(Jensen, 2005). In addition, synergy between remote sensing and other data types were also 
reported in the literature, such as vegetation drought response index (VegDRI; Brown et al., 2013), 
integrated surface drought index (ISDI; Wu et al., 2013), and US drought monitor (USDM; 
Svoboda et al., 2002).  

In this study, our objective was to develop a fully remote sensing-based method for monitoring 
agricultural drought conditions and to evaluate its performance over a semi-arid heterogeneous 
rainfed agricultural dominant landscape in Jordan, Middle East. In general, remote sensing data 
having both high spatial and temporal resolutions would be required for evaluating agricultural 
drought conditions, as agriculture land cover would be relatively heterogeneous and having small 
areas and as drought could often occur during critical short time spans during the growing season 
(Wu and Wilhite, 2004). Thus, we opted to implement a spatio-temporal image-fusion model 
(STI-FM) described in Hazaymeh and Hassan (2015a, b) to generate synthetic Landsat-8 like data 
with 30 m spatial and 8 day temporal resolutions upon combing regular Landsat-8 (having 30 m 
spatial with 16 day temporal resolutions) with moderate-resolution imaging spectroradiometer 
(MODIS)-based 8 day composite data having 250–1000 m spatial resolutions. Then, we used 
these fused data for developing our method. The development of the method consisted of three 
specific steps. Firstly, we evaluated the correlations among a set of remote sensing-based 
variables (that included NDWI, NMDI, NDVI, MSI, VSDI, and LST) usually employed in 
assessing agricultural drought conditions to determine relatively less correlated ones. In this 
context, we employed the most commonly-used methods, such as principal component analysis 
(PCA; Jensen, 2005; Akbar et al., 2011). Secondly, we employed these relatively less correlated 
set of variables for developing a remote sensing-based agricultural drought indicator (ADI) upon 
adopting the forest fire danger forecasting framework described in Akther and Hassan (2011b) 
and Chowdhury and Hassan (2013, 2015). Finally, we evaluated the ADI maps obtained in second 
step against ground-based calculations of SPI values (a drought indicator) at 19 agro-climate 
stations within our study area (see Fig. 1 for details). Note that we selected SPI to evaluate our 
results due to its simplicity and robustness in characterizing drought conditions and its flexibility 
to be calculated for different time periods (Wu and Wilhite, 2004; Brown, 2008; Logan et al., 
2010). 

2  Materials and methods 

2.1  Study area 
In this study, we selected the rainfed agricultural land located in the northwestern part of Jordan, 
Middle East, as our study area (see Fig. 1). The area is about 3522 km2 covering approximately 4% 
of the country’s territory and located between 31°41'N to 33°30'N and 34°19'E to 35°59'E. 
Topographically, the study area has a complex terrain with elevations ranging between 600 and 
1100 m a.s.l. Agriculturally, the growing season starts in October and ends in June (Saba and 
Al-Naber, 2010). Field crops (e.g., wheat, barley, and lentil), grasslands and rangeland, and 
orchards (i.e., olives and fruit trees), and evergreen forests are the dominant vegetation cover/use 
types. Climatologically, the area is located in the semi-arid climate regions, with mean annual 
minimum and maximum temperature of 11°C and 23°C, respectively. Rainy season starts in 
October and ends in May with more concentration in December to February. The annual average 
precipitation is about 457.8 mm.  
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Jordan is considered as one of the most drought vulnerable countries in the Middle East, and 
several severe drought events occurred within the last three decades and seriously affected 
agriculture and other economic sectors (Al-Qinna et al., 2010). For example, the 1999 drought 
season caused an estimation of only 1% of cereals harvested in Jordan (FAO/WFP, 1999). A five- 
consecutive-year drought lasting from 2003 to 2008 caused severe water shortage and severely 
affected agriculture production (Milton-Edwards and Hinchcliffe, 2009). Rainy season of 
2013–2014 was only 52% of the long-term average annual precipitation and was described as the 
worst season in the last decade, leaving the dams only 43% full and the farmers in the 
northwestern and central regions of the country struggling to grow crops (JMWI, 2004). 
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Fig. 1  (a) Map of Jordan illustrating long-term average annual precipitation isohyet distribution; (b) major land 
use/cover map in the study area available from Jordan Ministry of Agriculture and locations of the agro-climate 
stations used in this study.  

2.2  Data collection and processing  

Landsat-8 and MODIS data were obtained from USGS and NASA during the growing seasons 
2013–2015 (i.e., spanning from October to June), and they were described in Table 1. It should be 
noted that 9 (nine) and 7 (seven) images were found to be cloud-free for the Landsat-8 data over 
the 2013–2014 and 2014–2015 growing seasons, respectively. 
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Table 1  Description of Landsat-8 and MODIS data used in this study  
Acquisition date Data type Utilization 

2013–2014: 24 Oct. 2013, 09 Nov. 2013, 13 Feb. 
2014, 01 Mar. 2014, 17 Mar. 2014, 02 Apr. 2014, 
18 Apr. 2014, 04 May 2014, 20 May 2014. 

2014–2015: 27 Oct. 2014, 30 Dec. 2014, 31 Jan. 
2015, 05 Apr. 2015, 21 Apr. 2015, 07 May 2015, 
08 Jun. 2015 

Landsat-8 derived surface reflectance* 
and LST** data at 30 m spatial resolution 
with 16-day intervals 

The both datasets were fused 
using the STI-FM algorithm (see 
section 1.3 for details) described 
in Hazaymeh and Hassan (2015a, 
b) to generate synthetic 
Landsat-8 data*** to create a 
time-series of Landsat-8 data 
over the entire growing seasons. Twenty six 8-day composites spanning between 

24–31 October to 18–25 June per growing 
seasons of 2013–2014 and 2014–2015 

8-day composite of MODIS-derived: (i) 
surface reflectance* at 500 m spatial 
resolution, and (ii) LST at 1000 m 
spatial resolution. 

Note: *Surface reflectance-values were considered for the blue (i.e., centered at ~0.475 µm), red (~0.670 µm), NIR (~0.860 µm), SWIR1 
(~1.625 µm), and SWIR2 (~2.165 µm) spectral bands;  
**Landsat-8 based LST-values were derived from the spectral radiance-values acquired by the thermal infrared (i.e., centered at ~10.9 µm) 
spectral using the method described in Hazaymeh and Hassan (2015b) (see next paragraph);  
***In total, 17 and 19 no. of synthetic Landsat-8 data/images were generated for the growing season of 2013–2014 and 2014–2015, 
respectively. 

We used the following steps to produce Landsat-8 LST images as described by Hazaymeh and 
Hassan (2015b). Firstly, we transformed the original digital number (DN)-values of the Landsat-8 
thermal infrared bands into top of atmosphere spectral radiance (r) measured in w/(m2×sr×µm) 
using Equation 1. Then we converted them into at-satellite brightness temperature (Tb) measured 
in Kelvin using Equation 2 (USGS, 2013): 

                      Error! Reference source not found.,        (1) 

                    Error! Reference source not found.. (2) 

Where, M and A are multiplicative and additive rescaling factors, respectively; and K1 and K2 are 
thermal conversion constants. The values of M, A, K1 and K2 are readily available in the metadata 
file of each of the images. Secondly, we up-scaled the Landsat-8 Tb images to synchronize with 
the spatial resolution of MODIS LSTs and then determined the relationships between the 
up-scaled Landsat-8 Tb and MODIS LST images. Finally, we used these relationships to convert 
the original Landsat-8 Tb images into LST ones. 

2.3  Generating the 8-day time-series of Landsat-8 data and calculating agricultural 
drought-related variables 
Our adopted STI-FM algorithm (Hazaymeh and Hassan, 2015a, b) consisted of two steps. Firstly, 
we established a simple linear relationship between two consecutive 8-day composite of MODIS 
images (i.e., M(t1) and M(t2)), i.e.,  

             Error! Reference source not found.. (3) 

Where, a and c are slope and intercept, respectively. It would be possible that the Equation 3 
might have 3 sets of co-efficient depending on the relationships between M(t1) and M(t2), such as: 
(i) M(t1)≈M(t2) (i.e., ±15%); (ii) M(t2)>M(t1) by 15%; and (iii) M(t2)<M(t1) by 15%. Secondly, we 
used the coefficient generated in the scope of Equation 3 into Equation 4 to generate synthetic 
Landsat-8 images (i.e., synth-L(t2)), where L(t1) is an actual image acquired by the Landsat-8 
satellite at time t1. 
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                Error! Reference source not found.. (4) 

  Upon generating synthetic Landsat-8 images, we created an 8-day time-series of actual and 
synthetic Landsat-8 images. We then calculated the following set of drought-related variables, 
such as NDWI (Gao, 1996), VSDI (Zhang et al., 2013), MSI (Hunt and Rock, 1989), NDVI (Sha 
et al., 2016), and NMDI (Chowdhury and Hassan, 2015). 

     Error! Reference source not found., (5) 
Error! Reference source not found., (6) 

        Error! Reference source not found., (7) 
Error! Reference source not found., (8) 
Error! Reference source not found.. (9) 

Where, ρ is the surface reflectance value of blue (B), red (R), near infrared (NIR), and shortwave 
infrared (SWIR1, and SWIR2 centered at ~1.64, and ~2.14 µm, respectively) bands.  

Along with the above-mentioned spectral indices (i.e., NDWI, VSDI, MSI, NDVI, and NMDI) 
and LST, we implemented PCA to determine relatively less correlated variables. In this case, we 
computed co-variance matrix of the six input variables, eigenvalues and related eigenvector 
matrix (Jensen, 2005). Then, we used these values to determine: (i) the percentage of total 
variance explained by each principal component using Equation 10 and (ii) the correlation or how 
each variable loads in each principal component using Equation 11. 

Error! Reference source not found., (10) 
Error! Reference source not found.. (11) 

Where, %p is the total variance explained by component p; Ep is eigenvalue of component p; Rvp 
is correlation between variable v and component p; avp is the eigenvector for variable v and 
component p; and Varv is the variance of variable v in the co-variance matrix. Table 2 shows the 
eigenvalues, percentage of variance, and cumulative variance explained by each principal 
component (PC) for four Landsat-8 images acquired on 17 March 2014, and 2 April 2014, 18 
April 2014 and 4 May 2014. It revealed that PC1, PC2, and PC3 accounted for 65.03%–79.72%, 
12.93%–29.03%, and 2.69%–3.87% of the total variance, respectively. Cumulatively, these three 
principal components accounted for 95.76%–96.74% of the variance in the dataset. Table 3 shows 
the corresponding correlations or loading values of each variable in these three major principal 
components (i.e., PC1, PC2, and PC3). According to the theory, the variable responsible for the 
highest loading might represent a particular PC of interest (Jensen, 2005; Akbar et al., 2011). For 
example, PC1 consisted of four variables (i.e., NDWI, MSI, NMDI, and VSDI) with relatively 
high negative correlations for all the four images. Among them, NDWI contributed the most in all 
the acquisition dates (i.e., –0.92 to –0.99) and it was thus considered as the representative variable 
for PC1. In the case of the PC2, LST was found to be the mostly contributed variable with 
negative loading (i.e., –0.87 to –0.98) and it was thus considered as the representative of PC2. For 
PC3, VSDI was the highest contributor with positive values (i.e., 0.45 to 0.52) in all the dataset 
and it was thus considered as PC3’s representative. Based on this analysis, we considered NDWI, 
VSDI, and LST would be the set of relatively less correlated input variables for developing our 
agricultural drought monitoring indicator. 
Table 2  Eigenvalues, percentage of variance, and cumulative variance explained by each principal component 
for four Landsat-8 images acquired during the growing season 

Acquisition date PC Eigenvalue 
Variance 

(%) 
Cumulative  

 variance (%) 
Acquisition 

date 
PC Eigenvalue 

Variance 
(%) 

Cumulative 
variance 

(%) 

17 March 2014 
1 0.0335 79.72 79.72 18 April 

2014 
1 0.0606 74.87 74.87 

2 0.0054 12.93 92.65 2 0.0147 18.17 93.03 
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3 0.0016 3.87 96.52 3 0.0025 3.15 96.18 

4 0.0011 2.58 99.11 4 0.0023 2.80 98.98 

5 0.0004 0.87 99.97 5 0.0008 1.01 99.99 

6 0.00001 0.028 100.00 6 0.00001 0.006 100.00 

02 April 2014 

1 0.0556 65.03 65.03 

04 May 
2014 

1 0.0446 71.40 71.40 

2 0.0248 29.03 94.05 2 0.0132 21.07 92.47 

3 0.0023 2.69 96.74 3 0.0021 3.29 95.76 

4 0.0022 2.54 99.28 4 0.0019 3.04 98.80 

5 0.0006 0.71 99.99 5 0.0007 1.19 99.99 

6 0.0000 0.006 100.00 6 0.00001 0.01 100.00 

2.4  Ground-based precipitation data and its use in calculating SPI 

In addition, we obtained historical daily precipitation records for thirty years during the period 
spanning from 1984 to 2015 available from the Jordanian Ministry of Water and Irrigation. 
Although there were 34 agro-climate stations located within the study area, we considered only 
19 stations as reliable ones (see Figure 1 for location information) because these 19 stations have 
more or less continuous records and are also located within 1 km buffer zone of agricultural land 
types.   

Table 3  Degree of correlation or loading between each variable and each principal component 

Variable 
17 March 2014 02 April 2014 18 April 2014 04 May 2014 

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 

LST 0.34 –0.98 –0.19 –0.23 –0.92 –0.02 0.44 –0.89  0.05 0.49 –0.87 –0.04 

MSI –0.96  0.00 –0.16 –0.90  0.16 –0.03 –0.95  0.10 –0.18 –0.93  0.16  0.00 

NDVI –0.45  0.26  0.38 –0.27 –0.60  0.17 –0.55  0.16  0.11 –0.50  0.17  0.18 

NDWI –0.99  0.03  0.03 –0.92 –0.60 –0.03 –0.98 –0.15  0.10 –0.97 –0.20 –0.05 

NMDI –0.86 –0.11 –0.26 –0.33 –0.51 –0.09 –0.82  0.03 –0.25 –0.74  0.05 –0.09 

VSDI –0.86 –0.20  0.52 –0.38  0.49  0.50 -0.84 –0.12  0.45 –0.86 –0.02  0.48 

At each of the 19 stations, we used the station-specific precipitation data for calculating 8-day 
SPI-values using the protocols described in McKee et al. (1993). As per protocols, the SPI at a 
given station was calculated by considering long-term precipitation regimes over the period 
spanning from1984 to 2015. The calculated SPI values were affirmed to Gamma probability 
distribution function and the resulted probability distribution was then converted into a Gaussian 
distribution to ensure that the station-specific average SPI-value over the given period would be 
zero (Mckee et al., 1993). The rationale of computing 8-day SPI-values was to synchronize with 
the 8-day intervals of the Landsat-8 actual/synthetic images. Also, note that we computed a set of 
8-day SPI-values (i.e., SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-7, and SPI-8) coinciding 
with each of the Landsat-8 image dates (see Figure 2 for details). In fact, use of short-term 
SPI-values (e.g., daily, weekly, 10 days, and bi-weekly intervals) for agricultural drought 
monitoring were abundantly detailed in the literature. For example: (i) Svoboda et al. (2002), Wu 
and Wilhite (2004), and Brown et al. (2013) used weekly SPI-values over several states in USA; 
(ii) Brown (2008) used 10-day SPI values over Africa; (iii) Sims et al. (2002) compared SPI 
against PDSI at daily, weekly and biweekly temporal scales over North Carolina, USA. In general, 
short-term SPI-values would be required in comprehending drought conditions over agricultural 
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land cover as crops would respond to water stress at relatively shorter time scale (McKee et al., 
1993; Wu and Wilhite, 2004). On the other hand, the short-term SPI would potentially be 
abnormal in case of insufficient precipitation (i.e., available moisture to crops) during the period 
of calculation (Wu et al., 2007).    

We then categorized these SPI-values into four classes upon modifying the schema described 
in Lloyd-Hughes and Saunders (2002) as follows: (i) wet (i.e., SPI-value>0); (ii) mild drought 
(i.e., SPI-value between 0 and –0.99); (iii) moderate drought (i.e., SPI-value between –1.00 and 
–1.49); and (iv) severe drought (i.e., SPI-value≤–1.50). Lloyd-Hughes and Saunders (2002) 
proposed four classes in describing wet conditions. However, we grouped all of them into one 
class (i.e., wet: SPI-value>0) as detailed analyses of the wetness conditions were beyond the 
scope of this paper. 
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 
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image date 
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SPI-1 

SPI-2 
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SPI-4 
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SPI-6 
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SPI-8 

Actual Landsat-8 
image date 

 

Fig. 2  Schematic diagram illustrating the ways of calculating 8-day SPI-values around the Landsat-8 
actual/synthetic image dates 

2.5  Developing a remote sensing-based agricultural drought indicator (ADI) 

Over the agricultural land cover (see Figure 1b), we extracted the set of relatively less correlated 
variables (i.e., NDWIi, VSDIi, and LSTi) for each of the 8-day periods (i); and then calculated the 
study area-specific average values for the variable of interests over each 8-day period. We then 
compared the instantaneous values for the variable of interest (i.e., NDWIi, VSDIi, and LSTi) 
against the area-specific average values for the variable of interests and defined as either “dry” or 
“wet” conditions. Such definition of dry and wet conditions was based on the natural response for 
the variable of interest in the context of drought. For instance: (i) the pixel would be classified as 
“dry” as low values of NDWI and VSDI would indicate more dry conditions, or vice-versa; and 
(ii) the pixel would be classified as “dry” as high values of LST would indicate more dry 
conditions, or vice-versa.  
  Finally, we combined the binary agricultural drought maps resulted from each of the individual 
variables and integrated into the following 4 classes as part of the proposed “agricultural drought 
indicator”: (i) “severe drought” if all three variables indicated “dry” conditions; (ii) “moderate 
drought” if any two variables indicated “dry” conditions; (iii) “mild drought” if one variable 
indicated “dry” conditions; and (iv) “wet” if all the variables indicated “wet” conditions.  
  Upon generating the agricultural drought indicator maps at 8-day intervals, we evaluated them 
against the set of 8-day SPI-values shown in Figure 2. At the location of each of the 19 
agro-climate stations where the SPI-values were calculated, we created a 1-km buffer zone and 
then computed the dominant (i.e., majority of occurrences) drought class within each buffer zone 
from the drought maps. Subsequently, we compared these drought classes with corresponding 
point-based SPI-values (i.e., SPI-1, SPI-2,…, SPI-8) by generating confusion matrices. We, then, 
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used the confusion matrices to compute agreements between the remote sensing-based ADI maps 
and ground-based SPI-values. 

3  Results and discussion 

Table 4 shows the agreements between the remote sensing-derived ADI-classes and 
corresponding point-based SPI values (i.e., SPI-1, SPI-2,…, SPI-8). We observed higher degrees 
of agreements between the remote sensing-derived ADI classes and: (i) SPI-4 (i.e., overall 
accuracy 83% and Kappa-values 76%), and (ii) SPI-5 (i.e., overall accuracy 85% and 
Kappa-values 78%). The observed high degrees of agreements were related to the fact that both 
SPI-4 and SPI-5 values were calculated and compared with the remote sensing-derived ADI 
values that were generated almost in the middle of the 8-day time period.  
Table 4  Agreements between remote sensing-derived agricultural drought indicator classes and corresponding 
point-based SPI-values 

SPI-values Overall accuracy (%) Kappa (%) 

SPI-1 64 48 

SPI-2 78 68 

SPI-3 81 73 

SPI-4 83 76 

SPI-5 85 78 

SPI-6 80 70 

SPI-7 62 42 

SPI-8 58 35 

In addition, we also calculated the user's accuracy and producer's accuracy for each confusion 
matrix to measure how well each individual class agreed with the SPI classes and the example 
cases (i.e., ADI vs. SPI-4, and ADI vs. SPI-5) are presented in Table 5. In both cases, we found 
that the drought class-specific user’s and producer’s accuracies were in the range 67%–93% and 
62%–97% respectively. Our findings would, in fact, support the effectiveness of our method in 
monitoring agricultural drought conditions at reasonably high spatial resolution (i.e., 30 m) and 
short time periods (i.e., 8-day). However, we observed some percentage of disagreement between 
remote sensing-derived ADI and SPI; which might be related to soil moisture (van Wesemael et 
al., 2003), and vegetation type and their growth stages (Boken et al., 2005). It would be 
worthwhile to mention that our proposed method had shown to forecast drought over short time 
period (e.g., 3 to 4 days) if no rainfall would occur.  
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Table 5  Examples of confusion matrices between remote sensing-derived agricultural drought indicator (ADI) 
and SPI classes, i.e., (a) ADI vs. SPI-4 and (b) ADI vs. SPI-5 

(a)  Remote sensing-derived ADI classes   

  Severe 
drought 

Moderate    
drought Mild drought Wet Total Producer's 

accuracy (%) 

SPI-4 
classes 

Severe drought 139 14  6  2 161 86 
Moderate drought  15 54  13  0  82 66 

Mild drought  22  8 163  50 243 67 
Wet   6  0   4 340 350 97 

 Column total 182 76 186 392 836  
 User's accuracy (%)  76 71  88  87   

(b)  Remote sensing-derived ADI classes   

  Severe 
drought 

Moderate 
drought Mild drought Wet Total Producer's 

accuracy (%) 

SPI-5 
classes 

Severe drought 122  8  4  2 136 90 
Moderate drought  27 60  10  0  97 62 

Mild drought  27  8 166  26 227 73 
Wet   6  0   6 364 367 97 

 Column total 182 76 186 392 836  
 User's accuracy (%)  67 79  89  93   

In order to comprehend the spatial dynamic of agricultural drought conditions, we generated 
agricultural drought distribution maps for each time period during the growing seasons of interest; 
and such example cases are shown in Figures 3a and 3b. Figure 3a shows agricultural drought 
map generated by combining the three relatively less correlated variables (i.e., NDWI, VSDI, and 
LST) derived from actual Landsat-8 image acquired on 13 February 2014 (i.e., during the period 
of vegetation germination (Saba and Naber, 2010)). It showed that approximately 60% of the 
study area fell under the three drought classes (i.e., 28% mild drought, 14% moderate drought, 
and 18% severe drought). In another case as shown in Figure 3b, we combined the synthetic 
Landsat-8 data on 10 April 2014 (i.e., during the peak period of vegetation growth (Saba and 
Naber, 2010)). It showed that approximately 79% of the study area fell under the three drought 
classes (i.e., 19% mild drought, 29% moderate drought, and 31% severe drought).    

                  

Fig. 3  Example cases of remote sensing-derived agricultural drought maps upon combining three relatively less 
correlated variables (i.e., NDWI, VSDI, and LST) based on: (a) actual Landsat-8 data acquired on 13 Feburay 2014 
coinciding with the period of vegetation germination; and (b) synthetic Landsat-8 data generated on 10 April 2014 
at the peak period of the vegetation growth. Note that the white colored areas represented non-agricultural lands. 
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4  Conclusions 

In this study, we developed a simple remote sensing-based method, namely agricultural drought 
indicator (ADI), for monitoring agricultural drought conditions and evaluated its applicability 
over heterogeneous agriculture-dominant semi-arid region in Jordan. The ADI employed time 
series of relatively less correlated remote sensing-derived agricultural drought related variables 
(i.e., NDWI, VSDI, and LST) that were generated from actual and synthetic Landsat-8 like data at 
8-day interval and 30 m spatial resolution. Results showed higher degrees of agreement between 
the remote sensing-derived ADI classes and: (i) SPI-4 (i.e., overall accuracy 83% and 
Kappa-values 76%), and (ii) SPI-5 (i.e., overall accuracy 85% and Kappa-values 78%). It is our 
sincere hope that our method would provide better understanding and more comprehensive view 
of agricultural drought conditions and that our method can in turn help us in mitigating its severe 
consequences and enhancing agricultural and water management practices. Despite the strong 
performance of our proposed remote sensing-derived ADI, we would like to mention the 
following issues for potential improvements. First, other factors, such as topography, soil 
properties, land use/cover, vegetation phenology, and agricultural management practices, would 
be worthwhile to investigate as they might play significant role in agricultural drought conditions 
and levels. Second, we strongly recommend using other ground-based drought related 
information, such as temperature and evapotranspiration besides using ground-based precipitation 
data. Third, we strongly recommend the method to be thoroughly evaluated prior any 
implementation in environments other than semi-arid ones. 
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