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Abstract: Agricultural drought is a natural hazard that can be characterized by shortage of water 
supply. In the scope of this paper, we synthesized the importance of agricultural drought and methods 
commonly employed to monitor agricultural drought conditions. These include: (i) in-situ based 
methods, (ii) optical remote sensing methods, (iii) thermal remote sensing methods, (iv) microwave 
remote sensing methods, (v) combined remote sensing methods, and (vi) synergy between in-situ and 
remote sensing based methods. The in-situ indices can provide accurate results at the point of 
measurements; however, unable to provide spatial dynamics over large area. This can potentially be 
addressed by using remote sensing based methods because remote sensing platforms have the ability 
to view large area at a near continuous fashion. The remote sensing derived agricultural drought 
related indicators primarily depend on the characteristics of reflected/emitted energy from the earth 
surface, thus the results can be relatively less accurate in comparison to the in-situ derived outcomes. 
Despite a significant amount of research and development has been accomplished in particular to the 
area of remote sensing of agricultural drought, still there are several challenges. Those include: 
monitoring relatively small area, filling gaps in the data, developing consistent historical dataset, 
developing remote sensing-based agricultural drought forecasting system, integrating the recently 
launched and upcoming remote sensors, and developing standard validation schema, among others. 

Keywords: optical remote sensing; thermal remote sensing; microwave remote sensing; synergy 
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1. Introduction 

Drought is a natural hazard that can be defined as the deficiency of water over an extended 
period of time causing problems to some activities, groups, and other environmental sectors [1]. It 
can be broadly classified into four common types, such as [2,3]: 

x Meteorological drought: the deficiency of precipitation comparing to average conditions 
over specific location and period of time (e.g., weeks, months, or years). 

x Agricultural drought: the deficiency of soil moisture below the optimal level required for the 
proper growth of plants during different growing stages, resulting in growth stress and yield 
reduction. 

x Hydrological drought: the shortage of natural and/or artificial surface or ground water 
resources.  

x Socio-economic drought: the affected human activities by one or more of the previous three 
types of drought.  

These types of drought are linked to each other; however, our focus would be concentrated on 
agricultural drought as it is considered as one of the most important issues in most of the countries in 
terms of economic, food security, and social stability. Generally, agricultural drought occurs as a result of 
two factors: (i) short-term precipitation shortage that reduces soil moisture levels, and/or (ii) temperature 
increasing that causes increase in evapotranspiration levels above water supply. The impacts of 
drought on agricultural fields depend on timing, intensity, spatial extent and duration of drought [1]. 
For example, if drought occurs occasionally over long time period, plants may be able to reach 
maturity before the drought causes severe impacts. On the other hand, a short-lived drought 
coinciding with the fully grown stage of the plants (when they are ready to flowering or graining), it 
may have severe impact as the plants usually require the highest amount of water at this time. 
Actually, a comprehensive understanding of the causes and consequences of the historical and 
occasional agricultural droughts are very important in food production, planning, and management as 
its impacts were found to be evident at all plants growth stages [4], however some stages may be 
adversely impacted [5].  

To date, various methods have been developed and used for agricultural drought monitoring, 
these methods are usually known as agricultural drought indices [6]. In the scope of this article, we 
divided the existing methods into three categories: in-situ, remote sensing, and synergic based 
indices. Generally, they are represented in mathematical equations that integrate different variables 
to study drought, either quantitatively or qualitatively, therefore they may be more effective than the 
direct use of raw data [7]. Recently, many countries have established different frameworks for 
monitoring and mitigating agricultural drought impacts on their economic, social, and environmental 
sectors [8], however many of these studies have relied on a single data source [9]. Therefore, their 
spatial or temporal resolutions are limited. This encourages developing and applying meaningful 
methods that integrate data from different sources in order to provide high spatial and temporal data 
quality for agricultural drought research [10]. Currently, remote sensing satellites provide advanced 
products for agricultural drought monitoring that include vegetation indices, precipitation 
information, evapotranspiration, and soil moisture measurements [11]. Although these provides 
adequate spatial coverage and continuous data, the trade-off between their spatial and temporal 
resolutions may restrict their use at agriculture fields’ level and during the plants growing seasons [12]. 
However, recent advances in remote sensing data fusion of multi satellite data have assisted in 
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mitigating these limitations [13-16]. In the scope of this paper, we synthesized the importance of 
agricultural drought and methods commonly employed to monitor agricultural drought conditions 
(that include in-situ, remote sensing, and synergy between in-situ and remote sensing-based methods 
in particular) and their limitations.  

2. Importance of monitoring agricultural drought 

Continuous water supply throughout the growing season is required for the proper growth of 
agricultural crops. This can be met through irrigation, however, with the absence of irrigation 
facilities especially in developing countries and semi-arid regions, crops are mainly relying on the 
spatial and temporal distribution of precipitation and soils ability to store water, which, in turn, 
controls crops yield and production. Thus, effective and timely monitoring of agricultural drought 
during the growing season might be greatly helpful in minimizing agricultural losses.  

Agricultural drought monitoring is one of the three main actions in agricultural drought risk 
management plans, which also include drought preparedness and drought response actions. 
Monitoring actions include: ongoing monitoring and evaluating surface wetness conditions, 
precipitation amounts and patterns; and temperature in the agricultural areas during the growing 
season. The ongoing monitoring includes measuring different agro-climate parameters such as 
precipitation, temperature, evaporation, soil moisture, etc. in near real time collection in order to 
develop adequate agricultural drought evaluation indicators. These evaluations are then interpreted in 
drought reports that objectively and accurately determine the severity, extent and duration of drought 
conditions. Usually, such combined information helps in providing guidance for decision makers (i.e., 
government ministries) and farmers to the existing situation. The drought preparedness actions focus 
on the efforts that increase the awareness and readiness of decision makers and farmers, especially 
during non-drought periods, to the proper respond to the next drought event if occurred. Lastly, 
drought response actions provide appropriate strategies during and immediately following a drought 
events to reduce drought impacts on agricultural operations [17]. 

Agricultural drought is a widespread natural hazard phenomenon (see Figure 1) recently, large 
scale intensive droughts events have occurred and affected large areas in Europe, Africa, Asia, 
Australia, South America, Central America, and North America. For example, during the growing 
seasons over the period 1980–2003 in United States of America, drought accounted for $144 billion 
(41.2%) of the estimated $349 billion total cost of all weather-related disasters [18]. In Canada, the 
Canadian Prairies are the most drought susceptible area due to high variability of precipitation, for 
example, the drought event during 2001 and 2002 growing seasons resulted in an estimated loss of 
$3.6 billion in agricultural production [19]. In Australia the winter cereal crop was reduced by 36% 
and costed around AUD$3.5 billion during the 2006 drought event [20]. During the past 30 years in 
Europe, several major drought events occurred. The most severe drought event in the Iberian 
Peninsula in 2005 caused 10% reduction in the overall European cereal yields. Since 1991, the 
European Union has estimated a yearly average economic impact of drought by €5.3 billion [21]. 

In Asia, the Intergovernmental Panel on Climate Change reported that most of rice, maize, and 
wheat production has declined in many Asian countries in the last few decades [22]. For examples, 
around 60 million people in Central and Southwest Asia were affected by drought during 1999–2000 
growing seasons, and around 40 million hectares of agricultural areas were affected in China alone. 
In India, drought has been reported at least once in every three years in the last five decades [23]. 
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The West Asia—including Jordan—and North Africa region experienced several drought events in 
the last three decades represented by reduced food production. For example, in 1999, aggregate 
cereal production in the West Asia sub-region was 16% lower than in the previous year and 12% 
lower than the average over the previous five years. In Turkey, the grain production fell by 6% as 
compared to the five-year average. In Iraq, rainfall was 30% below average resulting in 70% failure 
in rain-fed agriculture crops. Similar situation faced North African countries such as, Morocco, 
Algeria, and Tunisia during that drought event as cereal crop was reduced by 31% comparing to the 
previous year’s harvest [4].  

 

Figure 1. World drought severity distribution map computed over the 1901–2008 
period (modified after [24]). Drought is defined as a continuous period where soil 
moisture remains below the 20th percentile at monthly scale [25]. 

3. In-situ based agricultural drought monitoring methods 

The in-situ based agricultural drought monitoring indices are the most accurate and historic 
ones among the others [26]. They are based on ground measurements of hydro-climatic variables 
(including precipitation, temperature, relative humidity, and soil water content etc.) available from 
climatic, agricultural, and hydrologic stations; and able to provide quantitative and qualitative 
information over an area of interest [27]. Some of the examples include: (i) Palmer drought severity 
index (PSDI) uses precipitation and temperature [28]; (ii) crop moisture index (CMI) incorporates 
soil moisture, precipitation and temperature [29]; (iii) crop water stress index (CWSI) is based on 
actual and potential evaporation [30]; (iv) crop specific drought index (CSDI) employs temperature, 
precipitation, evapotranspiration information [31]; and (iv) standardized precipitation index (SPI) 
uses precipitation regimes [32]. Although some of these indices were initially developed for 
meteorological drought; however, they were effectively applied in agricultural drought monitoring in 
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Table 1. Most commonly used in-situ based agricultural drought monitoring indices. 

Index Inputs Ref. Pros Cons  
Palmer Drought 
Severity Index 
(PSDI) 

Temperature, precipitation, soil 
moisture, evapotranspiration 

[28]  Provides more comprehensive view 
of drought conditions 

Sophisticated computation process 

Crop Moisture 
Index (CMI) 

Temperature, precipitation [29]  Easley computable using 
precipitation and temperature data 

Not suitable for long-term agricultural 
drought 

Stress Degree  
Days (SDD) 

Canopy and air temperature [37]  A simple measure calculated by the 
difference between canopy and air 
temperature 

Environmental conditions such as air 
humidity and soil moisture can affect 
the index  

Standardized 
Precipitation  
Index (SPI) 

Precipitation [32]  Simple, requires only precipitation 
data, measures drought conditions at 
different time scales 

Use only precipitation, hard to 
interpolate over large areas 

Crop Specific 
Drought Index 
(CSDI)  

Temperature, precipitation, 
evapotranspiration 

[31]  Provides daily estimates soil water 
availability for different zones and 
soil layers 

Too many requirements including soil 
type, crop phenology, and 
climatological data 

Evapotranspiration 
Deficit Index 
(ETDI) 

Weekly soil moisture and 
evapotranspiration values 
simulated by the Soil and Water 
Assessment Tool (SWAT) 

[38]  Considers the water stress ratio in its 
calculation, and provide weekly 
values which reflects short term dry 
conditions 

The spatial variability of its values 
increases during summer season due to 
increase of evapotranspiration and 
variable precipitation. 

Soil Moisture 
Drought Index 
(SMDI) 

Weekly soil moisture and 
evapotranspiration values 
simulated by the Soil and Water 
Assessment Tool (SWAT) 

[38]  Improves the ability for modeling 
and monitoring hydrologic system 
and soil moisture deficient at a finer 
resolution 

Irrespective to soil properties across 
different climatic conditions  
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different studies because agriculture is often the first affected sector by the onset of drought due to 
precipitation deficiency [33-35]. Table 1 shows the most commonly used in situ based agricultural 
drought monitoring indices. Note that the World Meteorological Organization (WMO) recommends 
that all national meteorological, agricultural and hydrological services should use SPI for 
monitoring drought [36] due to its simplicity and flexibility to monitor drought at either weekly or 
10 days, 1, 3, 6, 9, 12 and 24 months intervals, with four drought classes (i.e., near normal, 
moderate, severe and extreme droughts) [32]. 

In general, these indices usually provide very accurate estimates of agricultural drought 
conditions at the point locations where the input variables are acquired. However, the uneven spatial 
distribution of the hydro-meteorological stations across the landscape often imposes uncertainty in 
delineating spatial context. In order to address this, geographic information system (GIS)-based 
interpolation techniques (e.g., inverse distance, krigging, nearest neighbour, etc.) are usually 
employed. However, these techniques often generate different outcomes despite using the same set 
of input variables [39]. It is worthwhile to mention that in-situ methods can also be used with 
gridded spatial data and remote sensing derived data such as rainfall estimates. 

4. Remote sensing based agricultural drought monitoring methods 

In order to address the spatial context of agricultural drought based in-situ based indices, 
remote sensing-based indices have been widely used for agricultural drought monitoring. These 
indices are based on unique spectral signatures of soil surface and canopy characters, particularly in 
the red, near infrared, shortwave infrared and thermal spectral bands. In general, the use of remote 
sensing in agricultural drought monitoring relies on the fact that drought might affect the 
bio-physical and chemical properties of soil and vegetation, such as soil moisture, organic matter, 
vegetation biomass, chlorophyll, and canopy and soil temperature [40]. Thus, it may change their 
spectral and thermal responses, which can be used as indicators of drought occurrence. Therefore, 
many remote sensing models and indices have been developed and employed in investigating 
agricultural drought [9,41]. Basically, remote sensing-based agricultural drought monitoring 
methods can be grouped into four groups: (i) optical remote sensing methods, (ii) thermal remote 
sensing methods, (iii) microwave remote sensing methods, and (iv) combined remote sensing 
methods. It is worthwhile to mention that the usability of remote sensing based methods depends on 
different factors including satellite data availability, cost, data quality, pre-processing, and 
post-processing requirements. 

4.1. Optical remote sensing methods  

Because agricultural drought is naturally related to vegetation and soil status; optical remote 
sensing data in the range 0.4 and 2.5 μm have been used as inputs to the agricultural drought indices [41]. 
In this spectral range, red, near infrared (NIR), and shortwave infrared (SWIR) are the most 
commonly used bands due to their distinct response to agricultural drought condition through both 
vegetation greenness and vegetation wetness conditions. In case of vegetation greenness, heathy 
vegetation is often more green and tend to absorb most of the incident visible light (e.g., red 
spectrum) and reflect significant amount in the NIR spectrum. In contrast, both unhealthy or sparse 
vegetation reflects more in the visible spectrum and less in the NIR spectrum. In case of vegetation 



610 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

wetness, NIR spectrum is found to be less sensitive while SWIR spectrum is significantly 
responsive to the vegetation water content. In fact, when analysing the spectral response of 
vegetation at various levels of water content, generally surface reflectance increases with higher 
levels of water deficiency in particular to the SWIR spectrum [41]. 

In general, optical remote sensing-based agricultural drought indices can be divided into three 
groups according to their purpose: (i) soil drought monitoring indices, (ii) vegetation drought 
monitoring indices, and (iii) soil and vegetation drought indices. The soil drought monitoring 
indices were found to be more applicable over bare soil surfaces than vegetated surfaces. The 
rationale behind this was that vegetation could resist drought conditions by utilizing different 
reactions in their leaves and roots [42]. This might delay the identification of agricultural drought 
conditions especially over more densely vegetated areas, and cause uncertainties in the results of 
these indices. Such examples of these indices include perpendicular drought index (PDI; [43]) and 
distance drought index (DDI; [44]). On the other hand, vegetation drought indices were found to be 
more applicable over moderate to densely vegetated areas than sparse vegetated areas; this was 
because soil background reflectance might affect the calculations and cause uncertainties in 
monitoring drought [43]. Examples on such indices are, normalized difference vegetation index 
(NDVI; [45]), leaf water content index (LWCI; [46]), normalized difference water index   
(NDWI; [47]), NDVI anomaly (NDVIA; [48]), vegetation condition index (VCI; [49]), standardized 
vegetation index (SVI; [50]), SWIR perpendicular water stress index (SPSI; [43]), and vegetation 
water stress index (VWSI; [43]). 

In general, semi-arid areas are described as sparse vegetated areas [51]; therefore, neither 
vegetation drought indices nor soil drought indices solely can provide accurate monitoring of 
drought in these regions. Some possible solutions might include performing land cover 
classification and assigning a suitable index for each class [52] or applying different drought indices 
at different plant growing stages. However, such solutions might add additional uncertainty and 
complexity to the final results of agricultural drought monitoring. In addressing these issues, some 
indices were developed for monitoring agricultural drought for both soil and vegetation at the same 
time such as, shortwave infrared water stress index (SIWSI; [53]), normalized multiband drought 
index (NMDI; [54]), and the visible and shortwave drought index (VSDI; [55]). In conclusion, these 
indices did not only provide mapping of vegetation and soils on a pixel basis, they also provided 
qualitative and quantitative measurements of their conditions (i.e., greenness and wetness) within a 
pixel. However, these indices ignored the temperature (i.e., thermal properties) as an indicator of 
agricultural drought in their formulations. Table 2 shows the most commonly used optical remote 
sensing based agricultural drought monitoring indices.  

Thermal inertia is a measurement describes the resistance of the materials (e.g., soil and 
vegetation) to temperature variations; it depends on the bulk density, thermal conductivity, and heat 
capacity of the materials [59]. It has a proportional relationship with water content levels, therefore 
if water content decrease, thermal inertia decreases as well. Thus, it can be used as an indicator of 
agricultural drought. However, since different materials have different thermal inertia, and bulk 
density, thermal conductivity, and heat capacity cannot be derived from remote sensing data, 
mapping thermal inertia was inapplicable through remote sensing. A proposed alternative was the 
apparent thermal inertia which can be derived from remote sensing data by measuring the surface 
albedo and the diurnal temperature range [60,61]. However, the application of this method was 
found to be restricted to arid regions with bare land or very sparse vegetation areas [62].
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Table 2. Most commonly used optical remote sensing agricultural drought monitoring indices. 
Type Index Expression* Ref. Pros Cons 
Soil drought 
index 

Perpendicular Drought Index 
(PDI) 

     
 

      
              

[43]  Simple and effective in 
calculating drought 
conditions 

Unable to provide high accuracy 
over variable land cover types 
especially bare soils and densely 
vegetated fields. 

Vegetation 
drought index 

Normalized Difference 
Vegetation Index (NDVI) 

       
         
         

 [45]  Provides a measure of 
vegetation health or 
greenness conditions 

Sensitive to darker and wet soil 
conditions; also demonstrates time 
lag in response to soil moisture 

Vegetation 
drought index 

Moisture Stress Index (MSI)      
      

    
 [46]  More sensitive at 

canopy level rather  
than leaf level 

Applicable for densely vegetated 
areas 

Simple Ratio Water Index 
(SRWI) 

      
    

       

 [56]  

Normalized Difference Water 
Index (NDWI1) 

       
             

             

 [47]  Effective in monitoring 
vegetation water 
content 

Uncertainties increased 
considerably in the presence of soil 
and sparsely vegetated or bare 
surfaces 

Normalized Difference 
Infrared Index (NDII) 

       
             

             

 [57]  

Land Surface Water Index 
(LSWI) 

       
             

             

 [58]  

Vegetation Condition Index 
(VCI)      

               

                 
 

[49]  Provides vegetation 
greenness conditions 

Requires data over longer time 
period 

Soil and 
vegetation 
drought index 

Modified Perpendicular 
Drought Index (MPDI) 

        
 -    

    -          ) 
[43]  Applicable over 

variable topography, 
soil types and 
ecosystems 

Assumption fixed soil line; 
however, it is highly dependent on 
the soil type, level of fertilization, 
and soil moisture 

Continued on next page 
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Table 2. Most commonly used optical remote sensing agricultural drought monitoring indices—continued. 

Type Index Expression* Ref. Pros Cons 
Soil and 
vegetation 
drought index 

Shortwave Infrared Water 
Stress Index (SIWSI) 

        
        

       
        

       
 [53] Similar to NDII Similar to NDII 

Normalized Multiband 
Drought Index (NMDI) 

       
              

           
              

           
 [54]  Applicable for 

estimating both 
vegetation and soil 
water content 

Requires further 
investigation over 
moderately dense 
vegetation 

Visible And Shortwave 
Drought Index (VSDI) 

         -         
-           -    ] [55]  Applicable for 

estimating both 
vegetation and soil 
water content 

Performs unwell if 
temperature is more 
dominant over the 
precipitation 

*ρ is the surface reflectance value of blue  B , red    , near infrared (NIR), and shortwave infrared (SWIR1, SWIR2, and SWIR3 centred at ~1.24, ~1.64, and ~2.14 µm) bands; M is 

the slope of the soil line; fv is the vegetation fraction. 

Table 3. Most commonly used thermal remote sensing-based agricultural drought monitoring indices. 

Index Expression * Ref. Pros  Cons 
Apparent Thermal Inertia 
(ATI)          

   
    

[60]  Suitable for bare land areas Not applicable over vegetated regions 

Temperature Condition 
Index (TCI)      

   max   
   max     min

 
[66]  Easy to get the required input data Requires clear-sky conditions at the time 

of imaging 
Normalized Difference 
Temperature Index (NDTI)       

     
     

 
[67]  Able to accurately reflect the 

spatial-temporal variations of soil 
moisture 

Requires other input variables (e.g., solar 
radiation, wind speed and leaf area index) 
that not complicated to acquire  

*C is the solar correction factor; a is the surface albedo;     is the difference between afternoon and midnight land surface temperature; Ts max and Ts min are the maximum and 

minimum Ts from all images in the dataset respectively;    and To are the modeled surface temperature if there is an infinite or zero surface resistance, respectively. 
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The Ts-based methods employed the surface temperature retrieved from remote sensing 
systems in measuring agricultural drought over different spatial scales. It was found that Ts-based 
methods were better indicators over sparse canopies or bare lands than vegetative lands. In general, 
the accuracy of detecting drought conditions depends on the accuracy of retrieving surface 
temperature from remote sensing data [63] and the heterogeneity of the earth surfaces which 
increases the uncertainty of these methods to detect drought [64]. Some researchers applied the crop 
water stress index (CWSI) with satellite measurements of surface temperature, and found that CWSI 
was restricted to full-canopy conditions; this limited its applicability over partial or sparse 
vegetative conditions. Kogan [65,66] proposed the temperature condition index (TCI) as a proxy for 
vegetation thermal condition based on long time series of satellite-derived surface temperature data. 
Although TCI was found to be simple drought index, it was only suitable for homogeneous areas. 
Another index was developed by [67], the normalized difference temperature index (NDTI), to 
remove seasonal trends from the analysis of land surface temperature derived from the AVHRR 
sensor, although it had more robust physical foundations than TCI, it was complicated to calculate 
its parameters. Table 3 shows the most commonly used thermal remote sensing based agricultural 
drought monitoring indices. 

4.3. Microwave remote sensing methods 

Microwave remote sensing provides unique information of water content through detecting the 
change in the dielectric constants between water, soil and vegetation [68]. In this context, passive 
and active microwave remote sensing based models/indices showed promising results for water 
content estimation and agricultural drought studies [63,14]. Passive microwave remote sensors [e.g., 
Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager 
(SSM/I), Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture Active and Passive (SMAP)] 
have been used for surface water content monitoring through measuring the intensity of microwave 
emission from soil and vegetation which is related to water content [63,69]. Based on this data, 
different models have been developed, e.g., 

x Surface emission models that can be grouped into three groups such as: (i) bare soil emission 
models which are basically a function of surface roughness and dielectric properties (e.g., 
Q/H model and its modifications, [70-72]; (ii) vegetative areas emission models which is 
based on the optical depth and albedo (e.g., t~w model, [73]. (iii) Soil and vegetation model 
(e.g., Microwave Polarization Difference Index (MPDI; [74,75]). 

x Soil moisture retrieval methods which include statistical and forward model inversion 
techniques [73,76,77]. It is worthwhile to mention that, though passive microwave has solid 
physical basis for water content retrieval and high temporal resolution, it has different major 
challenges including spatial resolution (i.e., 10–20 km), the available wavelength does not 
provide adequate water content sensitivity over different levels of vegetation covers, and 
technical and engineering challenges.    

In active microwave remote sensing, sensors (e.g., Synthetic Aperture Radar (SAR) systems) 
send microwave energy and receive backscattered pules in different frequencies (e.g., C-band, 
L-band, and X-band). This data is then used for measuring backscattering coefficient which used for 
retrieving water content of soils and vegetation at higher spatial resolutions (i.e., tens of meters) 
through the contrast of the dielectric constants between bare soil, vegetation and water [63,78]. To 
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date, different approaches have been developed under this concept which can be grouped into three 
groups such as: (i) theoretical approaches (e.g., Integral Equation Model [79] (IEM)); (ii) empirical 
approaches (e.g., Normalized Backscatter Moisture Index (NBMI; [80])), Wetness Index (WI; [81]); 
and (iii) semiempirical approaches (e.g., [78]). Actually, although active microwave sensors are 
having the capability to provide higher spatial resolution (i.e., ~tens of meters), they have a poor 
temporal resolution (i.e., ~one month). Some of the commonly used microwave remote sensing 
based agricultural drought monitoring indices are described in Table 4. 

4.4. Combined remote sensing-based methods 

Since different remote sensing indices have different capabilities in monitoring and detecting 
agricultural drought, researchers have worked on combining them into unified drought indices 
assuming that this combination may provide better characterization of drought conditions [82,83]. 
For example, in the optical remote sensing domain, indices have been combined in one index since 
they showed different sensitivity to drought conditions even when applied to the same location. 
Such examples include Normalized Difference Drought Index (NDDI; [84]) and Normalized 
Moisture Index (NMI; [85]) which have been calculated as a function of NDWI and NDVI.  

Table 4. Most commonly used microwave remote sensing-based agricultural 
drought monitoring indices. 

Index Expression * Ref. Pros Cons 
TRMM 
Precipitation 
Condition 
Index (PCI) 

      
             

                 
 

[86]  Works well at 
regional scale 
under most of the 
weather conditions 

 

Low spatial resolution 
and unable to acquire 
images at higher 
latitudes 

Soil Moisture 
Condition 
Index (SMCI) 

       
         

             
 

[86]  

Microwave 
Polarization 
Difference 
Index (MPDI)  

       
         

        
 [74]  Able to provide soil 

moisture and 
vegetation optical 
depth  

Low spatial resolution. 
Also requires further 
improvements for its 
applicability during 
day time 

Normalized 
Backscatter 
Moisture 
Index 
(NBMI)  

 B     
       

        
 [80]  Provides high 

spatial resolution in 
comparison to PCI, 
SMCI, and MPDI  

Poor temporal 
resolution and unable 
to penetrate vegetation 
canopy 

* TRMMmin and TRMMmax; SMmin and SMmax are the minimum and maximum values of TRMM and SM of the pixel 
during the period of study, respectively. TBV and TBH are brightness temperature at V and H polarization, respectively; 
Bt1 and Bt2 are the backscatter coefficients at different time steps. 

Other forms of combinations were done between thermal and optical remote sensing based 
indices. For instance, the combination between Ts and VIs has been presented in two approaches. 
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First, the mathematical approach, in which Ts and VIs have been integrated directly in mathematical 
operations, such as Vegetation Health Index (VHI; [49]), which is a combination of the VCI and 
TCI to determine the overall vegetation health status and to detect drought affected areas in 
agricultural dominant regions. Temperature-Vegetation Index (TVX; [87]), vegetation water supply 
index (VWSI; [88]), and the Normalized Vegetation Supply Water Index (NVSWI; [89]), which 
were based on Ts/VIs ratio operations. Second, the Ts-VIs scatter plot approach, in which Ts and 
VIs are presented in scatter plots that typically generate either triangular or trapezoidal forms [90] 
(see Figure 2).  

 

Figure 2. (a) Triangular and (b) trapezoidal forms based on a relationship between 
Ts and VIs (modified after [100] and [87]). 

The triangular or trapezoidal shapes in the Ts-VIs scatter plots emerge due to the negative 
relationship between them. For instance, Ts has low sensitivity to water content variations over 
vegetated areas, while it has high sensitivity over bare soils [91]. For example, when VIs values 
increase along the x-axis, the Ts values decrease along the y axis due to the cooling effects of 
evapotranspiration indicating none water stress condition, and vice versa [92,93]. In the Ts-VIs 
scatter plots, the x axis is represented by the VIs values, and the y axis is represented by the Ts 
values. Referring to Figure 2a and 2b, the theoretical dry edge (i.e., water stress condition) is 
represented by a line connecting the no evaporation and the no transpiration points. While, the 
theoretical wet edge (i.e., well-watered condition) is represented by a horizontal line connecting the 
maximum evaporation and the maximum transpiration points. In Figure 2, variations along the Ts 
axis reflects the effects of water content and topography across bare soil areas, while variations 
along VIs axis reflects the effects water content and vegetation cover density across the vegetative 
area. The remaining points (pixels) within the triangular or trapezoidal represents pixels with 
varying vegetation cover between the bare soil and dense vegetation. The triangular and trapezoidal 
shapes of the Ts/VI scatterplot are driven by many factors including, (i) evaporation from soil and 
the vegetation [94]; (ii) vegetation fractional cover, surface moisture status and local climate [95]; 
(iii) the number of pixels in the scene and the spatial resolution [96]; (iv) incident radiation 
variations, and (v) other specific study area characteristics (e.g., soil type, land cover, spatial 
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heterogeneity, and latitude) [87]. In the literature, a number of different methodologies have been 
developed to estimate water content from satellite-derived Ts/VI scatterplots. They can be grouped 
into five classes such as, (i) surface temperature and simple vegetation index; (ii) surface 
temperature and albedo; (iii) surface-air temperature difference and vegetation index; (iv) day-night 
surface temperature difference and vegetation index; and (v) coupling of the Ts/VI data with a Soil 
Vegetation Atmosphere Transfer (SVAT) model [91]. Ts-VIs scatter plots have been given different 
names, such as the surface moisture status (SMS; [95]), Water Deficit Index (WDI; [63]), Moisture 
Index (MI; [97]), Vegetation Supply Water Index (VSWI; [98]), Vegetation Temperature Condition 
Index (VTCI; [99]), Temperature-Vegetation Dryness Index (TVDI; [100]), Temperature-Vegetation 
Wetness Index (TVWI; [90]), Evaporative Stress Index (ESI; [101]). Despite of the individual 
limitations of these indices, they have been widely used in agricultural drought studies, as they may 
easily estimate water content status of soil and vegetation without any ancillary data [59]. However, 
it has difficulty in defining the dry and wet edges due to two reasons, (i) the probability of the 
distribution of Ts-VI points in a narrow range within the scatter plot (e.g., during rainy season or in 
areas with a narrow VI range); (ii) the high heterogeneity of study area. Furthermore, as the 
triangular and trapezoidal shapes are empirically determined based on an image at a specific date, 
they may be hardly compared to other dates [102]. Table 5 shows the most commonly used Ts-VIs 
based agricultural drought monitoring indices. 

In other studies, the combination has been done using composite of microwave and/or other optical 
or thermal based indices. For example, (i) Microwave Integrated Drought Index (MIDI; [105]) 
integrated the Precipitation Condition Index (PCI), Soil Moisture Condition Index (SMCI), and 
Temperature Condition Index (TCI) obtained from precipitation based TRMM data and soil 
moisture and land surface temperature data from the Advanced Microwave Scanning 
Radiometer–EOS (AMSR-E); and used for monitoring short-term drought over semiarid regions;  
(ii) Scaled Drought Condition Index (SDCI; [104]) employed TRMM-based precipitation data in 
conjunction with MODIS-based TS and NDVI information for agricultural drought monitoring over both 
arid/semiarid and humid regions. It is worthwhile to mention that before combining multiple 
indicator/indices in a composite drought index they should not be fully correlated with each other [106]. 
Recent advances in microwave remote sensing showed the ability to measure agricultural drought 
under different topographic and land cover conditions using both active and passive microwave 
measurements. In this context, the ALOS-PALSAR, SMOS, and SMAP missions offer combined 
passive/active microwave data which is expected to increase the accuracy of soil moisture and 
vegetation water content retrievals which can provide high accurate drought monitoring products. 
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Table 5. Most commonly used combined remote sensing-based agricultural drought monitoring indices. 

Continued on next page 

Type Index Expression * Ref. Pros Cons 

Combined 
optical based 
indices 

Normalized Difference 
Drought Index (NDDI) 

       
         
          

 [84]  Combines both 
vegetation 
greenness and 
wetness conditions.  

Not applicable for 
short-term drought 
monitoring Normalized Moisture Index 

(NMI) 
                [85]  

Ts-VIs 
Mathematical 
approach 

Vegetation Health Index 
(VHI) 

                            [49]  Provides more 
comprehensive 
drought monitoring 
capabilities 

Requires 
appropriate data 
fusion for VCI and 
TCI 

Temperature-Vegetation 
Index (TVX) 

     
  

    
 [87]  Depicts drought 

conditions at 
regional scale 

TVX/VSWI slopes 
may vary from one 
place to another 

 
Vegetation Water Supply 
Index (VWSI) 

       
    
  

 [88,98]  

Ts-VIs scatter 
plot approach  

Vegetation Temperature 
Condition Index (VTCI) 

       
                  

                     

 [99]  Works better at 
regional scale  

 

Unable to 
calculate: (i) over 
small study area; 
and (ii) variable 
topography 

 

Temperature-Vegetation 
Dryness Index (TVDI)  

       
          

             
 [103]  

Water Deficit Index (WDI)       
                        

                           
 [63]  

Temperature-Vegetation 
Wetness Index (TVWI)        

        
           

 [90]  Eliminates the issue 
of variable 
topography  

Unable to 
calculate over 
small study area 
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Table 5. Most commonly used combined remote sensing-based agricultural drought monitoring indices—continued. 

*VSWImin and VSWImax are the minimum and maximum values of VSWI of the pixel during the period of study; Tmax is the maximum surface temperature at the dry edge; 
Tmin is the minimum surface temperature at the wet edge;            and           are the maximum and minimum land surface temperatures of pixels which have same 
NDVI value in a study area, respectively,         is the land surface temperature of one pixel whose NDVI value is NDVIi; Ta is the air temperature; ET is the actual 
evaporation,  dry is the dry edge;  wet the wet edge;  s is the surface potential temperature. 

 

 

 

 

 

 

 

 

Type Index Expression * Ref. Pros Cons 

Combined 
Microwave and/or 
optical/thermal 
approach 

Microwave Integrated 
Drought Index (MIDI)  

       α         β   SMCI  

           − α − β     

 

[86]  Applicable over 
semi-arid regions in 
particular 

Non sensitive to 
water content over 
different levels of 
vegetation covers 

Scaled Drought 
Condition Index (SDCI) 

SDCI = (1/4) * Scaled TS +  

       (2/4) * Scaled TRMM  

      + (1/4) Scaled NDVI  

[104]  Applicable over 
both arid and humid 
regions   

The coefficients 
are 
ecosystem-specific 
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Table 6. Most commonly used synergic based agricultural drought monitoring indices. 

Index Description * Ref. Pros Cons 
US Drought 
Monitor 
(USDM) 

Integrates VHI with other drought indices such as, PDSI, SPI, 
PNP, and soil moisture model percentiles, daily stream flow 
percentiles, and many other supplementary indicators. 

[114]  Provides a general 
assessment of 
drought 

Limited use at local 
scales 

Vegetation 
Drought 
Response Index 
(VegDRI) 

VegDRI is a hybrid drought index that integrates satellite-based 
observations of vegetation conditions with climate-based drought 
index data and biophysical characteristics of the environment to 
produce 1-km spatial resolution maps that depict drought-related 
vegetation stress. 

[118]  Depicts 
drought-related 
vegetation stress at 
regional scales 

Outcome highly depends 
on the spatial distribution 
of the ground-based 
weather stations 

Integrated 
Surface 
Drought Index 
(ISDI) 

Integrates PDSI and the traditional climate-based drought 
indicators, satellite-derived vegetation indices, and other 
biophysical variables. ISDI can be used not only for monitoring 
the main drought features such as precipitation anomalies and 
vegetation growth conditions but also it indicates the earth surface 
thermal and water content properties by incorporating temperature 
information. 

[121]  

Vegetation 
Outlook 
(VegOut) 
 

An experimental tool that provides a series of maps depicting 
future outlooks of general vegetation seasonal greenness 
conditions based on the analysis of: climate-based drought indices 
(i.e., PDSI and SPI); satellite-based observations of vegetation 
(i.e., SSG and SOSA); biophysical characteristics of the 
environment (i.e., eco-region, elevation, irrigated lands, and land 
use/cove type); and oceanic indicators (i.e., MEI, SOI, PDO, 
NAO, PNA, MJO, and AMO) 

[120]  VegOut provides 
drought conditions at 
1 km spatial 
resolution 

Requires significant 
amount of data, which is 
quite challenging in most 
of regions of the world 

* PNP is the percent of normal precipitation; SSG is the standardized seasonal greenness; SOSA is the Start of season anomaly; MEI is the multivariate ENSO index; SOI is 
the southern oscillation index; PDO Pacific decadal oscillation index; NAO is the north Atlantic oscillation index; PNA Pasific north American index; MJO Madden-Julian 
oscillation index; and AMOis the Atlantic multi-decadal oscillation index.  
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5. Synergy between remote sensing and in-situ based methods 

In most of the instances, the majority of drought studies concentrated on assessing drought using 
single data source drought index [107-113]. As each index has its own data type, complexity, strengthens, 
and weakness; they often provide different results for the same event of interest [114,113]. A 
combination of various drought indices from different data sources may provide more 
comprehensive assessment of drought conditions than the use of a single one [115]. However, the use 
of synergic methods has been challenging due to the lack of systematic methods for the combining, 
implementing, and also evaluating of this phenomenon, in addition to the variations in the nature, 
quality, and availability of input requirements [116]. For example, remote sensing-based indices are 
unable to discriminate vegetation stress caused by sources other than drought [117]. So, the 
combination of various indices may offer better understanding and better monitoring of drought 
conditions. Such indices include: US Drought Monitor (USDM; [114]), Vegetation Drought Response 
Index (VegDRI; [118]), Hybrid Drought Index (HDI; [119]), Vegetation Outlook (VegOut; [120]), 
Integrated Surface Drought Index (ISDI; [121]) and Multi-Index Drought (MID; [115]). Table 6 shows 
the most commonly used synergic remote sensing/in-situ based agricultural drought monitoring 
indices. 

6. Conclusion  

In the scope of this article, we found that a significant amount of research and development has 
been accomplished in the area of remote sensing of agricultural drought. Despite, there are quite a 
few challenges, which require further research. Those include: 

x Monitoring relatively small area: Agricultural drought requires high proficiency methods 
for accurate drought monitoring in terms of the spatial (i.e., scale and coverage) and temporal 
properties over relatively small area. The in-situ based monitoring methods provide high 
frequent data (i.e., daily measurements recorded at ground stations), however they are 
spatially restricted to the specific measuring locations. Currently, remote sensing satellites 
acquire images in optical and thermal spectrum in different spatial and temporal resolutions 
for agricultural drought monitoring. For example, some remote sensing satellites such as 
MODIS, AVHRR, and SPOT-VEG can provide high temporal resolution (i.e., daily) with low 
spatial data in the range 250–1000 m. On the contrast, other satellites provide data at low 
temporal resolution with high spatial resolutions such as Landsat, ASTER, and SPOT5 (i.e., 
16–26 day intervals with 10–120 m spatial resolutions). Similar issue with passive and active 
microwave remote sensing are also prevailing. For example, passive microwave has a low 
spatial with high temporal resolutions, while active microwave acquires data with high spatial 
and low temporal resolutions. However, for the practical monitoring of agricultural drought at 
field scale, both high spatial and high temporal data are required due to the small size of 
agricultural fields and the rapid changes in plants during the growing season [122-124]. For 
example, high spatial resolution data (i.e., 30 m) is necessary for studying agriculture at field 
scale [12], and high temporal resolution data (i.e., weekly) is required for monitoring rapid 
changes in reflected or emitted energy during plants growing season [125,126]. These 
changes, in some cases, may reflect specific agricultural problems such as drought [68]. 
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However, due to technical and cost issues, none of the currently operational satellite systems 
has the capability to provide such accompanied high resolution data [127]. Therefore, it is 
necessary to apply multi-sensor data fusion techniques that compensate these limitations and 
provide high quality data for such applications [128-130]. Furthermore, it will be worthwhile 
to investigate the impact of land use practices on the drought. Also, more studies should be 
formulated for monitoring drought for landscapes with different levels of vegetation density 
and coverage.  

x Filling gaps in the data: In case of both optical and thermal remote sensors, they are 
incapable of acquiring surface properties in the presence of cloud, haze, and fog in particular. 
As a result, we often observe gaps in the data, which may potentially require the adoption of 
some gap-infilling algorithm. Though different types of such algorithms can be found in the 
literature; however, it should be capable to in-fill upon considering the data acquired until the 
day of monitoring of the drought conditions as illustrated in [131] for instance.  

x Developing consistent historical dataset: Though remote sensing sensors have been 
operational since early  970’s; however, they differ in their spatial, spectral, temporal, and 
radiometric resolutions. In case of optical and thermal sensors, platforms like Landsat series 
(operational since 1972), NOAA AVHRR series (since 1978), and MODIS (since 2000) 
acquire images with great similarities in their spectral resolution in particular. In generating a 
lengthy data record consisting of optical and thermal images, data fusion techniques such as 
described in [14] and [15] can be adopted where they should be thoroughly evaluated over 
various ecosystems across the world. In case of microwave platforms, the passive platforms 
have been operational since 1978 so that development of algorithms to fuse the optical, 
thermal, and microwave images may potentially enhance our capacity to comprehend the 
drought conditions better. 

x Developing remote sensing-based agricultural drought forecasting system: Due to the 
fact that the remote sensors capture the condition of the feature of interest at particular 
moments, thus they are often used as ‘monitoring’ mechanisms. However, in the recent times, 
there are some efforts to develop primarily remote sensing-based systems to forecast: (i) fire 
danger conditions at daily to eight-day time scale [131-134]; and (ii) crop yields prior to their 
harvesting [135,136]. Thus, attempt to develop such systems for forecasting agricultural 
drought conditions at shorter time-scale in the range daily to ten-day will be critical to 
manage and mitigate the upcoming events more efficiently. In addition, it may also be 
possible to forecast regional-scale agricultural droughts upon detecting El-Niño phases using 
remote sensors [137]. In addition, other efforts are concentrating on forecasting drought 
based on weather forecasts such as global drought forecasts based drought indices (e.g., SPI) 
computed with monthly weather forecasts [138]. 

x Integrating the recently launched and upcoming remote sensors: In the recent years, several 
new sensors have been launched, such as Soil Moisture and Ocean Salinity in 2009, Suomi NPP 
in 2011, Landsat-8 in 2013, Soil Moisture Active Passive in 2015, and Sentinel series 
2014–2016. In addition, a series of new satellites under the name JPSS are to be launched during 
the period 2017–2038. Thus, new algorithms need to be developed in order to integrate these 
platforms-derived products.  

x Developing standard validation schema: Depending on the spatial resolution of a remote 
sensing platform, the derived agricultural drought indication can have different cell size, such 
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as 30 m, 1 km, or even several kilometers. Usually, if the spatial resolution is high enough (e.g., 
less or equal to 30 m), then it is relatively easy to compare with ground-based measurements. 
Otherwise, in cases of low spatial resolution products, it may be possible to employ aerial 
photography or unmanned automated vehicles-based estimates. In addition, model-based 
outcomes as described in [139,140] can also be used for validation purposes. Thus, developing 
standard protocols for validating the remote sensing-based indicators is an emerging sub-area 
of research within the broad agricultural drought research. Finally, it is worthwhile to mention 
that such standardizations are not only required for remote sensing-based agricultural drought 
methods but also applicable for in-situ based methods as well. 

Acknowledgement 

The authors would like to thank: (i) Yarmouk University for providing a PhD scholarship to K. 
Hazaymeh, and (ii) Natural Sciences and Engineering Research Council of Canada for providing a 
Discovery Grant to Q. Hassan. 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391: 202-216.  
2. Wilhite DA, Svoboda MD, Hayes MJ (2007) Understanding the complex impacts of drought: A 

key to enhancing drought mitigation and preparedness. Water Resour Manag 21: 763-774. 
3. FAO (2008) A Review of Drought Occurrence and Monitoring and Planning Activities in the 

Near East Region. Cairo, Egypt. Available from: 
http://www.ais.unwater.org/ais/pluginfile.php/516/course/section/175/Drought%20Occurrence%
20and%20Activities%20in%20the%20Near%20East.pdf.  

4. De Pauw E (2005) Monitoring agricultural drought in the Near East. Monitoring and Predicting 
Agricultural Drought: a global study, 208-226. 

5. Hu G, Wang Y, Cui W (2008) Drought monitoring based on remotely sensed data in the key 
growing period of winter wheat: A case study in Hebei province, China. Int Arch Photogramm 
Remote Sens Spat Inf Sci Beijing, 403-408. 

6. Zargar A, Sadiq R, Naser B, et al. (2011) A review of drought indices. Environ Rev 19: 
333-349.  

7. Otun J, Adewumi J (2009) Drought quantifications in semi-arid regions using precipitation 
effectiveness variables. 18th World IMACS/MODSIM Congress, 13-17. 

8. Guha-sapir D, Hoyois P, Below R (2013) Annual Disaster Statistical Review 2013: The 
numbers and trends. Brussels, Belgium. Available from:  
http://cred.be/sites/default/files/ADSR_2013.pdf.  

9. Hayes MJ, Svoboda MD, Wardlow BD, et al. (2012) Drought Monitoring: Historical and 
Current Perspectives. Remote Sens Drought: 1-19. 



623 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

10. Cammalleri C, Anderson MC, Gao F, et al. (2013) A data fusion approach for mapping daily 
evapotranspiration at field scale. Water Resour Res 49: 4672-4686.  

11. Rembold F, Meroni M, Rojas O, et al. (2015) Agricultural drought monitoring using 
space-derived vegetation and biophysical products. Remote Sens Water Resour Disasters Urban 
Stud: 349. 

12. Roy DP, Wulder MA, Loveland TR, et al. (2014) Landsat-8: Science and product vision for 
terrestrial global change research. Remote Sens Environ 145: 154-172.  

13. Walker JJ, de Beurs KM, Wynne RH, Gao F (2012) Evaluation of Landsat and MODIS data 
fusion products for analysis of dryland forest phenology. Remote Sens Environ 117: 381-393.  

14. Anderson MC, Kustas WP, Norman JM, et al. (2011) Mapping daily evapotranspiration at field 
to continental scales using geostationary and polar orbiting satellite imagery. Hydrol Earth Syst 
Sci 15: 223-239.  

15. Hazaymeh K, Hassan QK (2015a) Fusion of MODIS and Landsat-8 surface temperature images: 
A new approach. PLoS One 10: e0117755.  

16. Hazaymeh K, Hassan QK (2015) Spatiotemporal image-fusion model for enhancing the 
temporal resolution of Landsat-8 surface reflectance images using MODIS images. J Appl 
Remote Sens 9: 096095.  

17. Alberta Agriculture and Forestry, 2013. Available from:  
http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/ppe9019.  

18. Ross T, Lott N, A climatology of 1980–2003 extreme weather and climate events. National 
Climatic Data Center Technical Report No. 2003-01. NOAA/ NESDIS. National Climatic Data 
Center, Asheville, NC, 2003. Available from:  
https://www.ncdc.noaa.gov/billions/docs/lott-and-ross-2003.pdf.  

19. Wheaton EE, Wittrock V, Kulshreshtha S, et al., Lessons learned from the Canadian drought 
years of 2001 and 2002: synthesis report. Saskatchewan Research Council, Publication No. 
11602-46E03, 2005. Available from:  
http://www.agr.gc.ca/eng/programs-and-services/list-of-programs-and-services/drought-watch/
managing-agroclimate-risk/lessons-learned-from-the-canadian-drought-years-2001-and-2002/?i
d=1463593613430.  

20. Wong G, Lambert MF, Leonard M, et al. (2010) Drought analysis using trivariate copulas 
conditional on climatic states. J Hydrol Eng 15: 129-141.  

21. European Communities (2007) Addressing the challenge of water scarcity and droughts in the 
European Union. Commission of the European communities 2007, 414 Final, Brussels. 
Available from: http://www.eea.europa.eu/policy-documents/addressing-the-challenge-of-water.  

22. Bates BC, Kundzewicz ZW, Wu S, et al. (2009) Technical Paper, International Panel on Climate 
Change (IPCC) Secretariat, Geneva. Available from:  
https://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf.  

23. World Bank, Report on financing rapid onset natural disaster losses in India: A risk 
management approach. Report No. 26844-IN, Washington, DC. 2003. Available from: 
http://www.gfdrr.org/sites/gfdrr/files/publication/India%20Financing%20Rapid%20Onset%20N
atural%20Disaster%20Losses%20in%20India-A%20Risk%20Management%20Approach_0.pdf 

24. World Resources Institute, 2015, available from: 
http://www.wri.org/applications/maps/aqueduct-atlas/#x=39.92&y=18.14&s=ws!20!28!c&t=wa



624 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

terrisk&w=def&g=0&i=BWS-16!WSV-16!SV-2!HFO-4!DRO-4!STOR-8!GW-8!WRI-4!ECOS
-2!MC-4!WCG-8!ECOV-2&tr=ind-1!prj-1&l=3&b=terr 

25. Sheffield J, Wood EF (2007) Characteristics of global and regional drought, 1950–2000: 
Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J 
Geophys Res 112: D17115. 

26. Maes WH (2012) Estimating evapotranspiration and drought stress with ground-based thermal 
remote sensing in agriculture: A review. J Exp Bot 63: 695-709.  

27. Kanellou E, Domenikiotis C, Tsiros E, et al. (2008) Satellite-based drought estimation in 
Thessaly. Eur Water 23: 111-122. 

28. Palmer WC, Meteorological drought. Research Paper No. 45. U.S. Weather Bureau 1965. 
Available from: https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.  

29. Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: The new crop 
moisture index. Weatherwise 21: 156-161.  

30. Jackson RD, Idso SB, Reginato RJ (1981) Canopy temperature as a crop water stress indicator. 
Water Resour Res 17: 1133-1138.  

31. Meyer SJ, Hubbard KG, Wilhite DA (1993) A crop-specific drought index for corn: I. model 
development and validation. Agron J 85: 388.  

32. Mckee TB, Doesken NJ, Kleist J, The relationship of drought frequency and duration to time 
scales. In Preprints, 8th Conference on Applied Climatology; Anaheim, California, 1993, 
179-183. 

33. Quiring SM, Papakryiakou TN (2003) An evaluation of agricultural drought indices for the 
Canadian prairies. Agric For Meteorol 118: 49-62.  

34. Paulo A, Pereira LS (2006) Drought concepts and characterization. Water Int 31: 37-49.  
35. Pashiardis S, Michaelides S (2008) Implementation of the Standardized Precipitation Index (SPI) 

and the Reconnaissance Drought Index (RDI) for regional drought assessment: A case study for 
Cyprus. Eur Water 23: 57-65. 

36. WMO (World Meterological Organization). Standardized precipitation index user guide. 2012. 
WMO-No. 1090, ISBN 978-92-63-11091-6. Available from:  
http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf.  

37. Idso SB, Jackson RD, Reginato RJ (1977) Remote-sensing of crop yields. Science 196: 19-25.  
38. Narasimhan B, Srinivasan R (2005) Development and evaluation of Soil Moisture Deficit Index 

(SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric 
For Meteorol 133: 69-88.  

39. Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: A 
review. Environ Model Softw 53: 173-189.  

40. Anjum SA, Xie X, Wang L, et al. (2011) Morphological, physiological and biochemical 
responses of plants to drought stress. Afr J Agric Res 6: 2026-2032.  

41. Dalezios NR, Blanta A, Spyropoulos NV (2012) Assessment of remotely sensed drought 
features in vulnerable agriculture. Nat Hazards Earth Syst Sci 12: 3139-3150.  

42. Farooq M, Wahid A, Kobayashi N, et al. (2009) Plant drought stress: Effects, mechanisms and 
management. Agron Sustain Dev 29: 185-212. 

43. Ghulam A, Li ZL, Qin Q, et al. (2008) Estimating crop water stress with ETM+ NIR and SWIR 
data. Agric For Meteorol 148: 1679-1695.  



625 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

44. Yang N, Qin Q, Jin C, et al. (2008) The comparison and application of the methods for 
monitoring farmland drought based on NIR-Red spectral space. IGARSS 2008 2008 IEEE Int 
Geosci Remote Sens Symp IEEE, 871-874. 

45. Tucker CJ, Choudhury BJ (1987) Satellite remote sensing of drought conditions. Remote Sens 
Environ 23: 243-251.  

46. Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near-and 
middle-infrared reflectances. Remote Sens Environ 30: 43-54. 

47. Gao B (1996) NDWI—A normalized difference water index for remote sensing of vegetation 
liquid water from space. Remote Sens Environ 58: 257-266. 

48. Anyamba A, Tucker C, Eastman J (2001) NDVI anomaly patterns over Africa during the 
1997/98 ENSO warm event. Int J Remote Sens 22: 1847-1859. 

49. Kogan F (2002) World droughts in the new millennium from AVHRR-based vegetation health 
indices. Eos Trans Am Geophys Union 83: 557.  

50. Peters A, Walter-Shea E, Ji L (2002) Drought monitoring with NDVI-based standardized 
vegetation index. Photogarmm Eng Remote Sens 68: 71-75. 

51. Hillerislambers R, Rietkerk M, Van Den Bosch F, et al. (2001) Vegetation pattern formation in 
semi-arid grazing systems. Ecology 82: 50-61. 

52. Wang H, Li X, Long H, et al. (2010) Monitoring the effects of land use and cover type changes 
on soil moisture using remote-sensing data:   case study in  hina’s Yongding  iver basin. 
Catena 82: 135-145.  

53. Fensholt R, Sandholt I (2003) Derivation of a shortwave infrared water stress index from 
MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens Environ 87: 
111-121.  

54. Wang L, Qu JJ (2007) NMDI: A normalized multi-band drought index for monitoring soil and 
vegetation moisture with satellite remote sensing. Geophys Res Lett 34: 1-5.  

55. Zhang N, Hong Y, Qin Q, et al. (2013) VSDI: a visible and shortwave infrared drought index 
for monitoring soil and vegetation moisture based on optical remote sensing. Int J Remote Sens 
34: 4585-4609. 

56. Zarco-Tejada PJ, Rueda CA, Ustin SL (2003) Water content estimation in vegetation with 
MODIS reflectance data and model inversion methods. Remote Sens Environ 85: 109-124.  

57. Hardisky KV, Smart RM (1983) The influence of soft salinity, growth form, mad leaf moisture 
on the spectral reflectance of Spartina Alterniflora canopies. Photogramm Eng Remote Sensing 
49: 77-83. 

58. Xiao X, Hollinger D, Aber J, et al. (2004) Satellite-based modeling of gross primary production 
in an evergreen needleleaf forest. Remote Sens Environ 89: 519-534.  

59. Tang H, Li Z (2014) Application of thermal remote sensing in agriculture drought monitoring 
and thermal anomaly detection. In: Quant. Remote Sens. Therm. Infrared. Springer Remote 
Sensing/Photogrammetry, 203-256. 

60. Claps P, Laguardia G (2004) Assessing spatial variability of soil water content through thermal 
inertia and NDVI. Remote Sensing, International Society for Optics and Photonics, 378-387. 

61. Verstraeten WW, Veroustraete F, van der Sande CJ, et al. (2006) Soil moisture retrieval using 
thermal inertia, determined with visible and thermal spaceborne data, validated for European 
forests. Remote Sens Environ 101: 299-314.  



626 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

62. Van doninck J, Peters J, de Baets B, et al. (2011) The potential of multitemporal Aqua and Terra 
MODIS apparent thermal inertia as a soil moisture indicator. Int J Appl Earth Obs Geoinf 13: 
934-941. 

63. Moran M (2004) Thermal infrared measurement as an indicator of planet ecosystem health. 
Therm Remote Sens L Surf Process: 257-282. 

64. Rahimzadeh-Bajgiran P, Omasa K, Shimizu Y (2012) Comparative evaluation of the Vegetation 
Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved 
TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS J Photogramm 
Remote Sens 68: 1-12.  

65. Kogan FN (1997) Global drought watch from space. Bull Am Meteorol Soc 78: 621-636. 
66. Kogan FN (1995) Application of vegetation index and brightness temperature for drought 

detection. Adv Sp Res 15: 91-100.  
67. McVicar TR, Jupp DL (1998) The current and potential operational uses of remote sensing to 

aid decisions on drought exceptional circumstances in Australia: A review. Agric Syst 57: 
399-468.  

68. Wang L, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture 
monitoring: A review. Front Earth Sci China 3: 237-247.  

69. Njoku EG, Jackson TJ, Lakshmi V, et al. (2003) Soil moisture retrieval from AMSR-E. IEEE 
Trans Geosci Remote Sens 41: 215-228.  

70. Mo T, Schmugge T (1987) A Parameterization of the Effect of Surface Roughness on 
Microwave Emission. IEEE Trans Geosci Remote Sens GE-25: 481-486.  

71. Shi J, Chen KS, Li Q, et al. (2002) A parameterized surface reflectivity model and estimation of 
bare-surface soil moisture with L-band radiometer. IEEE Trans Geosci Remote Sens 40: 
2674-2686.  

72. Shi J, Jiang L, Zhang L, et al. (2005) A parameterized multifrequency-polarization surface 
emission model. IEEE Trans Geosci Remote Sens 43: 2831-2841.  

73. Wigneron JP, Calvet JC, Pellarin T, et al. (2003) Retrieving near-surface soil moisture from 
microwave radiometric observations: current status and future plans. Remote Sens Environ 85: 
489-506.  

74. Owe M, De Jeu R, Walker J (2001) A methodology for surface soil moisture and vegetation 
optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci 
Remote Sens 39: 1643-1654.  

75. Meesters AGCA, De Jeu RAM, Owe M (2005) Analytical derivation of the vegetation optical 
depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett 2: 
121-123.  

76. Jackson TJ, Schmugge TJ, Wang JR (1982) Passive microwave sensing of soil moisture under 
vegetation canopies. Water Resour Res 18: 1137-1142.  

77. Theis SW, Blanchard BJ, Newton RW (1984) Utilization of vegetation indices to improve 
microwave soil moisture estimates over agricultural lands. IEEE Trans Geosci Remote Sens 
GE-22: 490-496.  

78. Dubois PC, van Zyl J, Engman T (1995) Measuring Soil Moisture with Imaging Radars. IEEE 
Trans Geosci Remote Sens 33: 915-926.  

79. Fung AK, Li Z, Chen KS (1992) Backscattering from a randomly rough dielectric surface. IEEE 
Trans Geosci Remote Sens 30: 356-369.  



627 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

80. Shoshany M, Svoray T, Curran PJ, et al. (2000) The relationship between ERS-2 SAR 
backscatter and soil moisture: generalization from a humid to semi-arid transect. Int J Remote 
Sens 21: 2337-2343.  

81. Hassan QK, Bourque CPA (2015) Development of a new wetness index based on 
RADARSAT-1 ScanSAR data. Monitoring and Modeling of Global Changes: A Geomatics 
Perspective, Switzerland: Springer International Publishing, 301-314.  

82. Hao Z, AghaKouchak A (2013) Multivariate Standardized Drought Index: A parametric 
multi-index model. Adv Water Resour 57: 12-18.  

83. Wang W, Liang S, Meyers T (2008) Validating MODIS land surface temperature products using 
long-term nighttime ground measurements. Remote Sens Environ 112: 623-635.  

84. Gu Y, Brown JF, Verdin JP, et al. (2007) A five-year analysis of MODIS NDVI and NDWI for 
grassland drought assessment over the central Great Plains of the United States. Geophys Res 
Lett 34: L06407.  

85. Jang J, Viau A, Anctil F (2006) Thermal-water stress index from satellite images. Int J Remote 
Sens 27: 1619-1639.  

86. Zhang A, Jia G (2013) Monitoring meteorological drought in semiarid regions using 
multi-sensor microwave remote sensing data. Remote Sens Environ 134: 12-23. 

87. Lambin EF, Ehrlich D (1996) The surface temperature-vegetation index space for land cover 
and land-cover change analysis. Int J Remote Sens 17: 463-487.  

88. Cai G, Du M, Liu Y (2011) Regional drought monitoring and analyzing using MODIS data—A 
case study in Yunnan Province. International conference on Computer and Computing 
Technologies in Agriculture. Springer Berlin Heidelberg, 243-251. 

89. Abbas S, Nichol J, Qamer F, et al. (2014) Characterization of drought development through 
remote sensing: A case study in central Yunnan, China. Remote Sens 6: 4998-5018.  

90. Hassan QK, Bourque CP, Meng FR, et al. (2007) A wetness index using terrain-corrected 
surface temperature and normalized difference vegetation index derived from standard MODIS 
products: An evaluation of its use in a humid forest-dominated region of eastern Canada. Sensor 
7: 2028-2048.  

91. Petropoulos G, Carlson TN, Wooster MJ, et al. (2009) A review of Ts/VI remote sensing based 
methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog Phys 
Geogr 33: 224-250.  

92. Karnieli A, Agam N, Pinker RT, et al. (2010) Use of NDVI and land surface temperature for 
drought assessment: Merits and limitations. J Clim 23: 618-633.  

93. Rojas O, Vrieling, Rembold F (2011) Assessing drought probability for agricultural areas in 
Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115: 343-352. 

94. Smith RCG, Choudhury BJ (1991) Analysis of normalized difference and surface temperature 
observations over southeastern Australia. Remote Sens 12: 2021-2044.  

95. Nemani R, Pierce L, Running S (1993) Developing satellite-derived estimates of surface 
moisture status. J Appl Meteorolgy 32: 548-557. 

96. Carlson TN, Gillies RR, Schmugge TJ (1995) An interpretation of methodologies for indirect 
measurement of soil water content. Agric For Meteorol 77: 191-205.  

97. Dupigny-Giroux L, Lewis J (1999) Index for surface characterization over Area a Semiarid. 
Photogramm Eng Remote Sens 65: 937-945. 



628 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

98. Carlson TN, Gillies RR, Perry EM (1994) A method to make use of thermal infrared 
temperature and NDVI measurements to infer surface soil water content and fractional 
vegetation cover. Remote Sens Rev 9: 161-173.  

99. Wang P, Li X, Gong J, et al., Vegetation temperature condition index and its application for 
drought monitoring. Geosci Remote Sens Symp, 2001. IGARSS’0 . IEEE 2001 Int 1: 141-143.  

100. Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface 
temperature/vegetation index space for assessment of surface moisture status. Remote Sens 
Environ 79: 213-224. 

101. Anderson MC, Hain C, Wardlow B, et al. (2011) Evaluation of drought indices based on 
thermal remote sensing of evapotranspiration over the continental United States. J Clim 24: 
2025-2044.  

102. Wang W, Huang D, Wang XG, et al. (2010) Estimate soil moisture using trapezoidal 
relationship between remotely sensed land surface temperature and vegetation index. Hydrol 
Earth Syst Sci Discuss 7: 8703-8740.  

103. Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface 
temperature/vegetation index space for assessment of surface moisture status. Remote Sens 
Environ 79: 213-224.  

104. Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions 
using multi-sensor remote sensing data. Remote Sens Environ 114: 2875-2887.  

105. Zhang A, Jia G (2013) Monitoring meteorological drought in semiarid regions using 
multi-sensor microwave remote sensing data. Remote Sens Environ 134: 12-23.  

106. AghaKouchak A, Farahmand A, Melton FS, et al. (2015) Remote sensing of drought: progress, 
challenges and opportunities. Rev Geophys 53: 452-480.  

107. Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water 
Resour Manag 18: 1-12.  

108. Cancelliere A, Di Mauro G, Bonaccorso B, et al. (2006) Drought forecasting using the 
Standardized Precipitation Index. Water Resour Manag 21: 801-819.  

109. Mavromatis T (2007) Drought index evaluation for assessing future wheat production in Greece. 
Int J Climatol 27: 911-924.  

110. Quiring SM, Papakryiakou TN (2003) An evaluation of agricultural drought indices for the 
Canadian prairies. Agric For Meteorol 118: 49-62.  

111. Morid S, Smakhtin V, Moghaddasi M (2006) Comparison of seven meteorological indices for 
drought monitoring in Iran. Int J Climatol 26: 971-985.  

112. Bayarjargal Y, Karnieli A, Bayasgalan M, et al. (2006) A comparative study of 
NOAA–AVHRR derived drought indices using change vector analysis. Remote Sens Environ 
105: 9-22.  

113. Quiring SM (2009) Monitoring drought: An evaluation of meteorological drought indices. 
Geogr Compass 3: 64-88.  

114.Svoboda M, LeComte D, Hayes M, et al. (2002) The drought monitor. Bull Am Meteorol Soc 83: 
1181-1190.  

115. Sun L, Mitchell SW, Davidson A (2012) Multiple drought indices for agricultural drought risk 
assessment on the Canadian prairies. Int J Climatol 32: 1628-1639.  

116. Steinemann A, Cavalcanti L (2006) Developing multiple indicators and triggers for drought 
plans. J Water Resour Plan Manag 132: 164-174. 



629 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

117. Sun L, Sun R, Li X, et al. (2012) Monitoring surface soil moisture status based on remotely 
sensed surface temperature and vegetation index information. Agric For Meteorol 166-167: 
175-187.  

118. Brown JF, Wardlow BD, Tadesse T, et al. (2008) The Vegetation Drought Response Index 
(VegDRI): A New integrated approach for monitoring drought stress in vegetation. GIScience 
Remote Sens 45: 16-46.  

119.Karamouz M, Rasouli K, Nazif S (2009) Development of a Hybrid Index for Drought Prediction: 
Case study. J Hydrol Eng 14: 617-627.  

120. Tadesse T, Wardlow BD, Hayes MJ, et al. (2010) The Vegetation Outlook (VegOut): A new 
method for predicting vegetation seasonal greenness. GIScience Remote Sens 47: 25-52.  

121. Wu J, Zhou L, Liu M, et al. (2013) Establishing and assessing the Integrated Surface Drought 
Index (ISDI) for agricultural drought monitoring in mid-eastern China. Int J Appl Earth Obs 
Geoinf 23: 397-410.  

122. Becker-Reshef I, Justice C, Sullivan M, et al. (2010) Monitoring global croplands with coarse 
resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote 
Sens 2: 1589-1609.  

123. Rocha J, Perdigão A, Melo R, et al. (2012) Remote sensing based crop coefficients for water 
management in agriculture. In: Curkovic, S. Sustainable Development—Authoritative and 
Leading Edge Content for Environmental Management, 167-192. 

124. Atzberger C (2013) Advances in remote sensing of agriculture: Context description, existing 
operational monitoring systems and major information needs. Remote Sens 5: 949-981.  

125. Zhang X, Friedl MA, Schaaf CB, et al. (2003) Monitoring vegetation phenology using MODIS. 
Remote Sens Environ 84: 471-475.  

126. Kovalskyy V, Roy DP, Zhang XY, et al. (2012) The suitability of multi-temporal web-enabled 
Landsat data NDVI for phenological monitoring—a comparison with flux tower and MODIS 
NDVI. Remote Sens Lett 3: 325-334.  

127. Al-wassai FA, Kalyankar NV, Major limitations of satellite images, in: Proceedings of computing 
research repository, 2013. Available from: http://arxiv.org/ftp/arxiv/papers/1307/1307.2434.pdf. 

128. Yang B, Jing Z, Zhao H (2010) Review of pixel-level image fusion. J Shanghai Jiaotong Univ 
15: 6-12.  

129. Dong J, Dafang Z, Yaohuan H, et al., Survey of multispectral image fusion techniques in remote 
sensing applications, In: Zheng, Y. Image Fusion and Its Applications, InTech (2011).  

130. Khaleghi B, Khamis A, Karray FO, et al. (2013) Multisensor data fusion: A review of the 
state-of-the-art. Inf Fusion 14: 28-44. 

131. Chowdhury EH, Hassan QK (2013) Use of remote sensing-derived variables in developing a 
forest fire danger forecasting system. Nat Hazards 67: 321-334. 

132. Akther MS, Hassan QK (2013) Remote sensing-based assessment of fire danger conditions over 
boreal forest. IEEE J Sel Top Appl Earth Obs Remote Sens 4: 992-999. 

133. Chowdhury EH, Hassan QK (2015) Operational perspective of remote sensing-based forest fire 
danger forecasting systems. ISPRS J Photogramm Remote Sens 104: 224-236. 

134. Chowdhury EH, Hassan QK (2015) Development of a new daily-scale forest fire danger 
forecasting system using remote sensing data. Remote Sens 7: 2431-2448. 

135. Mosleh MK, Hassan QK, Chowdhury EH (2016) Development of a remote sensing-based rice 
yield forecasting model. Spanish J Agric Res 14: 0907. 



630 
 

AIMS Environmental Science  Volume 3, Issue 4, 604-630. 

136. Rembold F, Atzberger C, Savin I, et al. (2013) Using low resolution satellite imagery for yield 
prediction and yield anomaly detection. Remote Sens 5: 1704-1733. 

137. Song W, Dong Q, Xue C (2016) A classified El Niño index using AVHRR remote-sensing SST 
data. Int J Remote Sens 37: 403-417. 

138. Kousari MR, Hosseini ME, Ahani H, et al. (2015) Introducing an operational method to forecast 
long-term regional drought based on the application of artificial intelligence capabilities. Theor 
Appl Climatol: 1-20.  

139. Mishra AK, Ines AV, Das NN, et al. (2015) Anatomy of a local-scale drought: Application of 
assimilated remote sensing products, crop model, and statistical methods to an agricultural 
drought study. J Hydrol 526: 15-29. 

140. Mishra AK, Singh VP (2011) Drought modeling—A review. J Hydrol 403: 157-175. 

© 2016 Quazi K. Hassan et al., licensee AIMS Press. This is an 
open access article distributed under the terms of the Creative 
Commons Attribution License  
(http://creativecommons.org/licenses/by/4.0) 

 


