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Abstract

Understanding the interplay between bulk composition and metamorphic grade underpins our interpretations of metamorphism in
orogenic belts. The focus of this study is the regional garnet–staurolite–kyanite–sillimanite metamorphic sequence of the Whetstone
Lake area, southeastern Ontario. In the kyanite and lower sillimanite zones of this area, there is exceptional diversity in metapelitic
mineral assemblages that cannot be accounted for by differences in metamorphic grade. We present a data set of petrographic
observations, phase proportions, whole-rock geochemical compositions, and mineral compositions, from thirty-two samples that
encapsulate the range of assemblages found in these zones. Differences in bulk composition are the primary control on mineral
assemblage development. Whole-rock XMg = molar MgO/(MgO + FeO) and XFe3+ = molar 2×Fe2O3/ (2 × Fe2O3 + FeO) exert the greatest
control on the observed mineral assemblages, whilst variation in MnO, K2O, and Al2O3 have a secondary influence. We use a set of quality
factors (Duesterhoeft & Lanari, 2020) to test the ability of thermodynamic models to reproduce the observed mineral assemblages, modal
abundances, and mineral compositions in the diverse bulk compositions at Whetstone Lake. Eight samples were selected for phase
equilibrium modelling, for which two bulk compositions were calculated for each sample: (1) a whole-rock bulk composition based
on an X-ray fluorescence analysis and (2) a carefully considered local bulk composition based on combining mineral proportions with
representative mineral compositions, as obtained from a single thin section. Our modelling uses thermodynamic data set 6.2 (Holland
& Powell, 2011) and the solution models of White et al. (2014a, 2014b) that incorporate several Fe3+ end members needed to model the
natural data. Modelling in both types of bulk composition broadly predicted mineral assemblages that match those observed. In addition,
predicted mineral assemblage fields overlap within uncertainty between 620◦C and 675◦C and between 6.5 and 7.5 kbar, consistent with
the limited range of grade represented by the natural rocks. Predicted modal abundances better match those observed when phase
diagrams are constructed using local bulk compositions compared to whole-rock bulk compositions. Despite the acceptable agreement
between predicted and observed mineral assemblages, consistent discrepancies are found between predicted and observed mineral
compositions. These include overestimation of X∗

Mg in garnet, staurolite, and cordierite, overestimation of Ti in staurolite and biotite,

underestimation of Si in biotite, and overestimation of Al and underestimation of Fe3+, Fe2+, and Mg in muscovite. The Whetstone Lake
suite of this study will be useful to test the predictive capability of future thermodynamic models.
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INTRODUCTION
In his pioneering work, George Barrow documented a sequence

of index mineral-based metamorphic zones (chlorite–biotite–

garnet–staurolite–kyanite–sillimanite) across south-eastern Scot-

land (Barrow, 1912, 1893). Since Barrow’s study, other sequences
of metapelitic minerals have been observed in orogenic belts

worldwide. The order in which metamorphic mineral assemblages

develop varies systematically with pressure and temperature (P–

T), in turn providing a means of distinguishing between different
P–T conditions of metamorphism (Miyashiro, 1961; Hietanen,
1967; Carmichael, 1978; Pattison & Tracy, 1991). The other major
factor that exerts a primary influence on the development of
metamorphic mineral assemblages is bulk composition (Eskola,
1915; Chinner, 1960; Hounslow & Moore, 1967; Atherton & Broth-
erton, 1972; Guidotti et al., 1975). Both factors combine to control

a metamorphic rock’s mineral assemblage, mineral proportions,
and mineral compositions (Spear, 1993). In order to accurately
determine the P–T conditions under which metamorphic mineral
assemblages develop, it is, therefore, necessary to understand the
interplay between bulk composition and metamorphic grade, a
problem which has lain at the heart of metamorphic petrology
since its inception over a century ago (Goldschmidt, 1911; Eskola,
1914).

Sequences of metapelitic minerals in the rock record range
from those where bulk composition are relatively constant
across metamorphic grade to those where bulk composition
varies considerably within a single metamorphic zone. There are
several localities where whole-rock geochemical studies have
found minimal variation in compositions across grade, such that
variations in mineral assemblages and mineral compositions can
be ascribed to different P–T conditions (Shaw, 1956; Vidale, 1974;
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Atherton & Brotherton, 1982; Munksgaard, 1988; Moss et al., 1996;
Cesare, 1999; Pattison & Vogl, 2005; Pattison & Debuhr, 2015;
Pattison & Goldsmith, 2022). Using a database of 5729 major
element whole-rock analyses from the literature, we have shown
that whilst pelites worldwide show a strong clustering of analyses
on the AFM diagram of Thompson (1957), a significant number
of pelite compositions lie outside this main cluster (fig. 2A of
Forshaw & Pattison, 2023). This variability can lead to the other
extreme in which mineral assemblages vary widely over a small
range of grade because of differences in bulk composition. For
example, Guidotti et al. (1975) demonstrated that the wide variety
of assemblages in the upper staurolite and lower sillimanite
zones of west-central Maine, USA, result from differences in
whole-rock Al, Fe, and Mg (fig. 3 of that paper). Chinner (1960)
determined that different mineral assemblages from the kyanite
and sillimanite zones of Glen Clova, Scotland, result from varying
ferric/ferrous iron ratios between layers. Hudson & Harte (1985)
showed the importance of K2O content on the development of
mineral assemblages in the Buchan region, Scotland.

This contribution is concerned with metapelitic rocks of the
Whetstone Lake area, southeastern Ontario, which is exceptional
in terms of the diversity of assemblages in a limited range
of grade. Carmichael (1970) originally highlighted the bulk
compositional variation present at Whetstone Lake through
the plotting of mineral assemblages on an AFM diagram (figs.
6, 10 and 14 of Carmichael, 1970). This study builds upon
Carmichael’s (1970) work by showing that the bulk compositional
variability is not only restricted to variations in X∗

Mg (MgO /
(MgO + FeO) in moles), but also involves differences in K2O, MnO,
and XFe3+ (2 × Fe2O3/ (2 × Fe2O3 + FeO) in moles). Whetstone
Lake, therefore, provides a natural laboratory for studying the
influence of bulk compositional variation on mineral assemblage
development, where there is relatively little variation in P–T
conditions.

In this paper, we present a data set of petrographic obser-
vations, mineral assemblages, phase proportions, bulk com-
positions, and mineral compositions from the diverse range
of metapelitic mineral assemblages in the kyanite and lower
sillimanite zones of Whetstone Lake. We first demonstrate
how this bulk compositional variability influences the observed
mineral assemblages, proportions, and compositions. We then
conduct phase equilibrium modelling to test how well current
thermodynamic data sets and solution models predict mineral
assemblages, modes, and compositions from such a wide range
of bulk compositions. Part of this testing involves the application
of quality factors (Duesterhoeft & Lanari, 2020) that quantify the
degree of mismatch between prediction and observation.

GEOLOGICAL BACKGROUND
The Grenville Province is a complex orogenic belt comprising
various Precambrian-aged deformed and metamorphosed rocks
(Fig. 1a; Easton, 1992; Hynes & Rivers, 2010). In south-eastern
Ontario, the Grenville Province is subdivided into the Central
Gneiss Belt (CGB), the Central Metasedimentary Belt (CMB), and
the Frontenac terrane (Fig. 1b; Easton, 1992; McCarron et al., 2014).
The Whetstone Lake area lies within the Elzevir Terrane which
forms part of the Central Metasedimentary Belt (Fig. 1).

Central Metasedimentary Belt
Previous P–T estimates
The CMB is a major Mesoproterozoic accumulation of supracrustal
rocks invaded by compositionally diverse plutonic rocks that

were metamorphosed at grades varying from greenschist to
granulite facies (Easton, 1992). Greenschist facies rocks are
found in the ‘Hastings Metamorphic Low’, with metamorphic
grade increasing to the east, west, and north (Fig. 1b; Anovitz &
Essene, 1990; Carmichael, 1970, 1967; Duesterhoeft et al., 2021;
Dunn et al., 2019; Ford, 2002; Hounslow & Moore, 1967; Lal &
Moorhouse, 1969; McCarron et al., 2014; Rathmell et al., 1999).
Several authors have documented the peak P–T conditions of
the Central Metasedimentary Belt during the Grenvillian Orogeny
and compared these with peak P–T estimates for the adjacent
Central Gneiss Belt and Frontenac Terrane (Fig. 1b). Chesworth
(1971) classified the Central Metasedimentary Belt as part of
the low-pressure intermediate facies series of Miyashiro (1961),
and contrasted it with the relatively lower pressure andalusite–
sillimanite facies series of the Frontenac Terrane, and the
relatively higher pressure kyanite–sillimanite facies series of the
Central Gneiss Belt. Anovitz & Essene (1990) compiled a map of
aluminosilicates from across southeastern Ontario to delineate
broad variations in pressure; these variations were augmented
by quantitative thermobarometry using a range of published
thermometers and barometers. Anovitz & Essene (1990) estimated
P–T conditions of 4 to 8 kbar and 400◦C to 650◦C across the Central
Metasedimentary Belt. Further compilations of thermobarometric
data by Streepey et al. (1997) and Rathmell et al. (1999) returned
similar P–T estimates.

Only two published studies have investigated the P–T history of
the CMB using phase equilibrium modelling. McCarron et al. (2014)
modelled metapelitic lithologies of the Mazinaw Terrane, on the
eastern side of the ‘Hastings Metamorphic Low’ (Fig. 1b), using
thermodynamic data set 5.5 (Holland & Powell, 1998); they con-
strained the peak P–T conditions of metamorphism from across
their St–Ky–Sil sequence to between 3.5 and 7.9 kbar and 540◦C
and 715◦C (McCarron et al., 2014). Duesterhoeft et al. (2021) mod-
elled metasedimentary lithologies of the Elzevir and Bancroft
Terranes using the thermodynamic database JUN92 (de Capitani
& Petrakakis, 2010), which is based on the thermodynamic data
set from Berman (1988); they constrained the peak P–T conditions
of metamorphism in the Bancroft Terrane to 10 kbar and 780◦C,
and peak P–T conditions in the Elzevir Terrane to 9 kbar and
520◦C. Samples from the Elzevir Terrane studied in Duesterhoeft
et al. (2021) were collected from approximately 40 km north of
the Whetstone Lake area, close to the K-feldspar-in isograd of
Carmichael et al. (1978; Fig. 1b). To our knowledge, there are no
published studies from the Whetstone Lake region using either
phase equilibrium modelling or conventional thermobarometry
to assess the P–T conditions of metamorphism.

Timing of metamorphism
The Grenville Orogeny encompasses a series of tectonic events
grouped into two distinct age categories (Easton, 1992; Rivers,
2008), the Elzevirian Orogeny (∼ 1.3–1.2 Ga) and the Ottawan
Orogeny (∼ 1.1–1.0 Ga). The CMB is interpreted to have been sub-
jected to both events (Easton, 1992; Rivers, 2008; Dunn et al., 2019).
There are relatively few geochronological dates from the Elze-
vir Terrane within which the Whetstone Lake area resides. The
emplacement of intrusions in the Elzevir Terrane has been dated
at 1280 to 1240 Ma by U–Pb geochronology of zircon (Lumbers et al.,
1990). Metamorphism of the Elzevir Terrane has been dated using
U–Pb geochronology of sphene and rutile (Mezger et al., 1993). An
older rutile age of 1240 Ma is thought to be the result of contact
metamorphism associated with the intrusions, whilst younger
sphene ages of 1061 to 1012 Ma are interpreted to date the regional
metamorphism (Mezger et al., 1993). Uplift of the Elzevir Terrane
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Fig. 1. (a) The Grenville Province of Canada and outline of the Central Metasedimentary Belt (CMB). Modified after Hynes & Rivers (2010). (b)
Lithotectonic terranes of the CMB: Bancroft, Elzevir, Black Donald, Mazinaw, Sharbot Lake, and Frontenac Terranes. CGB, Central Gneiss Belt; CMBBz,
Central Metasedimentary Belt Boundary zone; HML, hastings metamorphic low. Modified after Easton (1992) and McCarron et al. (2014). Isograds after
Carmichael et al. (1978). (c) Regional index mineral isograds of the Whetstone Lake area, Ontario, Canada after Forshaw (2021); Figure S1 provides full
mineral assemblages). Simplified geology after Carmichael (1970, 1967), Laakso (1968), and Lumbers & Vertolli (2000a, 2000b). Metapelitic layers shown
as black lines. Sample localities used in this study shown by the coloured hexagons, diamonds, squares, and circles.

has been constrained to between 1006 and 1026 Ma by 40Ar/39Ar
hornblende cooling ages (Cosca et al., 1992). Metamorphism of the
Mazinaw Terrane, on the eastern side of the ‘Hastings Metamor-
phic Low’ (Fig. 1b), has been dated at 976 ± 4 Ma by LA-ICP-MS
U–Pb geochronology of monazite (McCarron et al., 2014). Uplift of
the Mazinaw Terrane has been constrained to between 919 and
942 Ma by 40Ar/39Ar hornblende cooling ages (Cosca et al., 1992).
Metamorphism of the Central Metasedimentary Belt boundary
zone and Bancroft Terrane, to the north of the ‘Hastings Meta-
morphic Low’ (Fig. 1b), has been constrained to 1020 to 1120 Ma
by EPMA U–Th–Pb geochronology of monazite (Markley et al.,
2018). Uplift of the Central Metasedimentary Belt boundary zone
and Bancroft Terrane has been constrained to between 972 and
1010 Ma by 40Ar/39Ar hornblende cooling ages (Cosca et al., 1992).

Whetstone Lake area
The Whetstone Lake area is situated within the Belmont Domain
of the Elzevir Terrane on the western side of ‘Hastings Metamor-
phic Low’ (HML, Fig. 1b; Easton, 1992). The bedrock comprises a
succession of Precambrian metasedimentary and metavolcanic
strata (Laakso, 1968) that form part of the Mayo group. A detailed
account of metamorphic studies in the Whetstone Lake area
and its immediate surroundings is provided in Supplemental
Material. This study focuses on the thin bands of metamorphosed
aluminous clastic sedimentary strata in the area (Fig. 1c), as was

done by Carmichael (1970, 1967). For simplicity, these are referred
to as metapelites, although the degree to which they are truly
metapelitic is discussed later in the paper. Although these rocks
are not abundant, they are widely distributed over the region, and
thus contain a range of mineral assemblages that allow changes
in metamorphic grade to be identified (Fig. 1c). Grade increases
from garnet zone in the south-east through staurolite and kyanite
zones into a sillimanite zone in the north-west (Carmichael, 1970).

Metapelitic mineral assemblages were grouped into layers
based on the geographic location of samples. There are four major
metapelitic layers, named numerically, with the number increas-
ing from west to east (Fig. 1c). Within each layer, there can be
significant differences in the mineral assemblages between bands
of rock at the scale of an outcrop. Layer one is the most continuous
in terms of outcrop and lies in the sillimanite zone, extending
south-southwest from Tangamong Lake (Fig. 1c). Layers two and
three crop out on the western edge of Whetstone Lake and extend
south-southeast, transecting the kyanite zone (Fig. 1c). Layer four,
which is discontinuous, has a roughly north–south trend and
transects the garnet, staurolite, and kyanite zones (Fig. 1c).

METHODS
Metapelitic samples from across the Whetstone Lake area
were used to construct a metamorphic isograd map (Figure S1;
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Forshaw, 2021). The wide variety of mineral assemblages across
the region made defining isograds, and in turn the relative
direction of increasing metamorphic grade, difficult. Carmichael
(1970) overcame this issue by plotting ‘reaction isograds’ which
filtered for bulk compositional differences. Here, metamorphic
isograds represent the first appearance of an index mineral in
rocks of broadly pelitic composition rather than the reaction
isograds of Carmichael (1970). The difference between these
approaches is discussed in the Supplementary Material. The
position of the index mineral isograds of Forshaw (2021) is
negligibly different in location to the reaction isograds of
Carmichael (1970).

This study focuses on samples from the kyanite and lower
sillimanite zones because the maximum diversity of mineral
assemblages is found in these zones (Fig. 1c). Thirty-two samples
encompassing the range of assemblages found in these zones
were chosen for further analyses of whole-rock geochemistry,
mineral proportions, and mineral compositions (Fig. 1c). Table S1
lists the sample number, geographic coordinates, metamorphic
zone, mineral assemblage, and the types of analyses performed
for the 32 samples. Mineral abbreviations are after Warr (2021).

Whole-rock analysis
Whole-rock chemical analyses were obtained for 23 samples
which exhibited little to no retrogression. Analysed rock was taken
from close to where thin sections were cut, and any weathered
exterior surfaces were removed using a rock saw. Between 0.2 and
1 kg of rock were crushed for each sample for whole-rock analysis.
Major element concentrations were determined by conventional
X-ray fluorescence (XRF) at Activation Laboratories Ltd. (Ancaster,
Ontario; total Fe reported as Fe2O3). Detection limits for major
elements were between 0.001 and 0.01 wt.%. FeO was measured
by fluorine titration using a modified Wilson (1955) method
at Activation Laboratories, from which Fe2O3 was obtained by
difference. The detection limit for FeO was 0.1 wt.%. Whole-rock
compositions, detection limits, standards, and duplicate analyses
are listed in Tables S2 and S3.

Mineral proportions
Mineral proportions were calculated using a combination of two
procedures. High-resolution scans of thin sections (27 × 46 mm)
were point-counted using the program JMicroVision (Roduit,
2020), in which 500 points were randomly distributed across
the images (e.g. Palin et al., 2016; Forshaw et al., 2019). For fine-
grained rocks, where matrix minerals (e.g. quartz, plagioclase,
and muscovite) could not be separated on slidescans, the matrix
was point-counted as a single entity. The same was done for
inclusion-rich porphyroblasts (e.g. cordierite and plagioclase),
where it was difficult to distinguish inclusions from their hosts.
To separate matrix minerals from each other and inclusions
from their porphyroblasts, we undertook X-ray compositional
mapping using a Bruker energy dispersive spectrometer (EDS)
on a JEOL JXA-8200 electron probe micro-analyser (EPMA) at
the University of Calgary. Backscattered electron images and
element maps of representative areas of matrix and inclusion-
rich porphyroblasts were examined using a combination of
point counting and colour intensity thresholding to calculate
percentages of matrix minerals and porphyroblast inclusions. By
combining the modal abundances from EDS maps with those
determined from thin section scans, we calculated mineral
modal abundances for all samples (Table S4; Fig. 2). Uncertainties
on modal abundance estimates were calculated according
to Howarth (1998).

Opaque mineral identification
We first attempted to identify opaque minerals using reflected
light optical microscopy. However, due to their small size (<
100 μm) and common alteration this proved difficult. We, there-
fore, used backscattered electron (BSE) images from EPMA to
elucidate different types of opaques and their micron-scale fea-
tures (e.g. lamellae and alteration). Ilmenite and titanohematite
exhibit various stages of alteration to leucoxene, a finely crystal-
lized rutile–pseudorutile aggregate formed from the alteration of
ilmenite (Temple, 1966; Grey & Reid, 1975; Mücke & Chaudhuri,
1991; Deer et al., 2013). Leucoxene was distinguished from crys-
talline rutile through its opaque appearance in transmitted light
optical microscopy.

Mineral compositions
Mineral compositional analysis was performed on 25 of the 32
samples using wavelength dispersive spectrometry (WDS) and
the Probe for Windows Software on a JEOL JXA-8200 EPMA at
the University of Calgary. Analyses were conducted on carbon
coated, polished thin sections at 15 kV, using a 20-nA beam, and
a range of natural and synthetic standards (listed in Table S5).
Biotite, muscovite, and chlorite were analysed using a 10-μm
beam, plagioclase, garnet, staurolite, cordierite, orthoamphibole,
and aluminosilicates with a 5-μm beam, and Fe–oxides with a
focussed beam. The Armstrong/Love-Scott ϕ(ρz) matrix correc-
tion with Henke mass adsorption coefficients was automatically
applied to all analyses (Armstrong, 1988). Element-distribution
maps for Fe, Mg, Ca, and Mn in garnet were obtained using WDS
stage scans at 20 kV and 100 nA, with a focussed beam, dwell
time of 25 to 50 ms, and step size of 1 to 5 μm. Fig. S3 shows
plane-polarised light photomicrographs and X-ray intensity maps
of garnet from all samples in which it was mapped.

Between 5 and 40 WDS spot analyses were collected for every
mineral in each thin section, the low end for minerals that are
in low modal abundance and show evidence for retrogression.
Line profiles were taken of porphyroblastic phases, whilst indi-
vidual spots were chosen randomly from different parts of the
thin section for matrix phases. For homogeneous minerals, mean
and standard deviation were calculated from all acceptable spot
analyses in each sample. Representative core, middle, and rim
analyses for garnet were selected from line scans to capture
compositional zonation.

EPMA-derived mineral compositional analyses (in wt.%
oxide) were converted to molecular mineral formulae using
the number of oxygen equivalents per formula unit indicated
in brackets for each of the following minerals: plagioclase
(8), muscovite (22), chlorite (14), garnet (12), staurolite (46),
aluminosilicate (5), cordierite (18), orthoamphibole (23), ilmenite–
titanohematite (3), and magnetite (4). Biotite was converted
using a 22-oxygen +Ti cation recalculation, as suggested by
Waters & Charnley (2002).

Ferric iron was considered as follows. All iron in the alumi-
nosilicates is assumed to be Fe3+ (Deer et al., 2013). Cordierite
contains an insignificant amount of Fe3+ (Geiger et al., 2000),
and therefore, it was not considered. The proportion of Fe3+ in
ilmenite, titanohematite, magnetite, and garnet was determined
using the charge-balancing method of Droop (1987). Concerning
the latter, measurements of Fe3+ in garnet from metapelites
indicate that there is negligible Fe3+, and therefore, estimated
Fe3+ may be a result of analytical error in the other elements,
especially Si and Al that are most abundant (Dyar et al., 2012, 2002;
Quinn et al., 2016). Nevertheless, to maintain consistency between
our natural data and the White et al. (2014a) solution models
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Fig. 2. Modal abundances for the 32 samples examined in this study.

used in thermodynamic predictions discussed below, an estimate
of Fe3+ in garnet was required. Fe3+ contents calculated using
the method of Droop (1987) were, therefore, screened and only
included if XFe3+ (2×Fe2O3/ (2 × Fe2O3 + FeO) = Fe3+ / (Fe3+ + Fe2+)
in moles) was less than 0.05. For chlorite, staurolite, muscovite,
and biotite, XFe3+ was estimated from the study of Forshaw &
Pattison (2021), as follows. For biotite, an XFe3+ of 0.11, 0.13, and
0.19 was used for Ilm-bearing, Mag-bearing (±Ilm), and Hem-
bearing (±Mag ± Ilm) assemblages respectively. For muscovite, an
XFe3+ of 0.49, 0.67, and 0.62 was used for Ilm-bearing, Mag-bearing
(±Ilm), and Hem-bearing (±Mag ± Ilm) assemblages respectively.
For chlorite and staurolite, uniform average values of 0.08 and 0.07
are assumed irrespective of the type of Fe–oxide, because there
were too few analyses in the database of Forshaw & Pattison (2021)
to distinguish XFe3+ in these minerals as a function of Fe–oxide
type. For orthoamphibole, only present in one sample, an XFe3+

of 0.28 was estimated using the constraints from Hawthorne et
al. (2012). Tables S6 to 18 show the weight % oxide analyses and
cations per formula unit for each mineral.

SAMPLE CLASSIFICATION
Categorising the wide range of mineral assemblages, modal abun-
dances, and mineral compositions in metapelites from the kyan-
ite and lower sillimanite zones at Whetstone Lake is difficult.
Categorization by metamorphic grade was rejected because the
diversity of assemblages within the two zones implies that bulk
composition exerts more influence on mineral development than
metamorphic grade. A second approach would be to classify
rocks according to their stratigraphic formation. Whilst studies of
other areas have successfully used this approach (e.g. McLellan,
1985; Boger et al., 2012), at Whetstone Lake metasedimentary
rocks have not been divided into formations, the four metapelitic
layers described above are discontinuous along strike (Lumbers
& Vertolli, 2000a), and individual outcrops within the four lay-
ers occasionally contain different mineral assemblages. A third
approach would be to classify samples based on the presence or
absence of certain index minerals (Atherton & Brotherton, 1972),

or with respect to the major iron oxide phase (Chinner, 1960;
Hounslow & Moore, 1967; McLellan, 1985). However, samples with
similar porphyroblasts commonly have different Fe–oxide combi-
nations, and vice versa. A fourth approach is to classify samples
using their whole-rock geochemical compositions, but whole-rock
analyses were not obtained for all samples due to varying degrees
of retrogression.

Recognising that no one approach is clearly the best, we have
opted to use a combination of the above approaches. Samples
were classified into four types based on a combination of: the
porphyroblastic silicate minerals present in the assemblage; the
modal abundance of muscovite and biotite; the colour of biotite;
the dominant texture of rocks in hand specimen (e.g. schistose
vs granoblastic); and the layer(s) in which they are found. Table 1
summarises these defining features. Despite the attempt to group
samples using the above approach, there can be overlap in indi-
vidual characteristics amongst different groups.

Rocks were first divided into two classifications based on
whether garnet was observed in the mineral assemblage (Fig. 2).
Type G samples (n = 13) are garnet-bearing and contain porphy-
roblastic staurolite and red-brown biotite; they also contain
kyanite, sillimanite, both, or neither (Fig. 2), and occur in layers
one, three, and four (Fig. 1c). Type K samples (n = 9) are kyanite-
bearing, garnet-free, and contain green biotite (one sample lacks
kyanite); they occur in layers one, two, and four (Fig. 1c). Two
further categories comprise rocks that have distinctive mineral
assemblages or textures and are spatially restricted to a single
layer. Type M samples (n = 7) are schistose, muscovite-rich (>
15%, but typically >30%), biotite-poor (< 3%, but typically 0%;
Fig. 2), and occur in layer one (Fig. 1c). Type C samples (n = 3)
are cordierite-bearing and occur in layer three as nodule-rich
horizons along the shores of Whetstone Lake (Fig. 2).

MINERAL ASSEMBLAGES AND TEXTURES
The following section describes mineral assemblages and textures
for each classification type given above. Samples in the same
category may show differences in the size and shape of individual

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/64/10/egad071/7279463 by U

niversity of C
algary user on 22 April 2024

https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egad071#supplementary-data


6 | Journal of Petrology, 2023, Vol. 64, No. 10

Table 1: Sample classifications (types) used in this study and a comparison of their defining features

Type G Type K Type M Type C

Name Garnet-bearing Kyanite-bearing (all but
one sample)
Grt-free

Muscovite-rich Cordierite-bearing

Occurrence Layers 1, 3, 4 Layers 1, 2, 4 Layer 1 Layer 3
Dominant texture Porphyroblastic Granoblastic Schistose Noduled
Muscovite abundance Moderate to poor Moderate to poor Rich Moderate to poor
Biotite abundance Moderate Rich Poor to none Moderate to poor
Biotite colour Red-brown Green Green Green or red-brown
Fe–oxides Ilmenite Ilmenite, Magnetite,

Titanohematite
Ilmenite, Magnetite,
Titanohematite

Ilmenite, Titanohematite

Plagioclase Oligoclase to Andesine Oligoclase to Andesine Albite to Oligoclase Oligoclase to Andesine

minerals, as well as different inclusion relationships between
minerals. Because this study focuses on the peak metamorphic
mineral assemblages however, no attempt was made to correlate
different textural features in samples to differences in the P–T
path by which samples reached peak conditions.

Type G: Garnet-bearing
In outcrop, type G samples appear weathered brown in colour,
with visible porphyroblastic garnet and staurolite (Fig. 3a, d, g); in
thin section, they contain biotite, garnet, staurolite, quartz, pla-
gioclase, and ilmenite, with combinations of muscovite, kyanite,
and sillimanite (Fig. 2). Where present, muscovite ranges from
∼0.1 mm, tabular grains that define the foliation, to randomly ori-
entated, coarse flakes (Fig. 3b, c, e). Biotite typically forms part of
the matrix, occasionally defining a strong foliation, but may also
be porphyroblastic (Fig. 3b, c, e, f, h). Garnet varies in appearance
from ∼0.5 mm grains included within staurolite to ∼2 mm grains
of a similar size to staurolite, to ∼5 mm grains containing inclu-
sions of staurolite (Fig. 3b, c, f, h). Plagioclase is part of the fine-
grained (∼ 0.2 mm) matrix in samples from layers three and four,
whilst in layer one, plagioclase occurs as ∼1 mm porphyroblasts
with inclusions of graphite, quartz, biotite, and muscovite in their
cores (Fig. 3b). Ilmenite is the only Fe–oxide observed in type G
rocks; grains are elongate, typically contain many small (∼ 10 μm)
inclusions of quartz and may be aligned in the micaceous foliation
(Fig. 3i). Ilmenite varies from unaltered to completely replaced by
leucoxene, both within and between individual samples (Fig. 3i).

Type K: Kyanite-bearing (garnet-free)
In outcrop, garnet-free type K samples are dark in colour and
most commonly granoblastic, with inconspicuous porphyroblasts
(Fig. 4). Type K samples contain kyanite in a matrix of muscovite,
biotite, quartz, and plagioclase (Fig. 2). One sample from Type
K lacks kyanite but has been included in this group because it
lacks garnet, has green biotite, contains sillimanite, and occurs in
the sillimanite zone. Type K samples have different combinations
and modal abundances of staurolite, sillimanite, and Fe–oxides
(ilmenite, magnetite, and titanohematite; Fig. 2). Biotite is dark
green in colour in type K samples, in contrast to its red-brown
colour in type G samples (Fig. 3 and Fig. 4). Muscovite, biotite,
and plagioclase exhibit the same range of textures as type G
rocks (Fig. 4). Staurolite is typically euhedral and poikiloblastic,
and ranges from ∼1 mm to >5 mm in diameter (Fig. 4b, c). Kyan-
ite ranges from blocky and inclusion-poor to fibrous in radiat-
ing splays (Fig. 4a, b, d). In samples K8 and K9, knots of fibro-
lite lie within or close to biotite (Fig. 4a). Most type K samples

are ilmenite-bearing, with some additionally containing small (∼
0.2 mm) grains of magnetite (Fig. 2). In two samples (K2 and K3),
titanohematite is the major Fe–oxide phase, forming abundant,
anhedral grains in the matrix (Fig. 4d). Titanohematite grains con-
tain ∼1- to 5-μm-thick ilmenite lamellae, which appear disjointed
and discontinuous across grains (Fig. 4d).

Type M: Muscovite-rich
In outcrop, type M samples are silvery and schistose, as well as
porphyroblastic (Fig. 5). Type M samples are muscovite-rich and
have different combinations and modal abundances of aluminous
minerals (staurolite, kyanite, and sillimanite; Fig. 2) and Fe–oxides
(ilmenite, magnetite, and titanohematite; Fig. 2). Muscovite occurs
as ∼0.2 mm tabular grains that define the foliation (Fig. 5). Biotite
is present in low modal abundance in five of seven type M sam-
ples, occurring as ∼0.5 mm grains (Figs. 2, 5). Plagioclase in type
M samples has a distinctive habit, occurring as large (5–10 mm),
rounded porphyroblasts that are rich in inclusions of quartz and
ilmenite or titanohematite, and show replacement to sericite at
their rims (Fig. 5). Staurolite ranges from small inclusions (∼
0.1 mm) in garnet to large (∼ 5 mm) porphyroblasts (Fig. 5a, b).
Kyanite occurs as individual porphyroblasts, or intergrown with
staurolite (Fig. 5c). Sillimanite occurs as knots of fibrolite either
in the matrix or enveloping staurolite. Where present, magnetite
is porphyroblastic and 0.5 to 2 mm in diameter (Fig. 5b, c). The
matrix Fe–oxide phase is either ilmenite or titanohematite, both
of which exhibit leucoxene alteration (Fig. 5).

Type C: Cordierite-bearing
In outcrop, type C samples are light grey with bulbous cm-
sized cordierite porphyroblasts that weather proud of the
outcrop surfaces (Fig. 6). There are two major varieties of
Type C rocks: muscovite+kyanite-bearing and muscovite-
free, staurolite+cordierite-bearing (Ms–Bt–Ky–Crd–Qz–Pl–Hem
vs Bt–Grt–St–Crd–Qz–Pl–Ilm–Po ± Oam; Fig. 6). Biotite, plagio-
clase, quartz, and ilmenite form a fine-grained, occasion-
ally foliated (< 1 mm) matrix in all samples (Fig. 6). Biotite
is green in muscovite+kyanite-bearing rocks and brown in
staurolite+cordierite-bearing samples (Fig. 6). In staurolite+
cordierite-bearing samples, staurolite, garnet, and orthoam-
phibole form large (2 mm) porphyroblasts, whilst cordierite
forms massive (>10 mm) poikiloblasts (Fig. 6b). The Fe–oxide
phase ranges from titanohematite with minor patches of
alteration to leucoxene in muscovite+kyanite-bearing samples
to ilmenite with varying degrees of alteration to leucoxene in
staurolite+cordierite-bearing samples (Fig. 6).
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Fig. 3. Representative petrological features in type G samples shown in outcrop/hand-specimen photographs (scale bars = 5 cm), plane polarized light
(PPL) thin section slide scans (scale bars = 1 mm), and BSE images. (a) Schistose porphyroblastic garnet–staurolite–biotite pelite. (b) Porphyroblastic
staurolite, garnet, biotite, and plagioclase in a matrix of sillimanite, muscovite, quartz, and plagioclase. (c) Porphyroblastic garnet with inclusions of
staurolite in a matrix of muscovite, quartz, and plagioclase. (d) Porphyroblastic garnet–staurolite–biotite pelite. (e) Foliated biotite schist with
porphyroblasts of kyanite, staurolite, and garnet. (f) Porphyroblastic staurolite, garnet, and biotite in a matrix of quartz and plagioclase. (g)
Porphyroblastic garnet–staurolite–biotite pelite. (h) Porphyroblastic staurolite with inclusions of garnet in a matrix of biotite, quartz, and plagioclase. (i)
Representative image of ilmenite variably replaced by leucoxene in type G samples.

BULK COMPOSITIONAL VARIATIONS
Given the limited range in metamorphic grade, we examined
whole-rock geochemical analyses to determine if differences
in major element concentrations could explain the diversity of
mineral assemblages. Sixteen of the 23 samples classify as true
metapelites according to the criteria of Forshaw & Pattison (2023),
the others classify as metagreywackes or low-K metasediments.
Because the rocks are porphyroblastic, we nevertheless retain
the general term ‘metapelite’ to describe all samples under
consideration from Whetstone Lake.

Several key compositional parameters for metapelites are
plotted in Fig. 7; on these diagrams our whole-rock geo-
chemical analyses are contrasted with the median worldwide
metapelite of Forshaw & Pattison (2023), as well as their
database of pelitic analyses. Of the latter (5729 samples), only
regions encompassing 50% of the compositional variability in
pelites from that database are shown in Fig. 7a–c. In Fig. 7d
involving loss-on-ignition (LOI), the shaded region encom-
passes 50% of the compositional variability of analyses from
the porphyroblast and sillimanite zones of the database of
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Fig. 4. Representative petrological features in type K samples shown in hand specimen photographs (scale bars = 5 cm), PPL and XPL (crossed polarised
light) thin section slide scans (scale bars = 1 mm), and BSE images. (a) Sample K9. Porphyroblastic plagioclase, staurolite, and kyanite, with knots of
fibrolite in a matrix of muscovite, quartz, and ilmenite. (b) Sample K6. Layered sample with porphyroblastic kyanite and staurolite, bimodally
distributed biotite crystals, and a matrix of muscovite, quartz, plagioclase, ilmenite, and magnetite. (c) Sample K1. Porphyroblastic staurolite and
biotite in a matrix of muscovite, quartz, plagioclase, and ilmenite. (d) Sample K3. Porphyroblastic kyanite and biotite in a matrix of muscovite, quartz,
plagioclase, and titanohematite with ilmenite lamellae.
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Fig. 5. Representative petrological features in type M samples shown in hand specimen photographs (scale bars = 5 cm), PPL thin section slide scans
(scale bars = 1 mm), and BSE images. (a) Sample M4. Porphyroblastic garnet and plagioclase in a matrix of quartz, ilmenite, and foliated muscovite. (b)
Sample M3. Porphyroblastic staurolite, plagioclase, and magnetite in a matrix of quartz, ilmenite, and foliated muscovite. (c) Sample M2.
Porphyroblastic kyanite, plagioclase, and magnetite in a matrix of quartz, titanohematite, and foliated muscovite.

Forshaw & Pattison (2023) because LOI is strongly dependent
on metamorphic grade.

Fig. 7a shows the AFM diagram of Thompson (1957). Analyses
were manipulated and projected in the same manner as the
worldwide database for consistency in our comparison. All Fe
was converted to FeO. An amount of molar Fe equivalent to the
molar Ti was removed, as part of projection from ilmenite. To take
account of the compositional effects of variable proportions of
quartz, plagioclase, and lithic fragments in the original sediment,
compositions were projected from apatite, albite, and anorthite,
in addition to muscovite, quartz, and H2O.

The Whetstone Lake samples show a wide range of AMs =
molar (Al2O3 − 3 × K2O)/(Al2O3 − 3 × K2O + FeOtotal + MgO) from

−0.10 to 0.58, and Xproj
Mg = molar MgO/(FeOtotal +MgO) from 0.08 to

0.58 (Fig. 7a). Twelve samples lie within the cluster of worldwide
metapelite analyses, whilst ten lie outside this cluster, most of
which have higher AMs than the average pelite (Fig. 7a). Type G
and K samples span a range of Xproj

Mg from ∼0.2 to 0.5 (Fig. 7a).
Type M samples are more Fe-rich than the other types and have
relatively high AMs (Fig. 7a). The single muscovite-bearing type
C sample is more magnesian than all other samples, with Xproj

Mg

= 0.58 and a relatively low AMs (Fig. 7a). Concerning compo-
sitional differences between the four layers, all samples from
layer one have relatively high AMs, plotting above the idealised
compositions of garnet and chlorite (Fig. 7a). Samples from layers
two, three, and four have relatively lower AMs, plotting either
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Fig. 6. Representative petrological features in type C samples shown in outcrop photographs (scale bars = 5 cm), PPL and XPL thin section slide scans
(scale bars = 1 mm), and BSE images. (a) Sample C1. Poikiloblastic cordierite with small kyanite crystals in a foliated biotite, muscovite, quartz, and
titanohematite matrix. (b) Sample C3. Porphyroblastic staurolite, garnet, and orthoamphibole within massive poikiloblastic cordierite. Biotite, quartz,
plagioclase, and ilmenite make up the matrix and inclusions.

at or below the idealised compositions of garnet and chlorite
(Fig. 7a).

Fig. 7b shows samples from Whetstone Lake plotted on the
AKF diagram of Spear (1993), modified after Eskola (1915). Only
three samples lie within the cluster of worldwide metapelite
analyses, whilst twenty lie outside (Fig. 7b). Type G and K rocks
cluster together between the idealised compositions of staurolite,
cordierite, and biotite (Fig. 7b). Type M rocks are the most alumi-
nous and potassic of any type, lying closest to the idealised com-
ponent of muscovite (Fig. 7b), a mineral which is modally abun-
dant in these rocks (Fig. 2). Sample C3 has the lowest potassium
content of any rock, plotting far from the idealised component of
muscovite (Fig. 7b), consistent with muscovite being absent from
its assemblage (Fig. 2).

Fig. 7c plots XFe3+ = 2×Fe2O3/ (2 × Fe2O3 + FeO) in moles versus
X∗

Mg = MgO/
(
FeO + MgO

)
in moles (noting that FeO in this case

is measured FeO rather than all Fe converted to FeO). Only eight
samples lie within the cluster of worldwide metapelite analyses,
whilst 15 lie outside, most of which have higher XFe3+ (Fig. 7c). X∗

Mg

broadly increases from type M to G to K to C samples, as was seen
in Fig. 7a. Samples containing titanohematite (e.g. C1, M1, M2, K2,
and K3) typically have the highest XFe3+ , with the result that X∗

Mg

is markedly higher than Xproj
Mg (Fig. 7a, c).

Fig. 7d shows the variation in MnO and loss on ignition (LOI) for
Whetstone Lake samples. Twenty samples lie within the cluster of
worldwide metapelite analyses, whilst three lie outside, two due to
their low MnO contents (Fig. 7d). Garnet-bearing type G samples
and garnet-free type K samples commonly have similar MnO

contents (Fig. 7d). Type M samples are low in MnO (< 0.02 wt.%),
except for sample M4 which contains garnet and has MnO = 0.04
wt.% (Fig. 7d). Garnet-bearing and garnet-free type C samples
have similar MnO contents (Fig. 7d).

MINERAL COMPOSITIONAL VARIATIONS
Having established that the diversity of mineral assemblages in
the kyanite and sillimanite zones at Whetstone Lake reflects a
range of bulk compositions, we explored how mineral composi-
tions vary with respect to the four classifications. The follow-
ing analysis focuses on key mineral compositional parameters
that will later be used to test the predictions of thermodynamic
modelling. All analysed minerals except for garnet exhibit largely
homogeneous compositions, with no substantial variation within
individual samples.

Biotite has Si = 5.37–5.64 cations, Ti = 0.09–0.25 cations,
Al = 3.10–3.58 cations, Na = 0.03–0.12 cations, and K = 1.62–
1.80 cations. Muscovite has Si = 6.04–6.29 cations, Ti = 0.03–
0.06 cations, Al = 5.28–5.74 cations, Na = 0.23–0.43 cations, and
K = 1.50–1.83 cations. Whole-rock X∗

Mg and biotite X∗
Mg increase

concomitantly in samples that contain five modal per cent
or more biotite (Types G, K, and C; Fig. 8a). In type M rocks,
which have less than five modal per cent biotite, biotite X∗

Mg is
significantly higher than whole-rock X∗

Mg (Fig. 8a). There is no
correlation between the number of Ti cations in biotite and whole-
rock TiO2 (Fig. 8c); however, the number of Ti cations in biotite is
lower in titanohematite-bearing samples than in ilmenite-bearing
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Type G: Grt-bearing Type K: Ky-bearing (Grt-free)

Type M: Ms-rich Type C: Crd-bearing
Worldwide median pelite and 50th percentile volume contour
from the database of Forshaw & Pattison (2023) 
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Fig. 7. Distribution of the 23 whole-rock analyses of this study versus the median worldwide pelite (white star; Forshaw & Pattison, 2023) and a region
encompassing 50% of the analyses from the database of Forshaw & Pattison (2023). (a) AFM diagram after Thompson (1957), mineral stabilities after
Spear (1993). (b) AKF diagram after Eskola (1915), modified according to Spear (1993). (c) X∗

Mg versus XFe3+ . (d) MnO versus LOI.

samples, and biotite has higher X∗
Mg in the former (Fig. 8c). The

same correlation has been documented in west-central Maine,
where for a given grade of metamorphism, the Ti content of
biotite decreases as its Mg/Fe ratio increases (Guidotti et al., 1977;
Henry & Guidotti, 2002; Henry et al., 2005). There is no significant
correlation between whole-rock AMs and the number of Al
cations in biotite or muscovite (Fig. 8b, e); however, the number
of Al cations in biotite and muscovite is comparatively lower in
titanohematite-bearing samples (e.g. C1, M1, M2, K2, K3; Fig. 8b, e).
Muscovite in titanohematite-bearing samples also contains a
higher total number of Fe cations (Fig. 8f; c.f. Labotka, 1980).

In garnet, X∗
Mg increases concomitantly with whole-rock X∗

Mg

from type M to G to C rocks (Fig. 9b). The number of Mn and
Ca cations in garnet show no correlation with whole-rock MnO
and CaO contents (Fig. 9a, c). EPMA compositional maps of garnet
reveal a range of zoning patterns in Fe, Mg, Ca, and Mn. These
are described in detail below because of their importance to
the calculation of bulk compositions for phase equilibrium
modelling. Concerning manganese, in half the samples, it exhibits
smooth core to rim concentric decreases (�XSps > 0.02 between
core and rim; Fig. 9a, d, f, g; c.f. Atherton & Edmunds, 1966;

Harte & Henley, 1966; Hollister, 1966), whilst in the other half, it
shows relatively flat compositional zoning (XSps < 0.01; Fig. 9a, e).
Sharp increases in manganese content occur at the rims of
subhedral garnets with embayed margins, a feature commonly
ascribed to resorption and concomitant fractionation (accumu-
lation) in its preferred host (garnet) as it is consumed (Fig. 9f; de
Béthune et al., 1975; Kohn & Spear, 2000). Concerning X∗

Mg, in five
samples, it increases from core to near-rim (�X∗

Mg > 0.03), whilst
in 11 samples, it is relatively constant across the garnet (�X∗

Mg

< 0.02). Concerning calcium, in two samples, it increases from
core to near-rim (�XGrs = 0.01–0.02; Fig. 9c, f), in nine samples,
it decreases from core to near-rim (�XGrs = 0.02–0.14; Fig. 9c, e),
and in five samples, it is relatively constant across the garnet
(�XGrs < 0.01; Fig. 9c, d, g). Within these gradients, XGrs exhibits
a patchy distribution at the micron scale (Fig. 9d, e, f, g). In layer
one, dark, fluid inclusion-rich, patchy regions in garnet show
lower XGrs contents (Fig. 9f). Previous authors have interpreted
similar features to be the result of dissolution–reprecipitation
reactions occurring along the rims and cracks within garnet
(Hames & Menard, 1993; Whitney et al., 1996; Martin et al., 2011;
Dempster et al., 2019, 2017; Wolfe et al., 2021).
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Fig. 8. Compositional diagrams depicting the variation of mineral compositions with whole-rock composition. (a) Biotite X∗
Mg versus whole-rock X∗

Mg.

(b) Biotite Al cations versus whole-rock AMs. (c) Biotite Ti cations versus whole-rock TiO2. (d) Staurolite and cordierite X∗
Mg versus whole-rock X∗

Mg. (e)

Muscovite Al cations versus whole-rock AMs. (f) Muscovite Fetotal cations versus whole-rock XFe3+ . Titanohematite-bearing samples are highlighted by
the grey region.

Whole-rock X∗
Mg and staurolite X∗

Mg show a positive correlation
(Fig. 8d). Staurolite is most magnesian in sample C3 where it
coexists with cordierite (Fig. 8d). Based on two samples, there is
an increase in cordierite X∗

Mg with whole-rock X∗
Mg(Fig. 8d). In type

G/K/C samples, the anorthite content of plagioclase ranges mostly
between 0.20 and 0.40, whilst in type M samples plagioclase is
albitic (Table S7). A close correlation exists between whole-rock
and plagioclase Na/Ca ratios, as has been noted in other studies
(Pattison & Debuhr, 2015; Pattison & Goldsmith, 2022).

INFLUENCES ON MINERAL ASSEMBLAGE
DEVELOPMENT AT WHETSTONE LAKE
The diversity of assemblages within the kyanite and lower sil-
limanite zones at Whetstone Lake indicate that bulk composi-
tion exerts the primary influence on mineral assemblage devel-
opment. The importance of XMg has long been documented in
metapelites (Barth, 1936; Thompson, 1957), with authors com-
monly describing contrasts in mineral assemblages during pro-
gressive metamorphism as a function of bulk rock XMg (Thomp-
son, 1976a, 1976b; Atherton, 1977). Several studies have docu-
mented variation in mineral assemblages from individual meta-
morphic zones, which are the result of differences in whole-rock
XMg (Atherton & Brotherton, 1972; Guidotti, 1974; Guidotti et al.,
1975; Labotka, 1981, 1980; Lang, 1991; Ford, 2002; Harte, 2022).

When plotted on an AFM diagram, only 6.7% of the samples in
database of Forshaw & Pattison (2023) have Xproj

Mg less than 0.20 or
greater than 0.55 (Fig. 2A of that paper); whereas at Whetstone
Lake, eight of the 32 samples examined here (25%) lie outside of
this compositional range.

Fig. 10 shows an AFM diagram plotting the stable assemblages
for samples from Whetstone Lake based on average measured
mineral compositions (c.f. Cesare, 1999; Guidotti et al., 1975;
Lang, 1991; Lang & Rice, 1985; Pattison, 1987; Pigage, 1982).
Assemblages for seven representative samples are shown using

XMg instead of X∗
Mg . There is a general progression of stability

fields increasing in XMg from garnet-bearing type G samples
to garnet-free type K samples to cordierite-bearing type C
samples. Stable assemblages for muscovite-rich type M samples

occur across a range of XMg (Fig. 10). Whole-rock analyses for
each sample lie close to the stability fields for their assemblage
(Fig. 10).

Garnet-bearing type G samples are distinguished from garnet-

free type K samples by their lower X∗
Mg (Fig. 7c). Cordierite-bearing

type C samples have higher X∗
Mg than any other type (Fig. 7c).

In addition to X∗
Mg, cordierite stability is also dependent on K2O

content, with cordierite commonly occurring in muscovite-free
metagreywackes (e.g. Crd–St–Oam–Grt-bearing sample C3; Eskola,
1915; Kamineni, 1979; Kamineni et al., 1991; Lal & Shukla, 1975;
Moore & Waters, 1990; Vallance, 1967). The high X∗

Mg in cordierite–
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scientific colour map ‘batlow’ (Crameri, 2021) after thresholding maximised compositional differences within garnet.
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kyanite–muscovite-bearing sample C1 is probably a consequence
of high XFe3+ , highlighting the interplay between these two vari-
ables (Fig. 7c).

XFe3+ is the primary control on the type and modal abundance
of Fe–oxide present in the sample (Chinner, 1960; Hounslow &
Moore, 1967; Diener & Powell, 2010; Forshaw & Pattison, 2021).
Concerning the ferromagnesian silicates, staurolite is an Fe-rich
mineral that is observed in all ilmenite- and magnetite-bearing
samples but is absent or a minor component of titanohematite-
bearing samples. The instability of staurolite in titanohematite-
bearing samples is probably due to high X∗

Mg related to high XFe3+ .
However, some samples have high XFe3+ , as well as low X∗

Mg, owing
to low MgO contents; the absence of staurolite and occurrence of
kyanite and sillimanite in these rocks appears to be due to high
XFe3+ (Ganguly, 1972).

Whilst X∗
Mg and XFe3+ can explain many of the differences in

mineral assemblage observed at Whetstone Lake, other compo-
sitional parameters also exert an influence. In Type M rocks, the
abundance of muscovite is a result of high K2O and Al2O3 content
(Fig. 7b). MnO content appears critical to garnet stability in type
M rocks; samples are typically garnet-free and low in MnO (<
0.02 wt.%), except for sample M4 which contains garnet and has
MnO = 0.04 wt.% (Fig. 7d). Comparatively, garnet-bearing type G
samples and garnet-free type K rocks have similar MnO contents,
indicating that the presence of garnet in type G samples is more
strongly influenced by low X∗

Mg than by MnO content (Fig. 7c, d).
Al2O3 content and by extension AMs appear to have little effect
on the observed mineral assemblages, modal proportions, and
mineral compositions.

PHASE EQUILIBRIUM MODELLING
CONSIDERATIONS
The wide range of mineral assemblages in metapelites from the
kyanite and lower sillimanite zones of Whetstone Lake, make
these rocks an ideal suite to test the ability of thermodynamic
modelling to reproduce mineral assemblages, modal abundances,
and mineral compositions in diverse bulk compositions.

Sample choice
For our analysis, we only considered samples for which the whole-
rock geochemical composition, mineral compositions, and modal
abundances had all been determined (Table S1). Because our
phase equilibrium modelling necessitates that the model sys-
tem has been closed and that it achieved thermodynamic equi-
librium at peak P–T conditions, unaffected by later events, we
excluded samples which contain obvious non-equilibrium phe-
nomena. These include those with multiple aluminosilicates (e.g.
G9, G12, G13, K2, and K9) and those in which garnet is partially
broken down to sillimanite and/or contains extensive dark, fluid
inclusion-rich patches (e.g. G9–G13).

To capture the range of mineral assemblages and whole-
rock geochemical compositions, two samples from each of the
four different rock types were selected for phase equilibrium
modelling. The two rocks from Type G are G2, which contains
the Al2SiO5-free assemblage Grt–St–Ms–Bt–Pl–Qz–Ilm, and G6,
which contains the sillimanite-bearing assemblage Grt–St–
Sil–Ms–Bt–Pl–Qz–Ilm. The two rocks from Type K are K4,
which contains the staurolite+ilmenite-bearing assemblage Ky–
St–Ms–Bt–Pl–Qz–Ilm, and K3, which contains the staurolite-
absent, titanohematite-bearing assemblage Ky–Ms–Bt–Pl–Qz–
Hem. The two rocks from Type M are M4, which contains
the aluminosilicate-free, garnet+staurolite+ilmenite-bearing
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Fig. 10. AFM diagram showing the plotting positions of minerals from
seven representative samples (G2, K3, K4, M2, M4, M5, and C1) using
EPMA-measured mineral compositions. Three-phase assemblages are
denoted by fields and two-phase assemblages by lines. Corresponding
whole-rock analyses (XRF + titration) are shown as coloured symbols.

assemblage Grt–St–Ms–Bt–Pl–Qz–Ilm, and M2, which contains the
staurolite-absent, kyanite+titanohematite-bearing assemblage
Ky–Ms–Bt–Pl–Qz–Mag–Hem. The two rocks from Type C are
C1, which contains the kyanite+titanohematite-bearing assem-
blage Ky–Crd–Ms–Bt–Pl–Qz–Hem, and C3, which contains the
cordierite+orthoamphibole+ilmenite-bearing assemblage Grt–
St–Crd–Ged–Pl–Qz–Ilm.

Bulk composition
Whole-rock versus local bulk composition
As described above, bulk composition exerts a primary control on
predicted phase assemblages, proportions, and compositions in
phase equilibrium modelling. However, determining an effective
bulk composition for phase equilibrium modelling is a nontrivial
task, and carries significant implications for the applicability of
the results (Lanari & Engi, 2017).

Many authors use a whole-rock XRF analysis as an estimate of
an effective bulk composition. A problem with this approach is
that the rock volume analysed by XRF may not be the same as
that from which the thin section is cut (see Fig. 1 of Duesterhoeft
& Lanari, 2020). Some studies have shown that whilst an XRF-
derived phase diagram may reproduce the mineral assemblage
observed, the predicted mineral proportions do not correlate well
with those observed in the thin section (Guevara & Caddick, 2016;
Palin et al., 2016). A consequence is that P–T results derived from
mineral compositional isopleths may be flawed (Lanari & Engi,
2017).

Alternatively, a local bulk composition can be determined by
combining modal abundance estimates of phases with repre-
sentative compositions (e.g. Carson et al., 1999; Forshaw et al.,
2019; George et al., 2022; Gopon et al., 2022), or making an X-ray
map of a representative area of a thin section (e.g. de Hoÿm de
Marien et al., 2019; Lanari et al., 2019, 2014; Marmo et al., 2002).
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Phase diagrams constructed using local bulk compositions, in
which differing modal abundances may be estimated, may more
satisfactorily reproduce mineral proportions and compositions
(Zeh, 2001; Palin et al., 2016; Lanari & Duesterhoeft, 2019; Zou
et al., 2022). A difficulty with this approach is that judgment
must be exercised in estimating the appropriate volumes and
compositions of minerals assumed to have interacted at peak
conditions.

In our study, we adopted both methods and compared the
results. We refer to local bulk compositions as ‘MADE’ and whole-
rock bulk compositions as ‘XRF’ in the text, figures, and tables.
Local bulk compositions were determined by combining modal
abundance estimates of phases with representative compositions
presented in Tables S4 and S6–18. Garnet was incorporated in
local bulk compositions by combining representative core and
rim analyses with estimates of the volume proportion of garnet
core and rim. For Fe–oxide phases with volumetrically significant
lamellae (Fig. 4d), a recombined ilmenite/titanohematite analysis
was calculated based on the ratio of lamellae to host determined
from representative backscattered electron images. All other min-
erals exhibit largely homogeneous compositions, with no substan-
tial variation within individual samples.

Fractionation
Several workers have detailed the unreactive nature of porphy-
roblasts during the prograde metamorphism of pelites (Chinner,
1965; Ridley, 1985; Ridley & Thompson, 1986; Waters & Lovegrove,
2002; Pattison & Tinkham, 2009; Pattison et al., 2011; Carlson et
al., 2015; Pattison & Spear, 2018). Compositional zoning in garnets
from Whetstone Lake indicates that they did not completely re-
equilibrate with the matrix during growth. Fractionation of garnet
in phase equilibrium modelling is considered to have a significant
effect on mineral assemblage stability fields and compositional
isopleths when its mode exceeds two volume percent (Evans,
2004; Tinkham & Ghent, 2005; Zuluaga et al., 2005; Gaidies et al.,
2008a, 2008b, 2006; Moynihan & Pattison, 2013; Lanari & Engi,
2017). In samples G2 and C3, garnet occurs in minor modal
abundance (0.2 ± 0.8% and 0.8 ± 1.5%, respectively; Fig. 2) and is
relatively homogeneous in composition (Fig. 8g); therefore, garnet
was not subtracted from the bulk composition in the phase
equilibrium modelling of these two samples. In samples G6 and
M4, garnet is abundant (6.6 ± 2.2% and 12.0 ± 2.7%, respectively;
Fig. 2) and exhibits pronounced compositional zoning (Fig. 8d, f);
therefore, the interior portions of garnet were subtracted from
the bulk composition in the phase equilibrium modelling of these
two samples. We included 10% of the original volume of garnet.
The garnet composition was assumed to be that of the near-rim
in sample G6 where the garnet exhibits an increase in Mn at its
rim, and that of the rim in sample M4 where no such increase
is observed. This procedure was only possible for the local bulk
composition (MADE) because for whole-rock bulk compositions
(XRF), modal abundances were not available. We refer to these
new fractionated local bulk compositions as ‘FRAC’ in the text,
figures, and tables.

Note that whilst the largest garnet in each thin section was
typically chosen for analysis, we cannot ensure that this garnet
was centrally sectioned or was the largest garnet contained in the
rock. Therefore, garnet core compositions subtracted as part of
our fractionation calculation probably do not represent the core
composition of the first nucleated garnet. However, this makes no
difference to our calculations because peak P–T conditions were
examined and not the path along which garnet grew. Garnet may
have also been subject to later diffusional modification during

cooling from peak P–T conditions which would affect the com-
positions used in our calculations. Assuming cooling from peak
temperature conditions of ∼675◦C (upper amphibolite facies) at
1◦C/Myr (the slowest cooling rate suggested for the Grenville;
Cosca et al., 1992), Fe, Mn, and Mg would diffuse <250 μm within
garnet (Caddick et al., 2010). Given that the analysed garnets are
3–4 mm in diameter, compositional profiles will not have been
substantially modified from those present at peak P–T condi-
tions.

Bulk composition comparison
Table 2 compares whole-rock (XRF) and local (MADE and FRAC)
bulk compositions for each sample. Consistent differences
between these include relatively higher SiO2 in whole-rock bulk
compositions, and relatively higher FeO and K2O in all but one of
the local bulk compositions. For ilmenite-bearing samples G2, G6,
and K4, XFe3+ is higher by >0.10 in whole-rock bulk compositions
than in local bulk compositions (Table 2); whereas for ilmenite-
bearing samples M4 and C3, whole-rock XFe3+ and local XFe3+

values are similar (< 0.05 difference). In titanohematite-bearing
samples, K3, M2, and C1, whole-rock XFe3+ and local XFe3+ values
are also similar (< 0.07 difference). Fractionated compositions
for samples G6 and M4 are also included in Table 2; these show
considerably lower FeO and MnO contents when compared to
local bulk compositions without fractionation, owing to the
removal of garnet.

Fig. 11 plots whole-rock and local bulk compositions on AFM
and AKF diagrams. AMs for local bulk compositions ranges from
relatively higher than whole-rock bulk compositions to lower than
whole-rock bulk compositions (Fig. 10a). Xproj

Mg is higher in all but
one of the local bulk compositions when compared to whole-rock
bulk compositions (Fig. 10a). In the AKF diagram, there are no
consistent trends to higher or lower AKF values when comparing
whole-rock and local bulk compositions (Fig. 10b).

Oxidation state
A rock’s oxidation state and its influence on the stability of
mineral assemblages is commonly expressed in terms of oxygen
fugacity (fO2), oxygen activity (aO2), or the chemical potential of
oxygen (μO2). These are thermodynamic conventions that allow
variations in redox state to be expressed assuming oxygen gas is
the electron receptor/donor, even though the exchange of elec-
trons in the system of interest may not involve free oxygen gas.
A more direct, if less rigorous, measure of oxidation state is the
ratio of Fe2O3 to total iron (e.g. XFe3+ , also termed oxidation ratio),
assuming that iron is overwhelmingly the most abundant element
with more than one valence state in the rock (Chinner, 1960;
Evans, 2006; Diener & Powell, 2010). However, XFe3+ is not a simple
function of fO2 or aO2 (Frost, 1991), being dependent on the XFe3+

contents of co-existing silicates and oxide minerals, and on their
modal abundances. In most natural rocks, classic fO2-buffering
mineral assemblages like quartz–fayalite–magnetite or hematite–
magnetite do not occur. If they do occur, they are not expected
to persist over a range of grade (and thus to actively ‘buffer’ the
fO2 of the rock) because of competition with other minerals in the
rock for the Fe3+.

When considering the interaction of rocks with fluids of differ-
ent aO2, an open-system process in which fluid infiltrates the rock
and either introduces or removes O2 or redox-sensitive elements
like S or C, aO2 is the natural variable to consider when describing
the oxidation state of the reacting system (Diener & Powell, 2010).
In reactive systems in which the only fluid involved is that which
is lost through thermally triggered devolatilization reactions and
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Table 2: Bulk rock compositions (mol. % oxide) used to calculate phase diagrams

Sample Type SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O X∗
Mg XFe3+ Xmodel

Fe3+ Qasm Qvol Qcmp

Median Worldwide Pelite
(Forshaw & Pattison,
2023)

71.53 0.76 12.91 0.75 4.90 0.08 4.01 0.78 1.49 2.81 0.46 0.23 N/A N/A N/A N/A

G2 XRF 69.08 0.68 11.38 0.70 5.47 0.04 5.43 2.98 2.22 2.04 0.50 0.20 0.05 100 71 36
MADE 54.71 0.57 20.43 0.52 10.14 0.07 7.54 2.00 1.68 2.35 0.43 0.09 0.05 100 94 39

G6 XRF 67.16 1.05 14.18 1.76 6.13 0.27 3.95 1.94 2.29 1.27 0.39 0.37 0.05 100 84 44
MADE 64.40 1.07 13.39 0.41 9.89 0.25 6.09 1.22 1.36 1.93 0.38 0.08 0.05
FRAC 66.30 1.16 13.35 0.40 7.82 0.05 6.28 1.06 1.47 2.10 0.45 0.09 0.05 88 91 34

K4 XRF 62.92 0.95 14.95 1.04 5.85 0.05 6.86 2.48 2.63 2.25 0.54 0.26 0.10 100 85 45
MADE 58.01 0.47 18.91 0.44 8.08 0.08 7.74 1.89 2.00 2.36 0.49 0.10 0.10 86 91 47

K3 XRF 69.49 0.76 12.39 1.90 2.87 0.07 6.86 1.70 1.83 2.13 0.71 0.57 0.60 100 78 52
MADE 56.96 1.87 16.71 3.70 4.54 0.16 8.88 2.22 2.30 2.65 0.66 0.62 0.60 100 93 49

M4 XRF 66.91 1.43 15.00 0.57 9.67 0.05 1.67 0.41 1.38 2.93 0.15 0.10 0.05 100 87 61
MADE 65.26 2.25 16.75 0.33 8.78 0.07 1.03 0.60 1.34 3.58 0.11 0.07 0.05
FRAC 69.42 2.66 17.29 0.24 3.69 0.01 0.65 0.20 1.59 4.24 0.15 0.12 0.05 100 91 60

M2 XRF 68.96 1.65 16.46 4.07 1.98 0.01 0.76 0.25 3.45 2.40 0.28 0.80 0.75 100 91 43
MADE 64.64 1.84 16.82 5.46 3.98 0.01 0.55 0.43 3.50 2.76 0.12 0.73 0.75 100 97 44

C1 XRF 70.52 0.87 10.08 2.82 0.96 0.11 7.80 2.61 2.65 1.58 0.89 0.85 0.86 75 71 33
MADE 67.24 0.53 11.47 4.34 1.42 0.23 10.99 1.22 1.42 1.14 0.89 0.86 0.86 78 79 50

C3 XRF 72.18 0.60 11.15 0.58 4.95 0.09 9.01 0.34 0.56 0.53 0.65 0.19 0.05 100 88 25
MADE 70.42 1.65 8.91 0.71 7.26 0.22 9.64 0.11 0.45 0.64 0.57 0.16 0.05 100 96 26
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Fig. 11. AFM and AKF diagrams showing the difference between whole-rock (XRF) and local (MADE) bulk compositions for each sample.

in which iron is the dominant valence-dependent element, XFe3+

(or the amount of oxygen) may be the most appropriate redox-
sensitive variable to use (Diener & Powell, 2010). This is because
the capacity for electron exchange exerted by the rock, through
its mineral assemblage, is much greater that that exerted by
the metamorphic fluids released (Eugster, 1972; Thompson Jr,
1972; Rumble, 1978; Dyar et al., 2002). Consequently, for the phase
equilibrium modelling below, the oxygen content of each rock
was fixed based on the ratio of ferrous to ferric iron in the
sample.

Determination of the proportion of total iron in the bulk
composition that was Fe3+ (i.e. whole-rock XFe3+ ) follows the
recommendations of Forshaw and Pattison (p 19, 2021). Whole-
rock XFe3+ measured by titration was considered a maximum due
to surface weathering processes or post-crushing, pre-analysis
oxidation (Hillebrand, 1908; Fitton & Gill, 1970; Reay, 1981;

Diener & Powell, 2010; lo Pò & Braga, 2014). A second bulk XFe3+

value was calculated for the local bulk composition by combining
estimates of Fe3+ in minerals with modal abundances. The uncer-
tainty on this value was estimated by constructing maximum and
minimum XFe3+ local bulk compositions, obtained by combining
the modal abundances with mineral compositions in which XFe3+

had either been maximised or minimised. For biotite, muscovite,
chlorite, and staurolite, the standard deviations from Forshaw &
Pattison (2021) were used to determine maximum and minimum
XFe3+ in these minerals. For orthoamphibole, the constraints from
Hawthorne et al. (2012) were used to determine maximum and
minimum XFe3+ values. For garnet, ilmenite, titanohematite, and
magnetite, XFe3+ values were kept constant at a value determined
by the charge-balancing method of Droop (1987).

The XFe3+ values obtained from the two methods were then
plotted on T–XFe3+ phase diagrams and compared with the
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predicted mineral assemblages. The value of XFe3+ chosen for
subsequent P–T phase diagram modelling was that for which
the predicted Fe–oxide from thermodynamic modelling matched
the observed Fe–oxide, at a value which fell as close as possible
to the whole-rock XFe3+ values determined above (Table 2). This
approach ensured that the whole-rock XFe3+ used for modelling is
consistent with the thermodynamic data set and solution models
chosen, as is discussed below (Forshaw & Pattison, 2021).

Fluid composition
Interlinked with the oxidation state of a metamorphic rock is
the composition of the fluid produced during metamorphism.
Metamorphic fluids comprise some combination of H2O, nonpolar
gases (chiefly CO2), salts, and rock-derived solutes (Ferry & Burt,
1982; Yardley & Bodnar, 2014; Manning, 2018; Evans & Tomkins,
2020). Whilst thermodynamic properties for salts and aqueous
complexes are available (Helgeson & Kirkham, 1976; Shock et al.,
1992, 1989; Pokrovskii & Helgeson, 1997; Sverjensky et al., 1997;
Miron et al., 2017), as well as solution models describing their mix-
ing (Helgeson & Kirkham, 1974; Helgeson et al., 1981; Dolejš, 2013;
Dubacq et al., 2013), these are typically calibrated at pressures
less than 5 kbar. Recent work has expanded their applicability to
higher pressures, but there are few experimental data with which
to compare and test calculations (Galvez et al., 2015; Connolly
& Galvez, 2018). Therefore, the most complex fluid that phase
equilibrium modelling studies consider presently is a C–O–H–S
mixture (Evans et al., 2010). Oxygen was not considered a fluid
component in our calculations (see previous section). The only
sulphur-bearing phase identified in Whetstone Lake samples was
pyrrhotite (present in 4 of the 32 samples, of which only sample
C3 was modelled). Given the minor modal amount of pyrrhotite
and uncertainty on whether it represents a prograde or retrograde
phase, sulphur was also excluded as a component. Graphite was
present in 8 of the 32 samples, of which two were chosen for
modelling. A C–O–H fluid produced from devolatilization reac-
tions in the presence of excess graphite has uniquely determined
thermodynamic properties at a specified P–T condition (Connolly
& Cesare, 1993). Plotting the P–T conditions of typical Barrovian
staurolite–kyanite-bearing samples in fig. 1 of Connolly & Cesare
(1993) shows that aH2O > 0.95. Therefore, our modelling considers
a pure H2O fluid that was assumed to be in excess.

Thermodynamic database
Of the thermodynamic databases currently available, only the
data set of Holland & Powell (2011) and associated solution
models of White et al. (2014a) incorporate all the Fe3+-bearing
phases relevant for the rocks studied here (see Forshaw &
Pattison, 2021 and Pattison & Goldsmith, 2022, for discussions
of different thermodynamic data sets). The following solution
models were used: chlorite, biotite, garnet, chloritoid, staurolite,
cordierite, orthopyroxene, muscovite, paragonite, and silicate
melt (White et al., 2014a, 2014b); plagioclase and K-feldspar
(Holland & Powell, 2003); epidote (Holland & Powell, 2011);
orthoamphibole (Schorn & Diener, 2019); ilmenite–hematite
(White et al., 2000, 2014a, 2014b); magnetite–spinel (White et al.,
2002). The orthoamphibole solution model was only activated
when modelling sample C3. The margarite solution model was
omitted in all calculations due to the prediction of a margarite
stability field in metapelitic rocks that is not observed in nature
(White et al., 2014a), although the margarite endmember in the
muscovite and paragonite solution models was still incorporated.
Pure phases included quartz, albite, rutile, titanite, and the
aluminosilicates.

Calculation of phase diagrams
Phase diagrams were computed in the 11-component MnNCKF-
MASHTO system (MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–
H2O–TiO2–O2), using Theriak-Domino version 2022.12.18 (de
Capitani & Brown, 1987; de Capitani & Petrakakis, 2010).
Firstly, isobaric T–XFe3+ (bulk rock) equilibrium assemblage
diagrams at a pressure of 5 kbar were constructed for the eight
samples using both whole-rock (XRF) and local (MADE or FRAC)
bulk compositions. This initial 5 kbar pressure estimate was
chosen owing to occurrence of sillimanite+staurolite-bearing,
kyanite+staurolite-bearing, and sillimanite+kyanite+staurolite-
bearing mineral assemblages in close proximity, suggestive of
pressures between 4 and 7 kbar (Carmichael, 1978; Carmichael et
al., 1978; White et al., 2014a; Pattison & Spear, 2018). Estimates
of XFe3+ were made using the approach described above. P–T
equilibrium assemblage diagrams were then calculated for the
eight samples using both whole-rock (XRF) and local (MADE or
FRAC) bulk compositions at the specified value of XFe3+ . After
identification of a stable assemblage field (see below), T–XFe3+

diagrams were recalculated at a pressure matching that found on
P–T equilibrium assemblage diagrams to ensure the estimates of
XFe3+ fitted the approach described above.

METHOD OF ANALYSIS OF MODELS VERSUS
NATURE
Identification of a stable assemblage field
A stable assemblage field that matched the observed assemblage
was identified on the pairs of phase diagrams (calculated for
the XRF, and MADE or FRAC, compositions) for the eight rocks.
In diagrams where no predicted field exactly matched the inter-
preted assemblage, the one with the closest match to the observed
assemblage was chosen. In this approach, higher priority was
given to the more modally abundant silicates, with less weight
given to modally minor phases. A reference P–T point within each
field was then selected for comparison with the observed mineral
abundances and compositions. Where there was latitude in the
placement of samples in the predicted stability fields, we placed
samples from the sillimanite zone at higher temperatures than
those from the kyanite zone. In addition, where possible, we chose
the reference P–T point to be the same in the phase diagrams cal-
culated using whole-rock and local bulk compositions. As will be
discussed below, it was not always possible to adhere to these two
criteria given the restricted stability fields of certain assemblages
in the phase diagrams. An important point is that variations in the
placements of our P–T points are of relatively minor consequence
to our analysis of the models because the predicted mineral
compositions show small variations within individual assemblage
fields.

Quality factors
A method was sought to quantitatively compare the predicted
mineral assemblages, proportions, and compositions in the phase
diagrams with the natural observations. Some previous studies
have qualitatively compared the topology of phase diagrams
between data sets against natural observations (Kendrick &
Indares, 2018; Santos et al., 2019). Others have focussed on
modal abundances and compositions, making quantitative
comparisons between observations and predictions (Forshaw
et al., 2019; García-Arias, 2020; Starr et al., 2020; Gervais &
Trapy, 2021). In these studies, it is difficult to gauge the overall
performance of the models in predicting the natural observations
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since authors typically focus on one or a few specific aspects
for comparison (e.g. mineral assemblage, mineral modes, or
mineral compositions). In our study, it proved challenging to
rationalise the fit amongst phase assemblages, abundances, and
compositions for sixteen different phase diagrams.

An alternative approach involves the calculation of quality
factors for the fit between thermodynamic prediction and nature
(Duesterhoeft & Lanari, 2020). This approach was introduced
in the program Bingo-Antidote that was designed for iterative
thermodynamic modelling calculations (Lanari et al., 2017; Lanari
& Duesterhoeft, 2019; Duesterhoeft & Lanari, 2020; Lanari &
Hermann, 2021). This software compares the predicted phase
assemblage, proportions, and compositions with natural obser-
vations and determines a quantitative measure of the degree of
mismatch. The procedure involves the calculation of three model
quality factors which quantify the degree to which the model
reproduces the observed phase assemblages (Qasm), abundances
(Qvol), and compositions (Qcmp). The quality factors used here are
based on those described by Duesterhoeft & Lanari (2020) and
the reader is referred to that paper for a detailed description of
their calculation. The quality factors used in our study are similar,
but not identical, to those in Duesterhoeft & Lanari (2020), as
described below.

Qasm evaluates the degree to which the predicted and observed
assemblages match; it is calculated by dividing the number
of matching phases by the total number of phases in the
observed and predicted assemblages, and multiplying by 100
(Duesterhoeft & Lanari, 2020). Qvol evaluates the degree to which
the predicted and observed modal abundances match. For each
phase (i), Qvol

i is calculated from the average of the predicted
and observed mode multiplied by the normalised degree of fit
between the predicted and observed mineral mode; a total Qvol

is then calculated using the square root of the sum of these
individual mineral mode quality factors (Qvol

i ), multiplied by
100 (Duesterhoeft & Lanari, 2020). Qcmp evaluates the degree
to which the predicted and observed compositions match and
is calculated using several steps. First, the relative analytical
uncertainty of element concentrations in the natural minerals
(±σ i,j) is compared with the difference (�i,j) between the observed
(Xobs

i,j ) cations per formula unit for elements (j) and phases (i)

listed in Table 3, and the predicted values (Xpred
i,j ). Bingo-Antidote

calculates the relative analytical uncertainty (±σ i,j) using the
variation in composition for a set of pixels in an EPMA X-ray
compositional map (Duesterhoeft & Lanari, 2020). The standard
deviation of a homogeneous population of WDS spot analyses is
typically half the relative analytical uncertainty (±σ i,j) calculated
from X-ray compositional maps (Lanari, pers. comm., 2021). In
our study, we, therefore, used two standard deviations (±2σ i,j) on
our homogeneous population of WDS spot analyses in place of
the relative analytical uncertainty (±σ i,j) used by Duesterhoeft &
Lanari (2020). Our comparison of �i,j with 2σ i,j first considers the
2σ and 12σ boundary conditions: if �i,j < 2σ i,j for our analyses,
then Qcmp

i,j = 100%. If (�i,j − σ i,j) > 12σ i,j for our analyses, then

Qcmp
i,j = 0%. If �i,j lies between these boundary conditions then

Qcmp
i,j = (

1 − ((
�i,j − 2 σi,j

)
/12σi,j

))Xpred
i,j +1 (Duesterhoeft & Lanari,

2020). Quality factors for each element (Qcmp
i,j ) were then averaged

for each mineral and these values weighted based on the modal
abundances of the observed phases, rather than the modal
abundance of the predicted phases as was done in Duesterhoeft
& Lanari (2020). Quality factors for each element (Qcmp

i,j ) were
then averaged for each mineral and these values weighted based
on the modal abundances of the observed phases, rather than

the modal abundance of the predicted phases as was done in
Duesterhoeft & Lanari (2020). The weighted quality factors for
each mineral were then summed to determine a total Qcmp

(Duesterhoeft & Lanari, 2020). Therefore, Qcmp represents a
combination of two variables: a mineral’s modal abundance and
a mineral’s composition.

The above quality factors were used as a first-order assessment
of the success of the phase equilibrium modelling. This was fol-
lowed by a more detailed exploration of the compositions of spe-
cific minerals to determine if there were any consistent discrepan-
cies in certain elements. Predicted and observed mineral compo-
sitions were portrayed in 1:1 plots to visualise the degree of com-
positional agreement or disagreement (e.g. Forshaw et al., 2019).

RESULTS OF ANALYSIS OF MODELS VERSUS
NATURE
An example of the above phase diagram modelling is shown in
Fig. 12a–d for sample G2; this shows T–XFe3+ and P–T equilibrium
assemblage diagrams calculated for both the whole-rock and local
bulk compositions. Diagrams for the other seven samples are
included as supplementary Figs. S5–11. In sample G2, an XFe3+ of
0.20 was measured using XRF/titration and an XFe3+ of 0.09 ± 0.06
was estimated from combining modal abundances with represen-
tative mineral compositions (Table 2; Fig. 12a, b). On the T–XFe3+

diagrams, magnetite is predicted to be stable at XFe3+ > 0.08 and
rutile is predicted to be stable at XFe3+ < 0.05 across the range of
temperature conditions at 7.5 kbar (Table 2; Fig. 12a, b). Therefore,
P–T diagrams for sample G2 were calculated using an XFe3+ of 0.05
for both bulk compositions to ensure that magnetite and rutile
were not predicted (Table 2; Fig. 12). This value is lower than that
determined from titration, but within uncertainty of XFe3+ esti-
mated in the local bulk composition (Table 2). Major differences
between the two P–T diagrams result from the large difference
in Al2O3 content (Table 2; Fig. 12c, d). A predicted mineral assem-
blage field containing the observed assemblage (Grt–St–Ms–Bt–Pl–
Qz–Ilm) was found on diagrams for both compositions (Fig. 12c, d).
Whilst the sizes of the assemblage fields vary between the two
bulk compositions (Fig. 12c, d), a common P–T point of 620◦C and
7.5 kbar could be identified on both diagrams. This was used
as starting point for comparison between mineral proportions
and compositions (Fig. 12c, d). This same process was undertaken
for the other seven samples. Fig. 12e, f shows the predicted min-
eral assemblage fields and reference P–T conditions for all eight
samples calculated using both the whole-rock and local bulk
compositions. Fig. 13 depicts the quality factors calculated at the
reference P–T conditions for all samples and bulk compositions.
The following sections consider how well the models reproduced
the observed assemblages, abundances, and compositions.

Assemblage
It was possible to locate a P–T stability field containing an exact
match to the observed assemblage for both the whole-rock and
local bulk compositions in five of the eight samples (Fig. 13). In
samples G6 and K4, an exact match was only found on diagrams
constructed for whole-rock bulk compositions; on the diagrams
constructed for the local bulk compositions, muscovite was miss-
ing from the predicted assemblage for sample G6 and ilmenite
was missing from the predicted assemblage for sample K4, leading
to lower Qasm values (Fig. 13). In sample C1, neither the diagram
constructed for the whole-rock or local bulk composition provided
a match to the observed assemblage (Fig. 13); in the whole-rock
bulk composition diagram, chlorite and muscovite are missing
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Table 3: Elements selected for comparison between observed and modelled mineral compositions in this study, and in turn used to
calculate Qcmp

Si Ti Al Fe3+ Fe2+ Mn Mg Ca Na K

Pl X X X X X
Ms X X X X X X X X
Chl X X X X X X
Bt X X X X X X X
Grt X X X X X X
St X X X X X X
Crd X X X
Oam X X X X X X X
Ilm/Hem X X X X X
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Fig. 13. Bar chart comparing quality factors calculated for the eight
samples using their whole rock bulk compositions (XRF) and either their
local bulk composition (MADE or FRAC).

from the assemblage, whilst in the local bulk composition dia-
gram, muscovite is missing and staurolite is predicted. The major-
ity of our chosen assemblage fields overlap for both types of bulk
composition at approximately 620–675◦C and 6.5–7.5 kbar. In both
diagrams, the predicted mineral assemblage for sample C3 occurs
at lower pressure (4.5–6 kbar) than any other sample (Fig. 12).
For sample G2, the predicted assemblage field for the local bulk
composition occurs at relatively higher pressures and lower tem-
peratures than for the whole-rock bulk composition (Fig. 12).

Modal abundances
Predicted modal abundances are typically close to those observed
in all samples regardless of the bulk composition used for mod-
elling (Qvol > 60%; Table 2; Fig. 13). However, Qvol is always greater
for local bulk compositions than whole-rock bulk compositions,
with Qvol > 90% for all local bulk compositions apart from sample
C1 where the assemblage was poorly predicted (Table 2; Fig. 13).
A similar result was found by Palin et al. (2016) who conducted
modelling using the internally consistent thermodynamic data
set 5.5 (Holland & Powell, 1998). Sample G2 is an example where
the Qvol is considerably higher for the local bulk composition (94%)
than whole-rock bulk composition (71%; Table 2; Fig. 13). Because
Qvol is weighted based on the relative proportions of minerals, this
discrepancy is primarily a result of poor predictions of modally

abundant phases. For sample G2, the phase diagram calculated
for the whole-rock bulk composition overestimates plagioclase
(predicted = 31% vs observed = 23 ± 3%) and significantly under-
estimates staurolite (predicted = 5% vs observed = 26 ± 3%).

Mineral compositions
Mineral compositions are poorly predicted in most samples, with
Qcmp ranging from 25 to 61% (Fig. 13). Unlike Qvol, Qcmp is not
significantly different for diagrams constructed using different
bulk compositions (Fig. 13). To better understand the causes of
the relatively poor Qcmp factors, we compared predicted and
observed compositions of all phases. Fig. 14 depicts several 1:1
plots in which predicted mineral compositions are compared
to those observed. For ease of visualisation, only the compo-
sitions predicted for the local bulk composition are plotted on
Fig. 14; however, this is of minor consequence to our comparisons
because differences between the predicted mineral compositions
for different types of bulk composition are small, as can be gauged
from the similar Qcmp values (Table 2; Fig. 13).

In biotite, the predicted number of Si cations is underestimated,
whilst the predicted number of Ti cations is typically overesti-
mated (Fig. 14a, b). The predicted number of Al, Fe3+, and Mg
cations show scatter about the 1:1 line with no obvious bias to
lower or higher values (Fig. 14c, d, f). However, Fe3+ and XFe3+ in
biotite are overestimated when hematite is predicted to be part
of the assemblage (Fig. 14d, g). Forshaw & Pattison (2021) found
that whilst XFe3+ in biotite increases from ilmenite- to magnetite-
to hematite-bearing rocks, the increase in the number of Fe3+

cations in biotite in the same samples is minor. This indicates
that the change in biotite XFe3+ with oxidation state primarily
results from the removal of Fe2+ cations and not an increase in
the number of Fe3+ cations as is predicted in the current solution
model. The number of Fe2+ cations in biotite is overestimated for
four samples, underestimated for one sample, and similar to that
observed in three samples (Fig. 14e). Biotite X∗

Mg is typically well
reproduced by the model (Fig. 14h).

Concerning muscovite, the predicted number of Si, Na, and
K cations typically match those observed (Fig. 14a, i). However,
the predicted number of Al cations is overestimated, and the
predicted number of Fe3+ cations is underestimated (Fig. 14c, d),
as was found by Forshaw & Pattison (2021). The overestimation of
the number of Al cations is typically correlated with an underes-
timation of the total Fe3+, Fe2+, and Mg content of muscovite.

Predicted compositions of garnet, staurolite, and cordierite
underestimate Fe2+ and overestimate Mg (Fig. 14e, f); this results
in a significant overestimation of X∗

Mg by 0.03 to 0.10 for cordierite,
0.04 to 0.12 for garnet, and 0.03 to 0.16 for staurolite (Fig. 14h).
In staurolite, the predicted number of Fe3+ cations and XFe3+
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Fig. 14. Predicted versus observed mineral compositions. In order to depict all minerals together, some cation totals were shifted diagonally by
subtracting or adding a specific number of cations to/from the calculated and observed values. (a) Si cations. For plagioclase, three cations have been
added to the measured values. (b) Ti cations. (c) Al cations. For plagioclase, four cations have been added to the measured values, whereas for biotite,
two cations have been added to the measured values. (d) Fe3+ cations. (e) Fe2+ cations. (f) Mg cations. (g) XFe3+ . (h) X∗

Mg. (i) Na cations. Those minerals
for which the number of observed cations is well predicted by the models will lie on the 1:1 line. Grey dotted lines show cation differences between
calculated and observed values.

broadly match the estimates in our samples, the latter taken from
Forshaw & Pattison (2021; Fig. 14d), but the predicted number of
Ti cations is consistently double that observed (Fig. 14b).

The predicted composition of plagioclase is close to that
observed in every rock sample (Fig. 14a, c, i). This probably
results from plagioclase’s relatively simple composition and
the relatively few phases that contain calcium and sodium end
members (garnet = Ca; muscovite = Na). The predicted number of

Fe3+ cations in ilmenite, and in turn its XFe3+ , are overestimated
by 0.05 to 0.20 (Fig. 14d, g). The orthoamphibole solution model
(Schorn & Diener, 2019) was provided to the first author by
Diener (written communication, 2021) who noted that it remains
relatively untested. Despite this, the predicted number of Si, Mg,
Ca, and Na cations typically match those observed. The predicted
number of Al and Fe2+ cations is overestimated, whilst the
predicted number of Fe3+ cations is significantly underestimated.
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IMPLICATIONS FOR THERMODYNAMIC
MODELLING
Phase equilibrium modelling using data set 6.2 (Holland & Powell,
2011) largely reproduces the diversity of mineral assemblages in
the kyanite and lower sillimanite zones at Whetstone Lake. In
addition, the P–T conditions of the different predicted assemblage
fields broadly overlap with each other within uncertainty and

accord with the general trend of increasing pressure and tem-
perature outward from the “Hastings Metamorphic Low” (Fig. 1b;
Carmichael et al., 1978). We considered whether the predicted P–T
conditions of 620–675◦C and 6.5–7.5 kbar are reasonable estimates
for kyanite and lower sillimanite zone conditions. Two bounding
limits are the relatively lower temperature chlorite-out reaction,
and the relatively higher temperature muscovite-out reaction
between which the P–T conditions must lie. Experiments and
thermodynamic predictions have independently constrained the
chlorite-out reaction to 550–600◦C at 5–10 kbar (Pattison, 2001),
whereas experiments and thermodynamic predictions have inde-
pendently constrained the muscovite-out reaction to 680–760◦C
at 5 kbar (Chatterjee & Johannes, 1974; Vielzeuf & Holloway, 1988;
White et al., 2001). Our predicted P–T conditions lie between 6.5
and 7.5 kbar, and at similar conditions to kyanite- and sillimanite-
bearing assemblages on phase diagrams calculated for average
metapelites by White et al. (2014b), who used thermodynamic data
set 6.2 (Holland & Powell, 2011), and Pattison et al. (2011), who
used thermodynamic data set 5.5 (Holland & Powell, 1998). An
uncertainty in the above comparison is the possibility of non-
equilibrium development of some mineral assemblages, espe-
cially those involving staurolite and kyanite (Pattison & Spear,
2018), which could imply lower pressures for Barrovian assem-
blages than predicted by current phase equilibrium modelling.

On the other hand, the order of samples, in terms of increasing

temperature predicted by the modelling, does not simply match

the order of the samples on the ground (Figs. 1c and 11). First, the
mineral assemblages observed in kyanite zone samples K4 and C1
are predicted to be stable above 655◦C, overlapping with the P–T
conditions for samples from the lower sillimanite zone (Fig. 12).

For staurolite–kyanite-bearing sample K4, this may be because on
textural grounds kyanite did not form from reaction of staurolite

as predicted in the phase diagram, but instead formed from the
metastable reaction of Ms + Chl + Qz (Pattison & Spear, 2018).
Another possible explanation is that the staurolite- and kyanite-
forming reactions occurred at lower pressures and temperatures
because of a reduced activity of H2O. Second, the Crd–St–Oam–
Grt-bearing sample C3 observed in kyanite zone occurs at lower
pressure (4.5–6 kbar) than any other sample, perhaps due to the
unusually low-pressure stability range of cordierite–muscovite
assemblages in data set 6.2 (Pattison & Goldsmith, 2022).

The least satisfactory aspect of the thermodynamic modelling
is related to the mismatch between predicted and observed
mineral compositions (Fig. 13 and above discussion; see also
Waters, 2019). Whereas the poor prediction of mineral compo-
sitions could be viewed an acceptable discrepancy when the
mineral assemblage fields and mineral modes are satisfactorily
predicted, mineral compositions exert a strong control on both.

Studies in metabasites have shown that discrepancies between

predicted and observed amphibole compositions lead to displaced

mineral assemblage stability fields on P–T diagrams (Forshaw
et al., 2019; Starr et al., 2020). Therefore, if mineral compositions
were more closely matched for metapelites from Whetstone Lake,
there could be changes to the stability fields of the predicted
mineral assemblages on the P–T phase diagrams, and in turn

the P–T estimates. An important consideration in the above
analysis is the uncertainty associated with the predicted mineral
compositions and modal abundances. Assigning uncertainties to
the thermodynamic data set and solution models, and in turn
the predicted mineral compositions and modal abundances, has
been discussed in several studies (Powell & Holland, 2008, 1988;
Lanari & Duesterhoeft, 2019; Waters, 2019). The conclusion is
that assigning uncertainties is difficult to do in a statistically
rigorous yet meaningful way, and the uncertainties vary from
assemblage to assemblage. Examination of the causes of the
mineral compositional discrepancies, in particular an assessment
of the thermodynamic parameters of mineral end members and
solution models, would be a worthy follow-up to this study. We
hope that when the next iteration of thermodynamic database
refinement occurs, the diverse bulk compositions, mineral
assemblages, modes, and compositions of Whetstone Lake will be
an excellent test suite for assessing the success of the modelling.

CONCLUSIONS
We have documented an exceptional diversity of metapelitic min-
eral assemblages from the kyanite and lower sillimanite zones
of the Whetstone Lake area, southeastern Ontario. Using a data
set of petrographic observations, phase proportions, whole-rock
analyses, and mineral compositions, we have demonstrated the
importance of bulk composition on mineral assemblage develop-
ment in an area over which there is a limited range in metamor-
phic grade. Our observations were compared to the predictions of
phase equilibrium modelling using data set 6.2 (Holland & Powell,
2011) and the solution models of White et al. (2014a, 2014b), the
only combination of thermodynamic data set and solution models
with enough Fe3+-bearing mineral end members to model the
natural assemblages at Whetstone Lake. Phase diagrams were
constructed for two sets of bulk compositions for each rock:
one from XRF and one from combining modal abundances with
representative mineral compositions. These were used to assess
how sensitive the predicted mineral assemblages, proportions,
and compositions are to different estimates of the reactive bulk
composition. Local bulk compositions were carefully considered
so as not to include portions of the rock that are unlikely to have
interacted chemically at peak conditions (e.g. interiors of porphy-
roblasts). The quality of fit between predicted and observed values
was assessed quantitatively using quality factors (Qasm, Qvol, and
Qcmp; Duesterhoeft & Lanari, 2020), augmented by a mineral-
by-mineral comparison of predicted versus observed cations per
formula unit.

The main conclusions of this work are:

• The differences in bulk composition in metapelites from the
kyanite and sillimanite zones of the Whetstone Lake area
exert a primary control on their mineral assemblages, propor-
tions, and compositions and account for their diversity in an
area where there is only a modest difference in metamorphic
grade.

• Whole-rock X∗
Mg and XFe3+ are the two most important com-

positional parameters that influence the different mineral
assemblages and compositions.

• The samples additionally show a wide range of K2O, Al2O3,
and MnO contents that exert a secondary influence on min-
eral assemblages and compositions.

• Phase equilibrium modelling using either whole-rock or local
bulk compositions broadly predicted a mineral assemblage
field matching that observed for a wide range of bulk compo-
sitions (Qasm = 100% for 12 out of 16 diagrams).
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• The predicted P–T conditions of mineral assemblage fields
overlap between 620–675◦C and 6.5–7.5 kbar using either the
whole-rock or local bulk composition, consistent with the
relatively limited range of metamorphic grade represented by
the sample suite.

• The match of predicted and observed mineral modes, as
measured by Qvol, is always better for our considered local
bulk compositions than whole-rock bulk compositions, with
Qvol > 90% for all local bulk compositions apart from sample
C1 where the assemblage was poorly predicted.

• The match of predicted and observed mineral compositions,
as measured by Qcmp, ranges from 20–61%, demonstrating
significant discrepancies. The main mismatches include:
overestimation of X∗

Mg in garnet, staurolite, and cordierite,
overestimation of Ti in staurolite and biotite, underestimation
of Si in biotite, and overestimation of Al and underestimation
of Fe3+, Fe2+, and Mg in muscovite.
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