Undeniably Plansible Plansibly Deniable Storage

By: Swaminathan Ramesh and Dr. Ryan Henry

Outline

- Plansibly deniable filesystems (PDIS): what are they and why are they useful?
- · How plansible deniability is defined in existing literature
 - HIVE
 - DataLair
- Shortcomings in existing definitions
- How can we fix these definitions?
 - Defining filesystem and filesystem operations
 - Plansibility as simulatability

What are plansifly deniable filesystems?

alice

Proof of Kricking puppies

Bob

Pictures of hugging puppies

Oscar

Proof of Kricking puppies

Why are PD75 useful?

- · Ensuring privacy in data storage settings like:
 - Journalists
 - Whistleblowers
 - Human rights activists

Formal model in literature - Data Lair

- · What is DataLair?
 - PDIS proposed by Sion et al. in CCS 2017
 - Uses write-only ORAM
 - Proposes PD-CPA to capture plansible deniability

Formal model in literature - Data Lair

- Adversary model and capabilities
 - PPT adversary
 - Multi-snapshot

Formal model in literature - Data Lair

Security definition - PD-CPA(n,m). Security parameter - h

attacker

1. Sends storage device

Challenger

- 3. Sends public key
- 4. Sends PO, Pl
- 5. Executes Pb; Sends snapshot

6. Outputs b'

Attacker wins if l' == l

2. Creates public and private keys and volumes; tosses a fair coin (b)

Formal model in literature - HIVE

- · What is HTVE?
 - PDIS introduced by Blass et al. CCS 2014
 - Uses write-only ORAM
 - Security notion $G^{A-E}(n)$

Formal model in literature - HIVE

- Adversary model and capabilities
 - PPT adversary
 - Multi-snapshot

Formal model in literature - HIVE

• Security definition - $G^{A-E}(n)$; Security parameter - $P^{A-E}(n)$

attacker

1. Sends L

Challenger

2. Sends initial

snapshot Sends PO, P1

Executes Pb; Sends snapshot

Outputs &

Uses L to create initial state of device; tosses a fair coin (b)

Attacker wins if l' == l

Shortcomings of HIVE and Data Lair

- DataLair:
 - Artificial restriction on number of writes to private volumes construction specific quirk
 - Has exactly one public and private volume
 - Does not talk about filesystem state changes from "reads"
- · Common drawbacks:
 - Does not account for partial revelation of private volumes
 - Definitively expose the existence of private volumes
 - Do not explore relation between PDIS and secure deletion

Fixing definitions - 1

- · Formal model of a filesystem based on Turing machines
 - Epoch-driven
 - Tapes
 - Operations
 - Traces and access patterns

Fixing definitions - Z

- · Plansibility as simulatability
 - Real-world application: OTR deniability in Signal
 - Adversary cannot distinguish between "real" and "ideal" worlds
 - Adversary scenarios:
 - 1. Explicit knowledge of hidden volumes
 - 2. No knowledge of hidden volumes but non-simulated transcript
 - 3. No or partial knowledge of hidden volumes and simulated transcript

Fixing definitions - 3

- Hiding operations and hidden volumes
 - Operation hiding:
 - · Adversary has full knowledge of private volumes
 - · Can supply operation traces to challenger
 - · Cannot distinguish between different snapshots of filesystem based on knowledge of operation traces
 - Volume hiding:
 - · Adversary does not know what volumes exist
 - · Can specify operation traces
 - · Cannot infer existence of hidden volumes from knowledge of snapshots and operation traces

Thank you!