Privacy in Smart-Contract based fair exchanges

Preston Haffey

University of Calgary MSc. Computer Science

Plan:

- Basic Exchange
- Fairness in exchange
- Exchange digital item for digital coins
- Blockchains
- Smart contracts
- Smart-contract based fair exchanges
- Privacy during disputes
- Providing privacy in disputes

An Exchange

But what can go wrong?

An Exchange: What else can we try?

Without trust, we've reached an impasse

Alice and Bob want a **fair** exchange where Alice and Bob are guaranteed to receive exactly what they wanted or lose nothing.

It has been proven that two-party fair exchange is impossible to achieve without a Trusted Third Party (TTP).

Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In: Proceedings of the eighteenth annual ACM symposium on Theory of computing. pp. 364–369 (1986)

Garbinato, B., Rickebusch, I.: Impossibility results on fair exchange. 10th International Conference on Innovative Internet Community Systems (I2CS) – Jubilee Edition 2010– (2010)

Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted third party. Tech. rep., Technical Report TUD-BS-1999-02, Darmstadt University of Technology (1999)

Optimistic Exchange

 $\text{REVIEWS} \sim \quad \text{NEWS} \sim \quad \text{TECH} \sim \quad \text{MONEY} \sim \quad \text{WELLNESS} \sim \quad \text{HOME} \sim \quad \text{CARS} \sim \quad \text{DEALS} \sim \quad \text{$

Teen pays \$735 for photo of Xbox One on eBay

A British teenager gets suckered out of \$735 when attempting to buy a Day One special-edition Xbox One console on eBay.

https://www.cnet.com/news/teen-pays-735-for-photo-of-xbox-one-on-ebay/ (Accessed Feb 10th 2022, Story from 2013)

Replacing TTP with Blockchains (Decentralized Trust)

Dziembowski, S., Eckey, L., Faust, S.: Fairswap: How to fairly exchange digital goods. In: Proceedings of the 2018ACM SIGSAC Conference on Computer and Communications Security. pp. 967–984. ACM (2018)

Eckey, L., Faust, S., Schlosser, B.: Optiswap: Fast optimistic fair exchange. In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. pp.543–557 (2020)

What are blockchains?

From	То	Amt
Bob	Alice	7.00
Alice	Bob	2.00
Charlie	Alice	6.00
Bob	Charlie	10.00
	From Bob Alice Charlie Bob	FromToBobAliceAliceBobCharlieAliceBobCharlie

Entry	From	То	Amt
1	Bob	Alice	67.00
2	Alice	Bob	4.00
3	Charlie	Alice	9.00
4	Bob	Charlie	12.00

Entry	From	То	Amt
1	Bob	Alice	41.00
2	Alice	Bob	25.00
3	Charlie	Alice	12.00
4	Bob	Charlie	18.00

Network of Distributed Nodes that maintain a ledger

Accounts on blockchains use public / private key cryptography.

Digital signatures:

Generate a signature *sig* on a message *M* using a **private key**. The signature can be verified with the **public key**

sig <- Sign(*M*, **B**)

Verify(*M*, *sig*,) := 1/0

What are blockchains?

Using smart contracts run on blockchains

Smart Contracts

Ethereum Virtual Machine (EVM) Global state machine

= 0

2

1

Still Public / Permissionless

OpCode	Gas
ADD	3
SUB	3
LOAD	4

Computing and Storage "on chain" in the EVM is expensive and requires Gas to be paid.

Merkle Tree

H()

- Arbitrarily large input
- Fixed size output
- Preimage resistance
- Second preimage resistance
- Collision resistance

Commit to data x with H()

 $H(\mathbf{x}) = \mathbf{h}$

For x' where H(x') = h'

If h' = h, very likely x = x'

Use Merkle Trees to prove that an element x_i belongs to the sequence at position i

IF checks pass: MerkCommit(∏_≧()) == MerkRoot∏

MerkCommit(z) == MerkRootz

How can we show a single gate without revealing information about the computation?

Problem: Two inputs, and the output (3 wires) are made public.

Limit Our Selves to Arithmetic Circuits

Addition and Multiplication operations over a Galois Field $GF(p^n)$, for prime p.

Randomize the arithmetic circuit using (m+1)-(m+1) additive secret sharing

Set m = 2

x1 -> (r1,r2,r3)

 $x1 = r1 + r2 + r3 \mod p^n$

 $GF(p^n)$

Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Annual International Cryptology Conference. pp. 463–481. Springer (2003)

We need a circuit that can execute on our inputs

More Info:

Avizheh, Sepideh & Haffey, Preston & Safavi-Naini, Reihaneh. (2022). Privacypreserving FairSwap: Fairness and privacy interplay. Proceedings on Privacy Enhancing Technologies. 2022. 417-439. 10.2478/popets-2022-0021.

Sepideh Avizheh, Preston Haffey, and Reihaneh Safavi-Naini. 2021. Privacyenhanced OptiSwap. *Proceedings of the 2021 on Cloud Computing Security Workshop*. Association for Computing Machinery, New York, NY, USA, 39–57. DOI:https://doi.org/10.1145/3474123.3486756