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Quantum Computers (QCs)
The |GOOD) + |BAD) news:

o QCs efficiently solve integer factorization and discrete logarithms
@ Security of Internet is based on factorization and discrete logarithms
@ Rapid advancements in quantum technologies

@ NSA announcement on transitioning to quantum resistant algorithms

[ Quantum safe keys = Quantum safe communication




Quantum resistant SKAs

Existing approaches to quantum resistant
secret key agreement (SKA)

o Post-quantum computational algorithm
@ Quantum key distribution (QKD)

o Physical-layer information-theoretic SKA

We focus on “Physical-layer information-theoretic SKA" .
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Background - Information theory

@ Mutual Information

H(X) H(Y)

I(X:Y)

H(X,Y)=I(X;Y)+ H(X|Y)+ H(Y|X)
H(X)=HX|Y)+I(X;Y)

H(Y)=HY|X)+ I(Y; X)



Background - Information theory

o Independence

Pr{X|Y}=Pr{X}

H(X|Y) = H(X)

I(X;Y)=0

H(X,Y) = H(X) + H(Y)
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Background - Information theory

o n—I1ID Source (Independent and identically distributed)
X" = (X" X X' Xt X
{Xti}ign are mutaully independent

H(X") = H(X") + H(X") 4 + H(X"™)
Pth:Pth ngn
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Three Correlated Sources

In general, when three variables are correlated, we have

H(X1]|X2X3) # H(X1]|X2)

H(X)) H(X)

Px,x,x5 = Px,x, Pxs1x, X,
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Three Correlated Sources

If Markov relation X7 — X5 — X3 holds,

H(X1|X,X3) = H(X1|X5)

H(Xy) H(X5)

H(X3)

Px, x5 x5 = Px,x, Pxs|x,
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Background - Information theory

@ Source Coding (Compression)

X{l@ F = Enc(X7)

X=X
2) length(F’) be as small as possible.

X = Dec(F)

19p023(]

Objectives: {

Consider a compression code C = (Enc, Dec), and a fixed n:

_ length(F")
B n

Error probability Pr {X £ X} <en

Comprssion rate re™P(C)
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Background - Information theory

Source Coding Theorem: If Py, is known, for any rate
Ry > H(Xq)

there is always exists a compression code with asymptotic rate R;
(rn™” — Ry), and negligible error probability (¢, — 0) and for any coding
rate less that H(X) there does not exist any compression code with

negligible error probability.
Shannon, 1948
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Background - Information theory

X{’@ F = Enc(X7])

X = Dec(F)

19p023(]

Xy

Source Coding with Side Information at the Decoder: If Px x, is
known, for any rate
Ry > H(X1|X2)

there is always exists a compression code with asymptotic rate R;

(r°™? — Ry), and negligible error probability (¢, — 0) and for any coding
rate less that H(X;|X2) there does not exist any compression code with
negligible error probability.

Slepian and Wolf, 1973
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Information-theoretic key agreement

o Key Agreement

Alice @Bob @Eve
K

K
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Information-theoretic key agreement

o Key Extraction from Common Randomness (Privacy
Amplification)

AliceMBob @Eve

X X s 7
K K

) I(K;(Z,F)) =0

. 1
Objectives: { 2) length(K) be as large as possible.
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Information-theoretic key agreement

o Key Extraction from Common Randomness

AliceMBob @Eve

X" X" zn
K K
An extraction code H has:
Extraction rate re(H) = Iengt;(K)

Leakage I(K;(Z",F)) < on
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Information-theoretic key agreement
AliceMBob @Eve

X X Z
K K

Leftover Hash Lemma (LHL) (Asymptotic)
Let Rmin be a lower bound on communication rate (length(F')/n). Then,

for any rate
R¥' < H(X|Z) — Ruin

there is always exists an extraction code with asymptotic rate of R¢*!
(ré®t — R*') with negligible information leakage (o, — 0).
Dodis, et. al, 2008
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Two-Party SKA against a wiretapper

o Secret Key Agreement (SKA)

AIice@ @Bob @Eve
X X5 A

SKA d SKA

K, Ko

1)K =K, =K
Objectives: ¢ 2) I(K;(Z,F)) =0
3) length(K) be as large as possible.
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Two-Party SKA against a wiretapper

o Secret Key Agreement (SKA)

AllCG@ @Bob @Eve
i

A SKA protocol I has:

| h(K
Key rate rfley(l_l) _ ength() (5)

Error probability Pr{K; # K} <e¢,
Leakage I(K;(Z",F)) <o,
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Two-Party SKA against a wiretapper

o A SKA protocol achieves key rate R*Y if as n — oo

rﬁey — Rkey
€, — 0
o, — 0

o A key rate R¥Y is achievable if there exists a SKA
protocol that achieves RF€V,

o Wiretap secret key (WSK) capacity is the largest
achievable key rate.

21/55



Two-Party SKA against a wiretapper

Problem Statement: For a given
source model (X7, X5, 7Z) with known
distribution Px, x,7, what is the WSK
capacity.

Cwsi (X1, Xo|Z) =7
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Two-Party SKA against a wiretapper

The PK Capacity

Definition: The private key (PK) capacity is the largest
achievable key rate when parties know Eve's side
information Z.

Lemma: By definition, PK capacity is an upper bound on
WSK capacity.

Cwsk (X1, X2|Z) < Cpr (X1, X2|2)

Let's find PK capacity Cpg (X, Xo|Z) =7
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Review

Source Coding with Side Info

X
O—

19p0da(]

Xo

length(F) _ R,

Ry > H(X1|Xs)

Leftover Hash Lemma (LHL)

O~ O©

X X Z
K K

length(F
%()ZRmin

R < H(X|Z) — Ruin
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Z, Xo




Achieving PK Capacity

Ry

T B 6

7, X, 7, Xo, X, z

Ry > H(X1|X2Z)
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Achieving PK Capacity

Ry

(.0 ©

Z7X17X2 Z,XQ,Xl 7

Ry > H(X1|X2Z)
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Achieving PK Capacity

Ry

(.0 ©

Z7X17X2 Z,XQ,Xl 7

Ry > H(X1|X2Z)
Ry > H(X2|X12)

length(F
%() > Rpin = min{ Ry + Ra}

Ruin = H(X1|XQZ) + H(X2|Xlz)
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Achieving PK Capacity

Ry
eaa @ (X1, X2, Z)is a common randomness
Z7X17X2 ZaXQ;Xl Z
Ext
K K
Ry > H(X|X22)
Ry > H(X2|X12)
length(F
L() > Rupin = min{R1 + RQ}
n
Ruin = H(X1|X2Z) + H(X2|X172)
25 /55




Achieving PK Capacity

Ry
eaa @ (X1, X2, Z)is a common randomness
Z, X1, Xy Z,X9, X4 Z By LHL, the following key rate is
Ext achievable
K K
Tlcey < Rext < H(Xl,X2|Z) o Rmin
Ry > H(X1|X27)
Thus
Ry > H(X2|X12)
rkey = H(X1, X2|Z) — H(X1]X22)
length(F) — H(X3|X17)
cngt/ > Rmin = min{R1 + RQ}
n

Ruin = H(X1|X2Z) + H(X2| X1 Z) Is rrey equal to Cpk?
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Yes! CPK(Xl,X2|Z) = H(Xl,X2|Z) — H(X1|XQZ) — H(X2|X1Z)

Is there a simpler expression?

H(X)) H(X5)

26 /55



Cpr (X1, Xo|Z) =7

1l UG SR

H(X1,Xo|Z) — H(X1|X2Z) — H(Xo|X1Z) = I(X1;X0|Z)

Thus

Cpr(X1,X5|Z2) = 1(X1; X2|Z)

27 /55



WSK Capacity

A General Upper Bound on WSK Capacity

Theorem: CWSK(Xl,XQ‘Z) < I(Xl;X2|Z)

Proof: CPK(Xl,X2|Z) = I(Xl;XQ’Z)
Cwisk (X1, X2|Z) < Cpr (X1, X2|Z). O

General wiretapped model under restrictions

Theorem: If XI—XQ—Z (i.e., PX1X2Z:PX1X2PZ|X2)
then CWSK(Xl,X2|Z) = I(Xl;X2|Z).

Ahlswede and Csiszar, 1993

Maurer, 1993
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Question: Can we generalize the two-party
source model to a multi-party model?

Answer: Yes!

But first, let us introduce omniscience.
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Recall:

Cpr (X1, Xo|Z) = H(X1, X2|Z) — Ruin
where

Ruin = H(X1|X22) + H(X3| X, Z)

What is a practical interpretation of R,;,?

30/55



Communication for Omniscience (CO)

O O

Z, Xy Z, Xy
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Communication for Omniscience (CO)

R

T ©

Z7X1 ZaX27X1

Ry > H(X1|X2Z)
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Communication for Omniscience (CO)

R

Z7X17X2 ZaX27X1

Ry > H(X1|X2Z)
Ry > H(X2|X12)
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Communication for Omniscience (CO)

Definition: Rco (X1, X2|Z) is the
R . o
min of total communication rate for

e a achieving omniscience when party 1
knows X1, party 2 knows Xs, given

that both parties also know Z.

Z7X17X2 ZaX27X1

Rmin - RCO(X17X2|Z)

Ry > H(X,|X22) and

Ry 2 H(X:|X,2) Reo = H(X\|X22) + H(X| X, 2)
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Communication for Omniscience (CO)

Definition: Rco (X1, X2|Z) is the
R . o
min of total communication rate for

e a achieving omniscience when party 1
knows X1, party 2 knows Xs, given

that both parties also know Z.

Z7X17X2 ZaX27X1

Rmin - RCO(X17X2|Z)

Ry > H(X,|X22) and

Ry 2 H(X:|X,2) Reo = H(X\|X22) + H(X| X, 2)

Thus,
Cpir(X1,X2|Z) = H(X1, X2|Z) — Reo(X1, X2|Z)
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Multiterminal SKA

o Set of m terminals. @Xl ®X2

o Eg. M =1{1,2,3,4,5,6} 0

o Each terminal j has RV X; 3 @Xs
@ Eve has unlimited computation power ®X4 .Z
@ and side information Z & @

o We know Px,, 7 ®X5 @X6

Xpm = (X1, Xo,...,Xp)

Crr(Xml|2) = H(Xpm|Z) = Reo(Xm|Z)

Csiszar and Narayan, 2004
33/55



Multiterminal SKA

An immediate corollary: Multiterminal SK Capacity

When Eve is not wiretapping — there is no Z.
Csr(Xm) = H(Xpm) — Roo(Xm)

Achieving Multiterminal SK Capacity:

Step 1) Communication for omniscience
Step 2) Key extraction from common randomness Xz

o.0e, .. 0.0 6 0.0

—')
Ommsuence Extraction

“© "0 O

Comm for
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The WSK Capacity

Finding a general expression for
WSK capacity, even for the case
of two terminals (]JM| = 2) is an

open problem.
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WSK Capacity

Recall: If X1 — Xy — Z, then

Cwsk (X1, Xo|Z) = I(X1, X2|Z)

X1 X A
O—@——0O®
Can we extend this model to a multiterminal version?

36 /55



Example:

M == {1,2,3} 8 = {612,623} G == (./\/l,g)

O—0
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Example:

M == {1,2,3} 8 = {612,623} G == (./\/l,g)

O— @ -(©)
@ Vg X1 ="V

Xy = (Var, Vag)
X3 = V3
Z = (Zha, Za3)
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Wiretapped Tree-PIN

Wiretapped Tree over a
Pairwise Independent Network (PIN)

o Terminal set M ={1,2,...,m}
o Tree G = (M,¢E)
o {(Vij, Vi, Zij) }i<j are mutually independent

o For all @ < 7, Markov relation V;; — Vj; — Z;; holds

For any wiretapped Tree-PIN, the WSK capacity is

Cwsk(XmlZ) = Ig.lij.nI(Vij; Viil Zij).

38 /55



WSK Capacity of Tree-PIN

Proof (Sketch):

We show that
Roo(Xm|Z) = H(Xp|Z) — minI(Vij: Vil Zij)-
Then, by
Cwsk(Xm|Z) < Crk(Xml|Z) = H(Xm|Z) — Reo(Xm|Z),

we have
Cwsk(Xm|Z) < rglgnI(st‘Gi!Zij)-

Finally, we show that the above rate is an achievable key rate.

39/55



Achieving WSK capacity

Example:

M == {1,2,3} 8 = {612,623} G == (./\/l,g)

O— @ -(©)
@ Vg X1 ="V

Xy = (Var, Vag)
X3 = V3
Z = (Zha, Za3)
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Achieving WSK capacity
O—©O
Vas

/
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Achieving WSK capacity
O—©O

Sa3

1) Pairwise key agreement S, S12

Steps:
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Achieving WSK capacity
O—0

e

1) Pairwise key agreement S, S12

Sy = Sijla

Steps:

2) Cutting pairwise keys to the minimum length

A= min{length(Sij)} ~ n X min I(Vij; ij‘sz)

41/55



Achieving WSK capacity

Siy

e

1) Pairwise key agreement S, S12

Fy = Siy @ S

Steps:

2) Cutting pairwise keys to the minimum length

A= min{length(Sij)} ~ n X min I(Vij; ij‘sz)

3) XOR propagation Fy = S1o @ Sas
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Achieving WSK capacity

Siy

e

1) Pairwise key agreement S, S12

Fy = Siy @ S

Steps:

2) Cutting pairwise keys to the minimum length

A= min{length(Sij)} ~ n X min I(Vij; ij‘sz)

3) XOR propagation Fy = ;S/—E/Q P Sf';g
4) Key calculation K = SA'fg = 572;, o

41/55



Another Example

O—=0 .
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Another Example

K = 512

S2/1

Public Broadcast Communication:

Fy = (Fy3, Fay) = (S12® So4 , S12 ® So3)
Fy =S54 ® Sy5
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Another Example

K = 512

S2/1

Public Broadcast Communication:

Fy = (Fy3, Fay) = (S12® So4 , S12 ® So3)
Fy =S54 ® Sy5

Key Calculation:

K = Sy
Ky =850 F ®Foy=8=K

42 /55



Wiretapped PIN

Wiretapped Pairwise Independent Network (PIN)

o Graphs (with loops) G = (M, €)

o {(Vij,Vji, Zij) }i<j are mutually independent

@ For all i < j, Markov relation V;; — Vj; — Z;; holds

For any wiretapped PIN, the WSK capacity is

. 1
Cwsk(Xm|Z) = min (W——J Z I(Vij; Vil Zij)
1<j s.t.

(4,j) crosses P
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Example - Steiner tree packing

‘/217 ‘/23 ‘/127 ‘/14
—® Vig = Vo1 — Z1o

I I Voz — Vag — Z3
Vay = Viz — Z34
L]
@ @ Vin—Viu—Zn
Va1, Vas Vi, Viz

If 1(Vij; Vil Zij) = % for all 7, j then,

2
Cwsk(Xm|Z) = 3
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Achieving WSK Capacity by Steiner tree packing

n=~6v and X = length(S;;) =3v —¢
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Achieving WSK Capacity by Steiner tree packing

n=~6v and X = length(S;;) =3v —¢

o
0
o}
o
|
o
o
o
o
|
o
o
|
o

oeo O e O O e O O em— O

[e]
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Achieving WSK Capacity by Steiner tree packing

n=~6v and X = length(S;;) =3v —¢

o
0
o}
o
|
o
o
o
o
|
o
o
|
o

oeo O e O O e O O em— O

[e]

length(K') = 4v — O(e)
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Achieving WSK Capacity by Steiner tree packing

n=~6v and X = length(S;;) =3v —¢

o
0
o}
o
|
o
o
o
o
|
o
o
|
o

O e—

[e]

oeo O s O O s O [
length(K') = 4v — O(e)

ey _ i length(K)

n—00 n
v -0 2
V—00 6v 3
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Other research directions:

o Key agreement for a subset 4 C M

» WSK Capacity of Tree-PIN is proved
» WSK Capacity of PIN remains open

Channel models vs. Source models

(]

Finite blocklength analysis
o Communication complexity vs. Communication for Omniscience

SKA under communication limitation

Efficient SKA protocols with low implementation complexity O(n)
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Thank Youl!
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WSK Capacity

General wiretapped model under restrictions

Theorem: If Xl — Xg —Z (i.e., PXngZ = PXlXQPZ|X2)
then Cy s (X1, X2|Z) = I(X1; X2|Z).

50 /55



Three Correlated Sources

H(X,) H(X>)

H(X3)

If Markov relation X; — X5 — Z holds,

Px,x,z = Px,x,Pz|x,
H(X1|X27) = H(X1|X2)
I(X1;X2|2) = H(X1|2) — H(X1]X2)

51/55



Achieving PK Capacity
R,
M @ (X1) is a common randomness

Xy, X, 7 By LHL, the following key rate is
F F achievable

Ry > H(X:|X2) Thus

rkey < R < H(X1|Z) — Ruin

e = H(X1]Z) = H(X1|X2)
length(F) .
———= > Rpin = min{R, } rew
n rmax is equal to
Runin = H(X1|X5) Cwsk = 1(X1; X2|Z)
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