Information-theoretic secret key agreement in the presence of a wiretapper

Alireza Poostindouz

University of Calgary

May 29, 2020

Motivation

Quantum Computers (QCs) The $|GOOD\rangle + |BAD\rangle$ news:

- QCs efficiently solve integer factorization and discrete logarithms
- Security of Internet is based on factorization and discrete logarithms
- Rapid advancements in quantum technologies
- NSA announcement on transitioning to quantum resistant algorithms

 $\textbf{Quantum safe keys} \Rightarrow \textbf{Quantum safe communication}$

Quantum resistant SKAs

Existing approaches to quantum resistant secret key agreement (SKA)

- Post-quantum computational algorithm
- Quantum key distribution (QKD)
- Physical-layer information-theoretic SKA

We focus on "Physical-layer information-theoretic SKA".

Part I Information Theory

Random variables (RVs)

$$P_X(x) = \Pr\left\{X = x\right\}$$

Random variables (RVs)

$$P_X(x) = \Pr\left\{X = x\right\}$$

• Information, Uncertainty, Entropy

• Random variables (RVs)

$$P_X(x) = \Pr\left\{X = x\right\}$$

• Information, Uncertainty, Entropy

$$\log_2 \frac{1}{P_X(x)}$$

Random variables (RVs)

$$P_X(x) = \Pr\left\{X = x\right\}$$

Information, Uncertainty, Entropy

$$H(X) = \sum_{x \in \mathcal{X}} P_X(x) \log_2 \frac{1}{P_X(x)}$$

• Entropy, Joint Entropy, Conditional Entropy

• Entropy, Joint Entropy, Conditional Entropy

• Entropy, Joint Entropy, Conditional Entropy

Entropy, Joint Entropy, Conditional Entropy

$$H(X,Y) = H(Y) + H(X|Y)$$

Entropy, Joint Entropy, Conditional Entropy

$$H(X,Y) = H(Y) + H(X|Y)$$

$$H(X,Y) = H(X) + H(Y|X)$$

$$H(X,Y) = I(X;Y) +\\$$

$$H(X,Y) = I(X;Y) + H(X|Y)$$

$$H(X,Y) = I(X;Y) + H(X|Y) + H(Y|X)$$

$$H(X,Y) = I(X;Y) + H(X|Y) + H(Y|X)$$

$$H(X) = H(X|Y) + I(X;Y)$$

$$H(X,Y) = I(X;Y) + H(X|Y) + H(Y|X)$$

$$H(X) = H(X|Y) + I(X;Y)$$

$$H(Y) = H(Y|X) + I(Y;X)$$

Independence

$$\Pr \{X|Y\} = \Pr \{X\}$$

$$H(X|Y) = H(X)$$

$$I(X;Y) = 0$$

$$H(X,Y) = H(X) + H(Y)$$

n−IID Source (Independent and identically distributed)

$$X^n = (X^{t_1}, X^{t_2}, X^{t_3}, X^{t_4}, \dots, X^{t_n})$$

 $\{X^{t_i}\}_{i\leq n}$ are mutaully independent

$$H(X^n) = H(X^{t_1}) + H(X^{t_2}) + \dots + H(X^{t_n})$$

 $P_{X^{t_j}} = P_{X^{t_1}} \quad \forall j \le n$

Three Correlated Sources

In general, when three variables are correlated, we have

$$H(X_1|X_2X_3) \neq H(X_1|X_2)$$

$$H(X_1)$$

$$H(X_3)$$

$$P_{X_1 X_2 X_3} = P_{X_1 X_2} P_{X_3 | X_1 X_2}$$

Three Correlated Sources

If Markov relation $X_1 - X_2 - X_3$ holds,

$$H(X_1|X_2X_3) = H(X_1|X_2)$$

$$P_{X_1 X_2 X_3} = P_{X_1 X_2} P_{X_3 \mid X_2}$$

Source Coding (Compression)

Objectives:
$$\left\{ \begin{array}{l} 1) \ \hat{X} = X \\ 2) \ \operatorname{length}(F) \ \text{be as small as possible.} \end{array} \right.$$

Consider a compression code C = (Enc, Dec), and a fixed n:

Comprssion rate
$$r_n^{comp}(\mathsf{C}) = \frac{\mathsf{length}(F)}{n}$$
 Error probability
$$\Pr\left\{X \neq \hat{X}\right\} \leq \epsilon_n$$

Source Coding Theorem: If P_{X_1} is known, for any rate

$$R_1 \geq H(X_1)$$

there is always exists a compression code with asymptotic rate R_1 $(r_n^{comp} \to R_1)$, and negligible error probability $(\epsilon_n \to 0)$ and for any coding rate less that $H(X_1)$ there does not exist any compression code with negligible error probability.

Shannon, 1948

Source Coding with Side Information at the Decoder: If $P_{X_1X_2}$ is known, for any rate

$$R_1 \ge H(X_1|X_2)$$

there is always exists a compression code with asymptotic rate R_1 $(r^{comp} \to R_1)$, and negligible error probability $(\epsilon_n \to 0)$ and for any coding rate less that $H(X_1|X_2)$ there does not exist any compression code with negligible error probability.

Slepian and Wolf, 1973

Part II Two-party SKA

Key Agreement

 Key Extraction from Common Randomness (Privacy Amplification)

Objectives:
$$\left\{ \begin{array}{l} 1 \ I(K;(Z,F)) = 0 \\ 2) \ \mathrm{length}(K) \ \mathrm{be \ as \ large} \ \mathrm{as \ possible}. \end{array} \right.$$

Key Extraction from Common Randomness

An extraction code H has:

Extraction rate
$$r_n^{ext}(\mathsf{H}) = \frac{\mathsf{length}(K)}{n}$$
 Leakage
$$I(K; (Z^n, F)) \leq \sigma_n$$

Leftover Hash Lemma (LHL) (Asymptotic)

Let R_{\min} be a lower bound on communication rate (length(F)/n). Then, for any rate

$$R^{ext} \le H(X|Z) - R_{\min}$$

there is always exists an extraction code with asymptotic rate of R^{ext} $(r_n^{ext} \to R^{ext})$ with negligible information leakage $(\sigma_n \to 0)$.

Dodis, et. al, 2008

Secret Key Agreement (SKA)

Objectives:
$$\left\{ \begin{array}{l} 1) \ K_1 = K_2 = K \\ 2) \ I(K;(Z,F)) = 0 \\ 3) \ \mathrm{length}(K) \ \mathrm{be \ as \ large} \ \mathrm{as \ possible}. \end{array} \right.$$

Secret Key Agreement (SKA)

A SKA protocol Π has:

Key rate
$$r_n^{key}(\Pi) = \frac{\mathsf{length}(K)}{n}$$
 Error probability
$$\Pr\left\{K_1 \neq K_2\right\} \leq \epsilon_n$$
 Leakage
$$I(K; (Z^n, F)) \leq \sigma_n$$

• A SKA protocol **achieves** key rate R^{key} if as $n \to \infty$

$$r_n^{key} \to R^{key}$$
 $\epsilon_n \to 0$
 $\sigma_n \to 0$

- A key rate R^{key} is **achievable** if there exists a SKA protocol that achieves R^{key} .
- Wiretap secret key (WSK) capacity is the largest achievable key rate.

Problem Statement: For a given source model (X_1, X_2, Z) with known distribution $P_{X_1X_2Z}$, what is the WSK capacity.

$$C_{WSK}(X_1, X_2|Z) = ?$$

Two-Party SKA against a wiretapper

The PK Capacity

Definition: The private key (PK) capacity is the largest

achievable key rate when parties know Eve's side

information Z.

Lemma: By definition, PK capacity is an upper bound on WSK capacity.

$$C_{WSK}(X_1, X_2|Z) \le C_{PK}(X_1, X_2|Z)$$

Let's find PK capacity $C_{PK}(X_1, X_2|Z) = ?$

Review

Source Coding with Side Info | Leftover Hash Lemma (LHL)

$$\tfrac{\mathsf{length}(F)}{n} = R_1$$

$$R_1 \ge H(X_1|X_2)$$

$$\frac{\operatorname{length}(F)}{n} \ge R_{\min}$$

$$R^{ext} \le H(X|Z) - R_{\min}$$

 X_1

 Z, X_1

 Z, X_2

$$R_1 \ge H(X_1|X_2Z)$$

$$R_1 \ge H(X_1|X_2Z)$$

$$R_2 \ge H(X_2|X_1Z)$$

$$R_1 \ge H(X_1|X_2Z)$$

$$R_2 \ge H(X_2|X_1Z)$$

$$\frac{\operatorname{length}(F)}{n} \ge R_{\min} = \min\{R_1 + R_2\}$$

$$R_{\min} = H(X_1|X_2Z) + H(X_2|X_1Z)$$

$$(X_1,X_2,Z)$$
 is a common randomness

$$\frac{\text{length}(F)}{n} \ge R_{\min} = \min\{R_1 + R_2\}$$
$$R_{\min} = H(X_1|X_2Z) + H(X_2|X_1Z)$$

 $R_1 \geq H(X_1|X_2Z)$

 $R_2 > H(X_2|X_1Z)$

$$\frac{\mathsf{length}(F)}{n} \ge R_{\min} = \min\{R_1 + R_2\}$$

$$n = \lim_{n \to \infty} (T + Z)$$

 $R_{\min} = H(X_1|X_2Z) + H(X_2|X_1Z)$

 (X_1,X_2,Z) is a common randomness

By LHL, the following key rate is achievable $% \left\{ 1,2,\ldots,n\right\}$

$$r^{key} \le R^{ext} \le H(X_1, X_2|Z) - R_{\min}$$

Thus

$$r_{\text{max}}^{key} = H(X_1, X_2 | Z) - H(X_1 | X_2 Z) - H(X_2 | X_1 Z)$$

Is r_{\max}^{key} equal to C_{PK} ?

PK Capacity

Yes!
$$C_{PK}(X_1, X_2|Z) = H(X_1, X_2|Z) - H(X_1|X_2Z) - H(X_2|X_1Z)$$

Is there a simpler expression?

PK Capacity

$$C_{PK}(X_1, X_2|Z) = ?$$

$$H(X_1, X_2|Z) - H(X_1|X_2Z) - H(X_2|X_1Z) = I(X_1; X_2|Z)$$

Thus

$$C_{PK}(X_1, X_2|Z) = I(X_1; X_2|Z)$$

WSK Capacity

A General Upper Bound on WSK Capacity

Theorem:
$$C_{WSK}(X_1, X_2|Z) \le I(X_1; X_2|Z)$$

Proof:
$$C_{PK}(X_1, X_2|Z) = I(X_1; X_2|Z)$$

$$C_{WSK}(X_1, X_2|Z) \le C_{PK}(X_1, X_2|Z).$$

General wiretapped model under restrictions

Theorem: If
$$X_1 - X_2 - Z$$
 (i.e., $P_{X_1 X_2 Z} = P_{X_1 X_2} P_{Z|X_2}$)

then $C_{WSK}(X_1, X_2|Z) = I(X_1; X_2|Z)$.

Ahlswede and Csiszár, 1993

Maurer, 1993

Question: Can we generalize the two-party source model to a multi-party model?

Answer: Yes!

But first, let us introduce omniscience.

Recall:

$$C_{PK}(X_1, X_2|Z) = H(X_1, X_2|Z) - R_{\min}$$

where

$$R_{\min} = H(X_1|X_2Z) + H(X_2|X_1Z)$$

What is a practical interpretation of R_{\min} ?

$$R_1 \ge H(X_1|X_2Z)$$

$$R_1 \ge H(X_1|X_2Z)$$

$$R_2 \ge H(X_2|X_1Z)$$

$$R_1 \ge H(X_1|X_2Z)$$

$$R_2 \ge H(X_2|X_1Z)$$

Definition: $R_{CO}(X_1, X_2|Z)$ is the min of total communication rate for achieving omniscience when party 1 knows X_1 , party 2 knows X_2 , given that both parties also know Z.

$$R_{\min} = R_{CO}(X_1, X_2|Z)$$

and

$$R_{CO} = H(X_1|X_2Z) + H(X_2|X_1Z)$$

$$R_1 \ge H(X_1|X_2Z)$$

$$R_2 > H(X_2|X_1Z)$$

Definition: $R_{CO}(X_1,X_2|Z)$ is the min of total communication rate for achieving omniscience when party 1 knows X_1 , party 2 knows X_2 , given that both parties also know Z.

$$R_{\min} = R_{CO}(X_1, X_2|Z)$$

and

$$R_{CO} = H(X_1|X_2Z) + H(X_2|X_1Z)$$

Thus,

$$C_{PK}(X_1, X_2|Z) = H(X_1, X_2|Z) - R_{CO}(X_1, X_2|Z)$$

Part III Multiterminal SKA

Multiterminal SKA

- \bullet Set of m terminals.
- E.g. $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}$
- Each terminal j has RV X_j
- Eve has unlimited computation power
- ullet and side information Z
- We know P_{X_MZ}

$$\bigcirc X_6$$

$$X_{\mathcal{M}} = (X_1, X_2, \dots, X_6)$$

$$C_{PK}(X_{\mathcal{M}}|Z) = H(X_{\mathcal{M}}|Z) - R_{CO}(X_{\mathcal{M}}|Z)$$

Multiterminal SKA

An immediate corollary: Multiterminal SK Capacity

When Eve is not wiretapping – there is no Z.

$$C_{SK}(X_{\mathcal{M}}) = H(X_{\mathcal{M}}) - R_{CO}(X_{\mathcal{M}})$$

Achieving Multiterminal SK Capacity:

 $\begin{cal}{ll} Step 1) Communication for omniscience \\ \end{cal}$

Step 2) Key extraction from common randomness $X_{\mathcal{M}}$

The WSK Capacity

Finding a general expression for WSK capacity, even for the case of two terminals $(|\mathcal{M}|=2)$ is an open problem.

WSK Capacity

Recall: If $X_1 - X_2 - Z$, then

$$C_{WSK}(X_1, X_2|Z) = I(X_1, X_2|Z)$$

Can we extend this model to a multiterminal version?

$$\mathcal{M} = \{1, 2, 3\}$$
 $\mathcal{E} = \{e_{12}, e_{23}\}$ $G = (\mathcal{M}, \mathcal{E})$

$$\mathcal{M} = \{1, 2, 3\}$$
 $\mathcal{E} = \{e_{12}, e_{23}\}$ $G = (\mathcal{M}, \mathcal{E})$

$$\mathcal{M} = \{1, 2, 3\}$$
 $\mathcal{E} = \{e_{12}, e_{23}\}$ $G = (\mathcal{M}, \mathcal{E})$

$$\mathcal{M} = \{1, 2, 3\}$$
 $\mathcal{E} = \{e_{12}, e_{23}\}$ $G = (\mathcal{M}, \mathcal{E})$

Wiretapped Tree-PIN

Wiretapped Tree over a Pairwise Independent Network (PIN)

- Terminal set $\mathcal{M} = \{1, 2, \dots, m\}$
- Tree $G = (\mathcal{M}, \mathcal{E})$
- ullet $\{(V_{ij},V_{ji},Z_{ij})\}_{i< j}$ are mutually independent
- ullet For all i < j, Markov relation $V_{ij} V_{ji} Z_{ij}$ holds

For any wiretapped Tree-PIN, the WSK capacity is

$$C_{WSK}(X_{\mathcal{M}}|Z) = \min_{i,j} I(V_{ij}; V_{ji}|Z_{ij}).$$

WSK Capacity of Tree-PIN

Proof (Sketch):

We show that

$$R_{CO}(X_{\mathcal{M}}|Z) = H(X_{\mathcal{M}}|Z) - \min_{i,j} I(V_{ij}; V_{ji}|Z_{ij}).$$

Then, by

$$C_{WSK}(X_{\mathcal{M}}|Z) \le C_{PK}(X_{\mathcal{M}}|Z) = H(X_{\mathcal{M}}|Z) - R_{CO}(X_{\mathcal{M}}|Z),$$

we have

$$C_{WSK}(X_{\mathcal{M}}|Z) \le \min_{i,j} I(V_{ij}; V_{ji}|Z_{ij}).$$

Finally, we show that the above rate is an achievable key rate.

$$\mathcal{M} = \{1, 2, 3\}$$
 $\mathcal{E} = \{e_{12}, e_{23}\}$ $G = (\mathcal{M}, \mathcal{E})$

Steps:

1) Pairwise key agreement S_{12}, S_{12}

Steps:

- 1) Pairwise key agreement S_{12}, S_{12}
- 2) Cutting pairwise keys to the minimum length

$$\lambda = \min\{\mathsf{length}(S_{ij})\} \approx n \times \min I(V_{ij}; V_{ji}|Z_{ij})$$

Steps:

- 1) Pairwise key agreement S_{12}, S_{12}
- 2) Cutting pairwise keys to the minimum length

$$\lambda = \min\{\mathsf{length}(S_{ij})\} \approx n \times \min I(V_{ij}; V_{ji}|Z_{ij})$$

3) XOR propagation $F_2 = \widetilde{S_{12}} \oplus \widetilde{S_{23}}$

Steps:

- 1) Pairwise key agreement S_{12}, S_{12}
- 2) Cutting pairwise keys to the minimum length

$$\lambda = \min\{\mathsf{length}(S_{ij})\} \approx n \times \min I(V_{ij}; V_{ji}|Z_{ij})$$

- 3) XOR propagation $F_2 = \widetilde{S_{12}} \oplus \widetilde{S_{23}}$
- 4) Key calculation $K = \widetilde{S}_{12} = \widetilde{S}_{23} \oplus F_2$

Another Example

Another Example

Public Broadcast Communication:

$$F_{2} = (F_{23}, F_{24}) = (\widetilde{S_{12}} \oplus \widetilde{S_{24}} , \ \widetilde{S_{12}} \oplus \widetilde{S_{23}})$$

$$F_{4} = \widetilde{S_{24}} \oplus \widetilde{S_{45}}$$

Another Example

Public Broadcast Communication:

$$F_2 = (F_{23}, F_{24}) = (\widetilde{S_{12}} \oplus \widetilde{S_{24}} , \ \widetilde{S_{12}} \oplus \widetilde{S_{23}})$$

$$F_4 = \widetilde{S_{24}} \oplus \widetilde{S_{45}}$$

Key Calculation:

$$K = \widetilde{S_{12}}$$

$$K_5 = \widetilde{S_{45}} \oplus F_4 \oplus F_{24} = \widetilde{S_{12}} = K$$

Wiretapped PIN

Wiretapped Pairwise Independent Network (PIN)

- \bullet Graphs (with loops) $G=(\mathcal{M},\mathcal{E})$
- $\bullet \ \{(V_{ij}, V_{ji}, Z_{ij})\}_{i < j}$ are mutually independent
- ullet For all i < j, Markov relation $V_{ij} V_{ji} Z_{ij}$ holds

For any wiretapped PIN, the WSK capacity is

$$C_{WSK}(X_{\mathcal{M}}|Z) = \min_{\mathcal{P}} \left(\frac{1}{|\mathcal{P}| - 1} \right) \left[\sum_{\substack{i < j \text{ s.t.} \\ (i,j) \text{ crosses } \mathcal{P}}} I(V_{ij}; V_{ji}|Z_{ij}) \right]$$

Example - Steiner tree packing

If
$$I(V_{ij};V_{ji}|Z_{ij})=\frac{1}{2}$$
 for all i,j then,

$$C_{WSK}(X_{\mathcal{M}}|Z) = \frac{2}{3}$$

$$n = 6\nu$$
 and $\lambda = \operatorname{length}(S_{ij}) = 3\nu - \epsilon$

$$n = 6\nu$$
 and $\lambda = \operatorname{length}(S_{ij}) = 3\nu - \epsilon$

$$n = 6\nu$$
 and $\lambda = \operatorname{length}(S_{ij}) = 3\nu - \epsilon$

$$length(K) = 4\nu - \mathcal{O}(\epsilon)$$

$$n=6\nu$$
 and $\lambda=\operatorname{length}(S_{ij})=3\nu-\epsilon$

$$\mathsf{length}(K) = 4\nu - \mathcal{O}(\epsilon)$$

$$\begin{split} r^{key} &= \lim_{n \to \infty} \frac{\mathsf{length}(K)}{n} \\ &= \lim_{\nu \to \infty} \frac{4\nu - \mathcal{O}(\epsilon)}{6\nu} = \frac{2}{3} = C_{WSK} \end{split}$$

Other research directions:

- ullet Key agreement for a subset $\mathcal{A}\subseteq\mathcal{M}$
 - WSK Capacity of Tree-PIN is proved
 - WSK Capacity of PIN remains open
- Channel models vs. Source models
- Finite blocklength analysis
- Communication complexity vs. Communication for Omniscience
- SKA under communication limitation
- ullet Efficient SKA protocols with low implementation complexity $\mathcal{O}(n)$

Main References:

- D. Slepian and J. Wolf, "Noiseless coding of correlated information sources," IEEE Transactions on Information Theory, vol. 19, no. 4, pp. 471480, Jul. 1973.
- [2] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, "Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data," SIAM Journal on Computing, vol. 38, no. 1, pp. 97139, Jan. 2008.
- [3] U. M. Maurer, "Secret key agreement by public discussion from common information," IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 733742, May 1993.
- [4] R. Ahlswede and I. Csiszár, "Common randomness in information theory and cryptography. I. Secret sharing," IEEE Transactions on Information Theory, vol. 39, no. 4, pp. 11211132, Jul. 1993.
- [5] I. Csiszár and P. Narayan, "Secrecy Capacities for Multiple Terminals," IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 30473061. Dec. 2004.
- [6] S. Nitinawarat, C. Ye, A. Barg, P. Narayan, and A. Reznik, "Secret Key Generation for a Pairwise Independent Network Model," IEEE Transactions on Information Theory, vol. 56, no. 12, pp. 64826489, Dec. 2010.
- [7] A. Poostindouz and R. Safavi-Naini, "Wiretap Secret Key Capacity of Tree-PIN," in 2019 IEEE International Symposium on Information Theory (ISIT), 2019, pp. 315319.

Thank You!

WSK Capacity

General wiretapped model under restrictions

Theorem: If X_1-X_2-Z (i.e., $P_{X_1X_2Z}=P_{X_1X_2}P_{Z|X_2}$) then $C_{WSK}(X_1,X_2|Z)=I(X_1;X_2|Z)$.

Three Correlated Sources

If Markov relation $X_1 - X_2 - Z$ holds,

$$P_{X_1X_2Z} = P_{X_1X_2}P_{Z|X_2}$$

$$H(X_1|X_2Z) = H(X_1|X_2)$$

$$I(X_1;X_2|Z) = H(X_1|Z) - H(X_1|X_2)$$

Achieving PK Capacity

 $R_{\min} = H(X_1|X_2)$

$$(X_1)$$
 is a common randomness

By LHL, the following key rate is achievable

$$r^{key} \le R^{ext} \le H(X_1|Z) - R_{\min}$$

Thus

$$r_{\max}^{key} = H(X_1|Z) - H(X_1|X_2)$$

$$r_{\max}^{key} \text{ is equal to}$$

$$C_{WSK} = I(X_1; X_2|Z)$$