1
W SECURE LOGGING:

CALGARY NOTIONS OF SECURITY AND
CRYPTOGRAPHIC APPROACHES

TO SECURITY

SEPIDEH AVIZHEH

SEPIDEH.AVIZHEH1@UCALGARY.CA
UNIVERSITY OF CALGARY, ALBERTA, CANADA

4/17/2020

Logging
2 4
0 Log: a record of the important events in the system

0 Logs are composed of log entries
0 Each Log entry contain an event

| m1 | mz m3 | md | m5 | m6 | ms | m8 ml ..

0 Applications:
m Troubleshooting and maintanence

® Intrusion detection: any set of actions that attempt to
compromise the integrity, confidentiality or availability of a
resource

m Digital Forensics: investigation after intrusion is detected

4/17/2020

Secure Logging

0 logs typically contain computer security-related
information

o adversaries want to stay covert =2 modify and tamper
with the log files without being detected

o Example: some malwares are specifically designed to alter
logs to remove any evidence of their installation or
execution

0 Goal: Ensure Integrity
o Alteration
o Deletion
o Reordering

4/17/2020

Road map
EEE I

0 Forward Integrity
o Prf-chain MAC (Bellare-Yee)

0 Forward-secure stream integrity
o Aggregate authentication (Ma-Tsudik)

0 Crash Integrity
o SLiC (Blass-Noubir)

0 Adaptive Crash Integrity
o Security definition
o Impossibility result
o Double evolving key mechanism
o Comparison with SLiC
o Implementation and Evaluation

4/17/2020

Logging scheme

s 4
0 Gen(.):
o Takes security parameter
O outputs initial state
o Log(.,.):
o Takes the current state and a new event
o Outputs a new state
o Recover(.,.):
o Takes an initial state or the latest state

o Reconstructs the longest sequence of events that pass the
system integrity checks, or outputs “untrusted log”

4/17/2020

Secure Logging through MAC

miHl | m2|H2 | m3[H3_ | malHa | ..

Hl = MACKl (ml)

0 MAC: secure against chosen message attacks
o HMAC
o CBC-MAC

0 Security relies on the key to be unknown to attacker

o What about the case that attacker compromises the
system?

o No security will be guaranteed

4/17/2020

Forward Integrity

4
0 Attacker compromises the logging device at time T
0 Attacker gets access to keys

m1 | m2 | m3 | md | ms | m6 m7 | mslm .
<€ >

T

0 Goal: Preserve the integrity of Log entries
generated before time T

4/17/2020

Forward Integrity
5]

@

¥ = 1) Issues q events to be logged H -

\ \(l/\ Z] 4P

Ay a=>br |
T

Challenger

Adversary 2) Observes the output of Log()

3) Gets acesses to keys (issues an open request at time T)

4) Keys

eAdversary succeeds if he
outputs a false log entry
(mj,hj) for an earlier time

4/17/2020

Prf —chain Mac (Bellare-Yee)
o 4

| milHl | m2lH2 | m3[H3 | mdlHa | .
Hl = MACKl (ml) Hi = MACKi (m,)

Ky = PRFi, (1)—Kz = PRF, (1)~ - — Ki =PRFk__ (%)

O Ki_l is removed

4/17/2020

Truncation atatck

oo 4
0 Attacker may
o Truncate the log

ENEREETESED J

0 Goal: Preserve the integrity of Log files against
Truncation

4/17/2020

Forward secure stream integrity

JEEE N
0 Forward secure sequential aggregate
authentication

0 Forward security

0 Stream security
0 Integrity

4/17/2020

Forward secure sequential aggregate

authentication SI\/Ia-Tsudikz

miHL | om2lW2 .

Hp=MACk, (M) Hp=MACk (my) Hj = MACk. (m;)
T]_:H(Hl) To :H(Tl| HZ)

0 Previous Mac is removed from the system

4/17/2020

Crash attack siass-noubir (CNS’ 17)

—)
E v o
_ B ®\(i
= b e
» _ £
Operating System (OS) Adversary
1) Gets access to the logging device
1) Updates x to x’ (in the cache)) sgIng
2) Stores x’ 2) Modifies the log file
3) Deletes x (delete events)

> System-erashes before x’ is stored ~ 3) Crashes the System

=> System is stateless —> System is stateless

Normal Crash Crash Attack

4/17/2020

Crash Integrity against a non-adaptive
attacker

[—
=

Adversary

Gen oracle

Log oracle

Recover oracle

Crash oracle

-

Challenger

1) Issues log queries for n events

2) Uses Log() on each event

Adversary compromises the device

3) The last state of the log file

4) A modified log file, crashed state

*The goal is to remain undetected
*Adversary succeeds if he can remove/modify an event which is not supposed to be in
the cache during the crash (Expendabe set)

4/17/2020

Cache

s 4
<€ i >
I B e

Cache

<€ >

Cache size (cs) = > maximum number of log events that will be lost during a
normal crash

0 Logging an event generates a set of disk write operations,
o will add a new entry to the Lstore
o may update a number of other entries

o If logging device crashes before Log(.,.) completes, all write operations
created by Log(.,.) will be lost.

0 we consider 2cs events (the interval [n- cs+1, n+cs]) as expendable set

4/17/2020

SLIC

| osinsis [colHslke | calkalka
(i Hi ki)
Ci = Ency, (m;)
Hj = MACk_ (Enck. (mj))
ki = PRFg_(i)

Ki = PRFy_, (2)

4/17/2020

Adaptive crash attack

N s
o An Insider adversary who can observe the log file
during the log operation

o Adversary compromises the device
m can rewind the system to a past state

o Non of the existing schemes are secure in this model

R
T
BTN
“nﬂ_“

4 4/17/2820

System model

T
0 Logging device:
o runs Gen(.) and Log(.,.)

LStore KStore
o i o
! Log(Z, m) key store : : Log(Z. m) :
| A e : h i EY |
i LULLE] — e } NENENEN] | [s
: ’_'______:____','_ _______ | : |] |
! cs Log operations ! | cs Log operat|on | key cache
i i I |
: ' i I I .
: [| ——togfie | [| | [
! - | : I | key store
: hnnalvalues I : I hunalvalueS"“; | I
I \j !" I I A/ I
: ! I |

(a) (b)

Non-adaptive crash attack Adaptive crash attack

4/17/2020

Key Cache

0 The log operation will also update keys

0 We assume the KStore stores the key, k_j, which is
used in constructing o(m_j) only

0 If crash happens, k_j that is being updated will also
become unreliable.

4/17/2020

Crash Integrity against a non-adaptive
attacker

..
T~
c~_T"

Adversary

Gen oracle

Log oracle

Recover oracle

Crash oracle

n
times

-

1) Issues log queries

Challenger
2) Uses Log() on each event

3) Observes the state of the Lstore and its cache

~—

4) The last state of the Kstore and its cache

5) A modified log file, crashed state

*The goal is to remain undetected
*Adversary succeeds if he can remove/modify an event which is not supposed to be in
the expendable set

4/17/2020

Impossibility Result

S
0 All existing schemes are vulnerable to adaptive
crash attack

o Even considering a protected KStore according to our
model

o KStore can be undetectably removed or modified
when the system is compromised

0 Alogging system that cannot reliably protect its
state information during logging operation and
assuming an adaptive adversary who can see the
LStore, is subjective to rewinding

4/17/2020

Logging scheme
o2 4

0 Double evolving key mechanism
o Use two key sequences evolve with different rate

o State controlled key: updated with probability % through
the result of a choice functionCF () : H(k'j_1,1) <T

S0 51 L
LStore 2 53 525 526 855 556 S80

YV Vv
KStore 1
k 4 }(ﬁO
State-controlled Sequential
key, X evolving key

4/17/2020

Security (informally)

EE I
0 The double evolving key mechanism is %2 stable
o a is the probability of a removal in a normal crash
o if the choice function CF() outputs 1 with probability %

2
o the probability that the key is removed by a normal crash is%

0 Use two (or more) independent state-controlled keys
o different PRFs
o evolves at different rates

o probability that all keys are missing will be reduced to a
greater extent

4/17/2020

Recovery

0 Generate the keys

o All sequential and state controlled keys

o For evolving state controlled keys we check CF()
0 Compute expendable set

o Captures the LStore entries that are considered unreliable
when a crash happens

0 Determine the set of all possible keys that may reside in
the Kstore during crash

K 03k 1 K 13k 2 K 25k 3 K 32k 4

0 Output R or “untrusted log”

Acheives Crash Integrity against adaptive attacker
4/17/2020

Complexity analysis
I
0 Advantages:

0 our scheme is faster

o Each log operation in our scheme requires one write
operation on disk whereas in SLiC requires two write
operations

o The order of events is preserved in the log file

Log(.,.) O(1) O(1) 0O(1)
Recover(.,.) O(n’) O(n’log(n’)) O(n’)

!
@mber of events >

4/17/2020

Implementation

o0 --Windows computer with 3.6 GHz Intel(R)
Core(TM) i7-7700 CPU

0 --Raspberry Pi 3, Model B with 600 MHz ARM CPU
running Raspbian

4/17/2020

Logging performance

(total time in seconds)
I

0 # events: 229

Hardware Scheme Expl Exp 2 Exp 3 Exp 4 Exp 5

Windows PC Our 40.2 40.2 40.4 40.7 40.5
scheme
SLiC 95.2 96.0 95.2 95.4 96.0
Plain 2.0 2.0 2.0 2.0 2.0
Raspberry Pi Our 330.5 3254 319.0 324.5 319.6
3 scheme
SLiC 790.2 792.0 777.9 789.2 796.8
Plain 18.8 18.7 18.8 19.0 18.9

4/17/2020

Conclusion

I
0 We reviewed exsisting notions of secure logging

0 We inroduced adaptive crash attack

o adversary can rewind the system back to one of the
past states

0 We showed that this attack is strictly stronger than
non-adaptive crash attack

o all existing schemes are subjective to this attack

0 We also proposed double evolving key mechanism

4/17/2020

Future works

0 Ensuring crash integrity against an adaptive
attacker without considering a protected memory
for keys

0 We observed that

o By using uniform distribution for double evolving key
mechanism, adversary can succeed with less
probability

0 Finding the best probability distribution for
evolving the key that it minimizes the success
probability of the attacker

4/17/2020

Thank youl!

4/17/2020

	Secure logging: �notions of security and cryptographic approaches to security��Sepideh Avizheh��sepideh.avizheh1@ucalgary.ca�University of Calgary, Alberta, Canada��
	Logging
	Secure Logging
	Road map
	Logging scheme
	Secure Logging through MAC
	Forward Integrity
	Forward Integrity
	Prf –chain Mac (Bellare-Yee)
	Truncation atatck
	Forward secure stream integrity
	Forward secure sequential aggregate authentication (Ma-Tsudik)
	Crash attack Blass-Noubir (CNS’ 17)�
	Crash Integrity against a non-adaptive attacker
	Cache
	SLiC
	Adaptive crash attack
	System model
	Key Cache
	Crash Integrity against a non-adaptive attacker
	Impossibility Result
	Logging scheme
	Security (informally)
	Recovery
	Complexity analysis
	Implementation
	Logging performance �(total time in seconds)
	Conclusion
	Future works
	Thank you!

