Leakage Resilient Secret Sharing

Sabyasachi Dutta

Sharing Phase for t = 3

- <u>Dealer</u> chooses a degree t − 1 polynomial over Z/pZ
 > s (secret to be shared) : Constant term
 - $> a_1, a_2$: Other coefficients chosen at random from $\mathbb{Z}/p\mathbb{Z}$ (Field)

$$f(x) = \mathbf{s} + \mathbf{a}_1 x + \mathbf{a}_2 x^2 \mod p$$

Recovery Phase t = 3

- Idea: From t = 3 points, compute the degree t 1 curve
 - > t = 3 players are identified by x-values, $x_1 < x_2 < x_3$
 - > t = 3 shares are y-values, y_1 , y_2 , y_3
 - > Unknown, degree t 1 curve y = f(x) can be determined from t = 3 points, (x_1, y_1) , (x_2, y_2) , (x_3, y_3)

Secret s is determined as the constant term!

Two main properties:

• **Correctness** : Any **t** shares must recover the secret **s**

Secrecy : Any t-1 shares must not reveal any information about the secret s

Secrecy : Any t-1 shares must not reveal any information about the secret s

Secrecy : Any t-1 shares must not reveal any information about the secret s

Threshold Secret Sharing

- Numerous Applications
 - Secure multiparty computation [GMW87, BGW88, CCD88,...]
 - Threshold cryptographic primitives [DF90,Fra90,]

Security of these applications crucially depends on the SECRECY property of secret sharing

 n-out-of-n secret sharing scheme ensures even if n-1 shares are obtained by adversary, it cannot gain any information about the secret value [very strong guarantee]

• What if all the shares are obtained by adversary? [No hope]

• What if adversary learns some partial information about (honest) all shares ?

Twist in the story (Introducing leakage)

• Output of each f_i is SMALL

Is this model of (LOCAL) leakage reasonable?

• Physical Separation of servers where the shares are stored

• Shrinked output of leakage

• Adversarial leakage i.e. the adversary gets to choose the leakage functions independent of each other

Shamir scheme not leakage resilient

Shamir scheme not leakage resilient

Lagrange interpolation for recovery

$$S = \lambda_1 sh[1] + \dots + \lambda_n sh[n]$$

Shamir scheme not leakage resilient

Modelling the leakage

• Local / Independent leakage [GW 2016, BDS+ 2018, SV 2019]

Guruswami-Wootters 2016 : One bit leakage from every server can reconstruct the secret

• Joint leakage [SV 2019]

• Adaptive leakage [KMS 2019]

Stronger models of leakage

Results with respect to Local Leakage

- Benhamouda et al. 2018 :
- Shamir scheme is LR if field is of size large prime p
- Threshold is high n o(log n)
- > Leakage bound Ω (log p) bits
- Srinivasan-Vasudevan 2019:
 - Compiler to make (t,n) Shamir
 scheme leakage resilient where t > 1
 - Uses average case strong seeded Extractor

With this view unable to guess !!!

With this view unable to guess !!!

• The secret is (statistically) hidden even when the adversary has leakage information from all shares

 View of Adv. when M₀ is secret shared ≈ View of Adv. when M₁ is secret shared

Leak (Sillil)

Main component of the construction

Extractors are used to act like "one-time pad"

Definition (Strong seeded extractor). A function $Ext : \{0,1\}^n \times \{0,1\}^d \longrightarrow \{0,1\}^m$ is called a strong seeded extractor for sources with min-entropy k and error ϵ if for any (n,k)-source X and an independently & uniformly chosen random string U_d , we must have

 $Ext(X, U_d)||U_d \approx_{\epsilon} U_m||U_d,$

where U_m and U_d are independent.

- Initial Setup & Input : secret message m & a (t, n)-threshold access structure. Also suppose that $(\mathsf{ShareGen}_{(t,n)}, \mathsf{Rec}_{(t,n)})$ denote a perfect (t, n)-threshold Shamir secret sharing scheme and let $\mathsf{Ext} : \{0,1\}^{\eta} \times \{0,1\}^d \longrightarrow \{0,1\}^{\rho}$ be a $(\eta - \mu, \epsilon)$ average-case, strong seeded extractor.

- Share Generation (LRShareGen):

- 1. Run ShareGen $_{(t,n)}(m) \longrightarrow (sh[1], \ldots, sh[n]).$
- 2. Choose a uniform seed $s \in_R \{0,1\}^d$ and a masking string $r \in_R \{0,1\}^{\rho}$.

3. For each
$$i = 1, 2, ..., n$$
 do:

 $w_i \in_R \{0, 1\}^\eta$ Compute: $sh[i] \oplus Ext(w_i, s) \oplus r$

4. Run ShareGen_(2,n) $(s,r) \longrightarrow (s_1,\ldots,s_n)$ 5. Output: $\mathsf{sh}_i = (w_i,\mathsf{sh}[i] \oplus Ext(w_i,s) \oplus r,s_i)$

Joint leakage model

sh[1] sh[2] sh[t-1] Leak (sh[t]) Leak (sh[n]) Leaks depend on any t-2 shares

sh[1], sh[2], ,sh[t-2]

cannot depend on t-1 shares !!! (Trivial Attack)

Modelling Adaptive Leakage [KMS 2019]

Adversary runs a multi party communication protocol and learns "transcript"

• Total number of bits communicated is bounded

• Certain types of protocols are allowed (Bounded collusion protocols)

Bounded Collusion Protocols (**BCP**)

p -- party Collusion Protocol

Each round p parties collude and write a bit on the public board

Round 1 :
$$\mathbf{b_1}$$

Round 2 : $\mathbf{b_2}$
Round μ : $\mathbf{b}\mu$

Advantages:

- Joint leakage
- Overlapping leakage
- Adaptive

BCP in communication complexity

• 1 - party collusion protocol : Number in hand (NIH)

• (n-1) - party collusion protocol : **Number on forehead** (NoF)

[Chandra-Furst-Lipton 1983]

Leakage resilient secret sharing w.r.t p-party BCP ??

Leakage resilience against BCPs

- (p,t,n)-LRSS
- Any t can recover s
- t-1 can not

Leakage Resilience

Secret statistically hidden given p- party BCP transcript

p= t-1 is the worst possible adversary

 Main technique : Choose a function f : ({0,1}^b)^n -----> {0,1} such that communication complexity (NoF) of f > µ

- 1. Share generation: On input a secret bit m
 - sample uniformly & independently $r_i \in \{0,1\}^b$ for all $i = 1, \ldots, \rho$
 - compute the bit $r \leftarrow f(r_1, \ldots, r_\rho)$
 - compute s such that $s \oplus r = m$
 - sample uniformly and independently $s_1, \ldots, s_{\rho} \in \{0, 1\}$ and find s_{ρ} such that $s_1 \oplus \cdots \oplus s_{\rho} = s$
 - Output share_i = (r_i, s_i) for all $i = 1, \dots, \rho$

Main Results

• When t-1 parties are under Adversarial control

Compiler to convert (t,n) Shamir scheme to LR (t,n) secret sharing scheme [SV19, ADK+19]

- > Construction of LR (t,t) secret sharing scheme
- \succ LR (t,n) secret sharing scheme
- LR t-monotone general access structure

[KMS19]

[KMS19]

- \succ LR (t,n) secret sharing scheme
- LR t-monotone general access structure

Our work

Extend the classes of leakage functions for general access structure

[General Access Structure does not have any particular form for qualified sets or forbidden sets]

- Extend the idea of joint leakage model [Adv can control any forbidden set of parties/ shares]
- Extend the idea of (t-1) party CP to F party CP
- Compilers and scheme that are secure against these classes

