Stern-Like Zero-Knowledge Protocol

Yanhong Xu

iCORE Information Security Laboratory Department of Computer Science University of Calgary, Canada

Feb 28, 2020

Outline

1 Zero-Knowledge Proof System

2 Stern's Protocol

3 Decomposition and Extension

Outline

1 Zero-Knowledge Proof System

2 Stern's Protocol

3 Decomposition and Extension

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:
 - Reveal the card to you.

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:
 - Reveal the card to you.
 - What if I do not want to show you which 1 out of 13 cards I have picked?

- Claim: I can tell whether it belongs to heart, spade, diamond, or club.
- Goal: I would like to convince you about my MAGIC ability.
- Solutions:
 - Reveal the card to you.
 - What if I do not want to show you which 1 out of 13 cards I have picked?
 - Reveal the remaining 39 cards to you!

Is everyone convinced that I have the MAGIC ability?

• What if I am just lucky and guess it correct?

Is everyone convinced that I have the MAGIC ability?

- What if I am just lucky and guess it correct?
- Repeat as many times (say 100) as you want.

Is everyone convinced that I have the MAGIC ability?

- What if I am just lucky and guess it correct?
- Repeat as many times (say 100) as you want.
- The success probability of guessing them all correct is $\frac{1}{4^{100}} = 2^{-200}$.

Is everyone convinced that I have the MAGIC ability?

- What if I am just lucky and guess it correct?
- Repeat as many times (say 100) as you want.
- The success probability of guessing them all correct is $\frac{1}{4^{100}} = 2^{-200}$.

This is an actually interactive zero-knowledge proof.

- Completeness: if my claim is TRUE, then all of you will accept my claim.
- Soundness: if my claim is FALSE, then none of you accept my claim.
- Zero-Knowledge: No knowledge about which specific card I have picked.

Note that the protocol (without repetition) has soundness error 1/4. However, the protocol (with repetition 100) has soundness error 2^{-200} .

Preliminary

- NP relation $\rho \subseteq \{0,1\}^* \times \{0,1\}^*$: $(x,w) \in \rho$ is recognizable in polynomial time.
- NP language \mathcal{L}_{ρ} : $\{x : \exists w \text{ s.t. } |w| = \text{poly}(|x|) \land (x, w) \in \rho\}$.
- PPT stands for probabilistic polynomial time.

Interactive Zero-Knowledge Proof System

In 1985, Goldwasser, Micali and Rackoff [1] introduced the interactive zero-knowledge proof (ZKP). Statment $:x \in \mathcal{L}_{\varrho}$

 $\mathcal{V}(x)$

• \mathcal{P} wants to convinces that $x \in \mathcal{L}_{\rho}$.

7/21

Interactive Zero-Knowledge Proof System

In 1985, Goldwasser, Micali and Rackoff [1] introduced the interactive zero-knowledge proof (ZKP). Statment $:x \in \mathcal{L}_{\varrho}$

• \mathcal{P} wants to convinces that $x \in \mathcal{L}_{\rho}$.

Interactive Zero-Knowledge Proof System

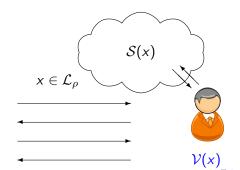
In 1985, Goldwasser, Micali and Rackoff [1] introduced the interactive zero-knowledge proof (ZKP). Statment : $x \in \mathcal{L}_{\varrho}$

- \mathcal{P} wants to convinces that $x \in \mathcal{L}_{\rho}$.
- ullet $\mathcal V$ is convinced about the fact or reject.

Interactive Zeor-Knowledge Proof System (Cont.)

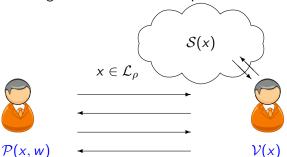
- \mathcal{P} is PPT, \mathcal{V} is deterministic polynomial time.
- $\langle \mathcal{P}, \mathcal{V} \rangle$ form an interactive proof system for the language \mathcal{L}_{ρ} if satisfies perfect completeness and soundness:
 - Completeness. For any $x \in \mathcal{L}_{\rho}$: $\Pr[\operatorname{Out}_{\mathcal{V}}\langle \mathcal{P}(x, w), \mathcal{V}(x) \rangle = 1] = 1$.
 - (Statistical) Soundness. For any $y \notin \mathcal{L}_{\rho}$ and for any $\widehat{\mathcal{P}}$: $\Pr[\operatorname{Out}_{\mathcal{V}}\langle \widehat{\mathcal{P}}(y), \mathcal{V}(y) \rangle = 1] \approx 0.$
 - \Rightarrow Proof system.
 - (Computational) Soundness. For any $y \notin \mathcal{L}_{\rho}$ and for any PPT $\widehat{\mathcal{P}}$: $\Pr[\operatorname{Out}_{\mathcal{V}}\langle\widehat{\mathcal{P}}(y),\mathcal{V}(y)\rangle=1]\approx 0.$
 - \Rightarrow Argument system.
- Zero-Knowledge: nothing beyond the validity of the statement is revealed.

Zero-Knowledge-Simulation Paradigm



Zero-Knowledge-Simulation Paradigm

- Statistical zero-knowledge : for any V, the simulated proof is indistinguishable from the real proof.
- Computational zero-knowledge: for any PPT \mathcal{V} the simulated proof is indistinguishable from the real proof.



Proof of Knowledge

Consider the following example.

- Let q be prime, and a group $\mathcal{G}=< g>$, where g is the generator to the group.
- Suppose the Discrete Logarithm problem is hard for this group.
- Consider the language $\mathcal{L} = \{y : \exists x \in \mathbb{Z}_q \text{ s.t. } y = g^x\}.$
- Let $\langle \mathcal{P}, \mathcal{V} \rangle$ form an interactive proof system for \mathcal{L} .
- Trivial to show $y \in \mathcal{L}$; (why?)

Proof of Knowledge

Consider the following example.

- Let q be prime, and a group $\mathcal{G}=< g>$, where g is the generator to the group.
- Suppose the Discrete Logarithm problem is hard for this group.
- Consider the language $\mathcal{L} = \{y : \exists x \in \mathbb{Z}_q \text{ s.t. } y = g^x\}.$
- Let $\langle \mathcal{P}, \mathcal{V} \rangle$ form an interactive proof system for \mathcal{L} .
- Trivial to show $y \in \mathcal{L}$; (why?)
- More desirable to show possession/knowledge of x.
 - → Proof of knowledge (Statistical soundness)
 - → Argument of knowledge (Computational soundness)

Outline

1 Zero-Knowledge Proof System

2 Stern's Protocol

3 Decomposition and Extension

Stern's Protocol-ZKAoK

 In 1996, Stern [4] introduced a three-move zero-knowledge argument of knowledge (ZKAoK) for the Syndrome Decoding (SD) problem in the coding theory.

Definition (SD problem)

Given uniformly random $\mathbf{A} \in \mathbb{Z}_2^{n \times m}$ and $\mathbf{y} \in \mathbb{Z}_2^n$. Let w < m be an integer. The SD problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

• $\rho_{\mathrm{stern}} = \{ ((\mathbf{A}, \mathbf{y}), \mathbf{x}) \in \mathbb{Z}_2^{n \times m} \times \mathbb{Z}_2^n \times \mathbb{Z}_2^m : (\mathrm{wt}(\mathbf{x}) = w) \land (\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \bmod 2) \}$

Stern's Protocol-ZKAoK

 In 1996, Stern [4] introduced a three-move zero-knowledge argument of knowledge (ZKAoK) for the Syndrome Decoding (SD) problem in the coding theory.

Definition (SD problem)

Given uniformly random $\mathbf{A} \in \mathbb{Z}_2^{n \times m}$ and $\mathbf{y} \in \mathbb{Z}_2^n$. Let w < m be an integer. The SD problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

• $\rho_{\text{stern}} = \{ ((\mathbf{A}, \mathbf{y}), \mathbf{x}) \in \mathbb{Z}_2^{n \times m} \times \mathbb{Z}_2^n \times \mathbb{Z}_2^m : (\text{wt}(\mathbf{x}) = w) \land (\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \text{ mod } 2) \}$

Stern's Idea

- For $\pi \in \mathcal{S}_m$, $(\mathbf{x} \in \{0,1\}^m$ satisfies $\operatorname{wt}(\mathbf{x}) = w) \Leftrightarrow (\pi(\mathbf{x}) \in \{0,1\}^m$ also does)
- $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2 \Leftrightarrow \mathbf{A} \cdot (\mathbf{x} + \mathbf{r}) = \mathbf{y} + \mathbf{A} \cdot \mathbf{r} \mod 2$.
- Commitment scheme COM: commit to a value and later reveal (decommit it).
 - Hiding and binding.

4 D > 4 D > 4 B > 4 B > B 9 9 9

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover

Verfier

1. Pick
$$\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where
$$\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$$

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover

Verfier

1. Pick
$$\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where
$$\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$$

2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}$.

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover

Verfier

1. Pick
$$\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where
$$\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$$

2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}$.

3. If ch = 1, reveal \mathbf{c}_2 and \mathbf{c}_3 . Send $\mathbf{v} = \pi(\mathbf{x})$ and $\mathbf{w} = \pi(\mathbf{r})$.

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover

1. Pick $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^m$, $\pi \overset{\$}{\leftarrow} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where $\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$

3. If ch = 1, reveal \mathbf{c}_2 and \mathbf{c}_3 . Send $\mathbf{v} = \pi(\mathbf{x})$ and $\mathbf{w} = \pi(\mathbf{r})$.

Verfier

2. Send a challenge $ch \xleftarrow{\$} \{1, 2, 3\}$.

Check if $\mathbf{v} \in \mathbb{Z}_2^m$, $\operatorname{wt}(\mathbf{v}) = w$, and

$$\begin{cases} \mathbf{c}_2 = COM(\mathbf{w}); \\ \mathbf{c}_3 = COM(\mathbf{v} + \mathbf{w}). \end{cases}$$

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover

1. Pick $\mathbf{r} \xleftarrow{\$} \mathbb{Z}_2^m$, $\pi \xleftarrow{\$} \mathcal{S}_m$. Send

1. Pick
$$\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^m$$
, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where
$$\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$$

2. Send a challenge $ch \xleftarrow{\$} \{1, 2, 3\}$.

Verfier

3. If ch = 2, reveal \mathbf{c}_1 and \mathbf{c}_3 . Send π and $\mathbf{z} = \mathbf{x} + \mathbf{r}$.

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover

1. Pick $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^m$, $\pi \overset{\$}{\leftarrow} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where $\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$

2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1,2,3\}$.

Verfier

Check that

$$\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{z} - \mathbf{y} \mod 2); \\ \mathbf{c}_3 = COM(\pi(\mathbf{z})). \end{cases}$$

3. If ch = 2, reveal \mathbf{c}_1 and \mathbf{c}_3 . Send π and $\mathbf{z} = \mathbf{x} + \mathbf{r}$.

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w \text{ and } \mathbf{A} \cdot \mathbf{x} = \mathbf{y} \text{ mod } 2.$

Prover

1. Pick $\mathbf{r} \xleftarrow{\$} \mathbb{Z}_2^m$, $\pi \xleftarrow{\$} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$$

$$\mathbf{c}_2 = COM(\pi(\mathbf{r}));$$

$$\mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r}))$$

Verfier

2. Send a challenge $ch \stackrel{\$}{\leftarrow} \{1, 2, 3\}$.

3. If ch = 3, reveal \mathbf{c}_1 and \mathbf{c}_2 . Send π and $\mathbf{s} = \mathbf{r}$.

- Common input: A, y.
- Prover's goal: Convince the verifier in ZK that he knows $\mathbf{x} \in \mathbb{Z}_2^m$ such that $\operatorname{wt}(\mathbf{x}) = w$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod 2$.

Prover

1. Pick $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^m$, $\pi \overset{\$}{\leftarrow} \mathcal{S}_m$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where $\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{r} \bmod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{r})); \\ \mathbf{c}_3 = COM(\pi(\mathbf{x} + \mathbf{r})). \end{cases}$

3. If ch = 3, reveal \mathbf{c}_1 and \mathbf{c}_2 . Send π and $\mathbf{s} = \mathbf{r}$.

Verfier

2. Send a challenge $ch \xleftarrow{\$} \{1, 2, 3\}$.

Check that

$$\begin{cases} \mathbf{c}_1 = COM(\pi, \mathbf{A} \cdot \mathbf{s} \mod 2); \\ \mathbf{c}_2 = COM(\pi(\mathbf{s})). \end{cases}$$

Analysis of Stern's Protocol

- · Completeness.
- Soundness: soundness error 2/3.
- Statistical zero-knowledge: the commitment scheme COM, the masking vector \mathbf{r} , and the permutation π .
- Argument of knowledge.

Repeat the protocol enough times to achieve negligible soundness error.

Development

- In 2008, Kawachi et al. [2] adapted Stern's protocol to the lattice setting by working with q.
 - $\rho_{\text{ktx}} = \{((\mathbf{A}, \mathbf{y}), \mathbf{x}) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^n \times \{0, 1\}^m : (\text{wt}(\mathbf{x}) = w) \land (\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \text{ mod } q)\}$
 - A restricted version of the Inhomogeneous Short Integer Solution(ISIS) problem.

Definition (ISIS_{n,m,q,β})

Given uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\mathbf{y} \in \mathbb{Z}_q^n$. Let β be a real number. The ISIS problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that $\|\mathbf{x}\|_{\infty} \leq \beta$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod q$.

Limited applications.

Development

- In 2008, Kawachi et al. [2] adapted Stern's protocol to the lattice setting by working with q.
 - $\rho_{\text{ktx}} = \{((\mathbf{A}, \mathbf{y}), \mathbf{x}) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^n \times \{0, 1\}^m : (\text{wt}(\mathbf{x}) = w) \land (\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \text{ mod } q)\}$
 - A restricted version of the Inhomogeneous Short Integer Solution(ISIS) problem.

Definition (ISIS_{n,m,q,β})

Given uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\mathbf{y} \in \mathbb{Z}_q^n$. Let β be a real number. The ISIS problem asks to find a vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that $\|\mathbf{x}\|_{\infty} \leq \beta$ and $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod q$.

- Limited applications.
- In 2013, Ling et al. [3] removed the restrictions on x and proposed a Stern-like zero-knowledge protocol for the ISIS problem.
 - Decomposition and extension.
 - Wide applications: policy-based signatures, group encryption, **group signatures**, and much more.

Outline

1 Zero-Knowledge Proof System

2 Stern's Protocol

3 Decomposition and Extension

Decomposition and Extension

ZKAoK for Restricted SIS [2]

 $(\mathbf{x} \in \{0,1\}^m) \wedge (\operatorname{wt}(\mathbf{x}) = w)$ $\mathbf{x} \in \{0,1\}^m$ Decomposition $\|\mathbf{x}\|_{\infty} \leq \beta$

ZKAoK for General SIS

Extension

Goal: $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod q$ and $\mathbf{x} \in \{0,1\}^m$.

Intermediate goal: $\mathbf{A}^* \cdot \mathbf{x}^* = \mathbf{y} \mod q$ and $\mathbf{x}^* \in \{0,1\}^m$ and \mathbf{x}^* has fixed hamming weight.

- Let B_{3m} be the set of all vectors in $\{0,1\}^{3m}$ such that each vector contains exactly m copies of 0, m copies of 1.
- Extend $\mathbf{x} \in \{0,1\}^m$ to $\mathbf{x}^* \in \mathsf{B}_{2m}$.
- Observe that $\operatorname{wt}(\mathbf{x}^*) = m$.

Extension

Goal: $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod q$ and $\mathbf{x} \in \{0,1\}^m$.

Intermediate goal: $\mathbf{A}^* \cdot \mathbf{x}^* = \mathbf{y} \mod q$ and $\mathbf{x}^* \in \{0,1\}^m$ and \mathbf{x}^* has fixed hamming weight.

- Let B_{3m} be the set of all vectors in $\{0,1\}^{3m}$ such that each vector contains exactly m copies of 0, m copies of 1.
- Extend $\mathbf{x} \in \{0,1\}^m$ to $\mathbf{x}^* \in \mathsf{B}_{2m}$.
- Observe that $\operatorname{wt}(\mathbf{x}^*) = m$.
- Extend $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ to $\mathbf{A}^* \in \mathbb{Z}_q^{n \times m}$ such that $\mathbf{A} \cdot \mathbf{x} = \mathbf{A}^* \cdot \mathbf{x}^* \mod q$. (how and why?)

A ZKAoK protocol for the ISIS problem with $\|\mathbf{x}\|_{\infty} = 1$.

Decomposition

Let $\beta \in \mathbb{Z}^+$.

Goal: $\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \mod q$ and $\mathbf{x} \in [0, \beta]^m$.

Intermediate goal: $\mathbf{A}^* \cdot \mathbf{x}^* = \mathbf{y} \mod q$ and \mathbf{x}^* is binary.

Define $\delta_{\beta} = \lfloor \log \beta \rfloor + 1$. Define the sequence $\beta_1, \dots, \beta_{\delta_{\beta}}$ as follows.

$$\beta_1 = \lceil \beta/2 \rceil$$
, $\beta_2 = \lceil (\beta - \beta_1)/2 \rceil$, $\beta_3 = \lceil (\beta - \beta_1 - \beta_2)/2 \rceil$, ..., $\beta_{\delta_\beta} = 1$.

Example. Let $\beta = 50$, then $\delta_{\beta} = 6$,

$$\beta_1 = 25, \beta_2 = 13, \beta_3 = 6, \beta_4 = 3, \beta_5 = 2, \beta_6 = 1.$$

Notice that $\sum_{i=1}^{6} \beta_i = \beta$.

Decomposition (cont.)

- Properties: $\sum_{i=1}^{\delta} \beta_i = \beta$. For any $b \in [0, \beta]$, there exists $b^{(1)}, \ldots, b^{(\delta_{\beta})} \in \{0, 1\}$ such that $\sum_{i=1}^{\delta_{\beta}} \beta_i \cdot b^{(i)} = b$. Define $\mathrm{idec}(b) = (b^{(1)}, \ldots, b^{(\delta_{\beta})})^{\top} \in \{0, 1\}^{\delta_{\beta}}$.
- For $m \in \mathbb{Z}^+$, define a matrix $\mathbf{G}_{m,\beta} \in \mathbb{Z}^{m \times m \delta_\beta}$ to be

$$\mathbf{G}_{m,eta} = egin{bmatrix} eta_1 \dots eta_{\delta_eta} & & & & & \ & & \ddots & & & \ & & & eta_1 \dots eta_{\delta_eta} \end{bmatrix}$$

- For $\mathbf{x} = (x_1, \dots, x_m)^{\top} \in [0, \beta]$, define $\operatorname{vdec}(\mathbf{x}) = (\operatorname{idec}(x)_1 \| \dots \| \operatorname{idec}(x)_m) \in \{0, 1\}^{m\delta_{\beta}}$.
- We then have $\mathbf{x} = \mathbf{G}_{m,\beta} \cdot \text{vdec}(\mathbf{x}) \mod q$.
- Observe that $\mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{G}_{m,\beta} \cdot \mathsf{vdec}(\mathbf{x}) \bmod q \stackrel{\triangle}{=} \mathbf{A}^* \cdot \mathsf{vdec}(\mathbf{x}) \bmod q$.

A ZKAoK protocol for the ISIS problem with $\|\mathbf{x}\|_{\infty} \leq \beta_{\mathbb{P}}$

Thank You

Thank you!

Any Questions?

S. Goldwasser, S. Micali, and C. Rackoff.

The knowledge complexity of interactive proof-systems (extended abstract).

In ACM STOC 1985, pages 291–304. ACM, 1985.

A. Kawachi, K. Tanaka, and K. Xagawa.

Concurrently secure identification schemes based on the worst-case hardness of lattice problems.

In ASIACRYPT 2008, volume 5350 of LNCS, pages 372–389. Springer, 2008.

S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications.

In PKC 2013, volume 7778 of LNCS, pages 107–124. Springer, 2013.

J. Stern.

A new paradigm for public key identification.

IEEE Trans. Information Theory, 42(6):1757–1768, 1996.