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Motivation

Why information theoretic key agreement?

Gives provable security guarantee against adversaries
with unlimited computational power

Raises many new insights and gives a powerful framework to study
the fundamental limits of information networks

Has many applications based on practical physical-layer assumptions

Enables quantum-safe communication
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Background



Background - Information theory

Entropic Measures of Information

H(X) H(Y )

I(X;Y )

Shannon Entropy

H(X) =
∑
x∈X

PX(x)log2

1

PX(x)

Joint Entropy

H(X,Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y)log2

1

PXY (x, y)

Conditional Entropy

H(X,Y ) = H(X) + H(Y |X)

Mututal Information

I(X;Y ) = H(X,Y )−H(X|Y )−H(Y |X)
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Background - Information theory

IID (Independent and identically distributed) Sources

Xn = (Xt1 , Xt2 , Xt3 , Xt4 , . . . , Xtn)

{Xti}i≤n are mutaully independent

PXtj = PXt1 = PX ∀j ≤ n

H(Xn) = H(Xt1) + H(Xt2) + · · ·+ H(Xtn) = nH(X)

H(Xt1) H(Xt2) · · · H(Xtn)
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Point-to-point Channel

Consider two parties Alice and Bob.

Assume that Alice can send signals to Bob, over a noisy medium.

We call such noisy means of signal transmission, “Channels.”

A discrete memoryless channel (DMC) is denoted by

W = (X1, PX2|X1
,X2)

or in short W = PX2|X1
.

W X2X1
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Multiterminal Channel Model

Set of m terminals.

E.g. M = {1, 2, 3, 4, 5, 6}
Eve has unlimited computation power

An underlying noisy channel

SKA for A ⊆M
E.g. A = {3, 4, 5, 6}
Terminals 1 and 2 are helpers

Terminals have access to a free and
reliable public channel

2

3

5

4

1

Eve

6

Csiszár and Narayan, “Secrecy Capacities for Multiterminal Channel Models”, IEEE Trans. Info. 2008.
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The Underlying Noisy Channel

Example: Single-Input Multi-output DMC

W

X2

Xm

Z

X1

...

W = PX2,...,Xm,Z|X1

X2

X3

X5

X4

X1

Z

X6

Csiszár and Narayan, “Secrecy Capacities for Multiterminal Channel Models”, IEEE Trans. Info. 2008.
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The Underlying Noisy Channel

Example: Multiaccess DMC

W ...

Xk+1

Z

XmXk

X1

...

W = PXk+1,...,Xm,Z|X1,...,Xk

X2

X3

X5

X4

X1

Z

X6

Csiszár and Narayan, “Secrecy Generation for Multiaccess Channel Models”, IEEE Trans. Info. 2013.
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The SKA Protocol

DMC

F1

DMC

F2

...

DMC

Ft

ro
u

n
d
t

...

DMC

Fn

Initialization

Shared Secret Key K

S
ec

re
t

K
ey

A
g

re
em

en
t

P
ro

to
co

l

X1,t X2,t . . . Xm,t Zt

Terminal 1 Terminal 2 Terminal m Eve

DMC W

X1,t X2,t . . . Xm,t Zt

Terminal 1 Terminal 2 Terminal m Eve

Public Communication Channel
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Secret Key Capacity

Definition: K is an (ε, σ)-SK for A ⊆M if

Pr {Kj = K} ≥ 1− ε,∀j ∈ A (reliability)

SD ((K,F, Z); (U,F, Z)) ≤ σ (secrecy)

where SD(X;Y ) = 1
2

∑
w∈W |PX(w)− PY (w)|.

Definition - Key Capacity

Definition:

Let K ∈ K be an (εn, σn)−SK with limn→∞ εn = limn→∞ σn = 0.

Then, limn→∞
1
n
log |K| = R is an achievable SK rate.

The largest achievable key rate is called key capacity.
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The Adversary (Eve)

Adversarial model (Csiszár & Narayan)

Eve has unbounded computational power,
listens to the public communication, F,
and has access to random variable Z

1 Secret Key (SK) Z = const.

2 Private Key (PK) Z = XD

3 Wiretap Secret Key (WSK) Any Z

A D

M

Ac

M is the set of all terminals.

A is the target subset.

Ac is the set of helper terminals.

D is the set of compromised terminals.

Csiszár and Narayan, “Secrecy Capacities for Multiple Terminals,” IEEE Trans. Inf. Theory, Dec. 2004.
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Past Results



Past Results: Two-Party SKA

W X2X1

Theorem - Two-Party Secret Key (SK) Capacity [AC’93]

The SK capacity for two terminals is CSK(W ) = maxPX1
I(X1;X2).

SKA Protocol

Alice sends Xn
1 , Bob receives Xn

2

Alice sends message F , Bob recovers Xn
1 (using F and Xn

2 )

Both parties extract a key K from Xn
1 where log |K| ≈ nI(X1;X2)

Ahlswede and Csiszár, “Common randomness in information theory and cryptography. I,” IEEE Trans. Inf. Theory, 1993.
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The WSK Capacity

Finding a general expression for
WSK capacity, even for the case
of two terminals (|M| = 2) is an

open problem.
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Past Results: Two-Party SKA

W

X2

Z

X1

X1 W1 X2 X2

W2 Z

W

Theorem - Two-Party WSK Capacity [AC’93]

The two-party WSK capacity is bounded by

CWSK(PZX2|X1
) ≤ max

PX1

I(X1;X2|Z),

which is tight if X1−X2−Z (degrade channels).
Also, the noninteractive WSK capacity is

CNI−WSK = max
PX1

{I(X1;X2)− I(X1;Z)}.

Ahlswede and Csiszár, “Common randomness in information theory and cryptography. I,” IEEE Trans. Inf. Theory, 1993.
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SK and PK capacities
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Past Results: Multiterminal SKA

W

X2

Xm

X1
...

X2

X3

X5

X4

X1

X6

Csiszár and Narayan, “Secrecy Capacities for Multiterminal Channel Models”, IEEE Trans. Info. 2008.
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Past Results: Multiterminal SKA

W

X2

Xm

X1
...

Single-input channel model

In [CN’08] general expressions for the SK and
PK capacity of the single-input multi-output
channel model were proved.

SK Capacity: Yes

PK Capacity: Yes

Csiszár and Narayan, “Secrecy Capacities for Multiterminal Channel Models”, IEEE Trans. Info. 2008.
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Past Results: Multiterminal SKA

W ...

Xk+1

Xm

Xk

X1

...

X2

X3

X5

X4

X1

X6

Csiszár and Narayan, “Secrecy Generation for Multiaccess Channel Models”, IEEE Trans. Info. 2013.
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Past Results: Multiterminal SKA

W ...

Xk+1

Xm

Xk

X1

...

The multiaccess channel model

In [CN’13] upper and lower bounds for the
SK and PK capacity of the multiaccess
(multi-input multi-output) channel model
were proved.

SK Capacity: Upper and lower bound

PK Capacity: Upper and lower bound

Csiszár and Narayan, “Secrecy Generation for Multiaccess Channel Models”, IEEE Trans. Info. 2013.
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Our Results



Summary of Results

Our results:

1 A new multiterminal channel model for SKA

2 General upper and lower bounds on SK and PK capacity

3 The noninteractive SK capacity

4 The noninteractive WSK capacity of Polytree-PIN
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Our Model

The Channel Model of Transceivers

W ...

Y1

Ym

Z

Tm

T1

...

W = PZYM|TM

T2

Y2

T3

Y3

T5

Y5

T4

Y4

T1

Y1

Z

T6

Y6

X1 = (T1, Y1) X2 = (T2, Y2)

X3 = (T3, Y3)

X4 = (T4, Y4)

X5 = (T5, Y5) X6 = (T6, Y6)
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Our Model

DMC

F1

DMC

F2

...

DMC

Ft

ro
u

n
d
t

...

DMC

Fn

Initialization

Shared Secret Key K

S
ec

re
t

K
ey

A
g

re
em

en
t

P
ro

to
co

l

T1,t

Y1,t

T2,t

Y2,t

. . . Tm,t

Ym,t
Zt

Terminal 1 Terminal 2 Terminal m Eve

DMC W

T1,t

Y1,t

T2,t

Y2,t

. . . Tm,t

Ym,t
Zt

Terminal 1 Terminal 2 Terminal m Eve

Public Communication Channel
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Our Model

Transceivers Model: examples

W1T2 Y1

W2T1 Y3

W

W = PYM|TM

= PY1|T2
· PY3|T1

T1

Y1

T2 Y3

P Y
1
|T 2

P
Y
3 |T

1
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Our Model

Transceivers Model: examples

Polytree-PIN

There exists a polytree
G = (M, E) that defines the
underlying noisy DMC as a
pairwise independent network of
point-to-point channels:

W = PYM|TM

=
∏
eij∈E

PYij |Tji

1

3

2

4

5

6
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The Upper Bound

Consider a given transceivers model W = PYM|TM

Construct an associated multiaccess channel W
W ...

Y1

YmTm

T1

...
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The Upper Bound

Let M′ = {m+ 1,m+ 2, . . . , 2m}
be the set of input terminals

Let M = {1, 2, . . . ,m} be the set
of output terminals

For each j ∈M let Xj = (Tj , Yj)
and let W be given as follows:

W = PXM|XM′

= PYM,TM|XM′

= PTM|XM′ · PYM|TM

= (
∏
j∈M

PTj |Xj+m
) ·W

= (
∏
j∈M

1(Tj = Xj+m)) ·W

1⊗m

W

W

Xm+1

Xm+2

X2m

T1

T2

Tm

Y1

Y2

Ym

(T1, Y1)

(T2, Y2)

(Tm, Ym)

X1

X2

Xm

... ... ... ... ...
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The Upper Bound

1⊗m

W

W

Xm+1

Xm+2

X2m

T1

T2

Tm

Y1

Y2

Ym

(T1, Y1)

(T2, Y2)

(Tm, Ym)

X1

X2

Xm

... ... ... ... ...

Theorem - Upper Bound

For any given transceivers model
W = PYM|TM we have

CASK(W ) ≤ CASK(W ), (1)

C
A|D
PK (W ) ≤ C

A|D
PK (W ). (2)

Proof Idea:
Let Π be an SKA protocol that achieves an SK K in W . The SKA
protocol Π can also be used in W to achieves the same SK K.
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The Lower Bound

Recall: Source Model
Correlated samples are observed

Samples are IID with distribution PXn
M

= (PXM)n

The joint distribution PXM is known publicly

Terminals use the public communication to establish the secret key K

Largest achievable key rate is given by the source model key capacity

1 2 . . . m

Xn
1 Xn

2 Xn
m

Public Communication F
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The Lower Bound

Recall: Source Model
Largest achievable key rate is given by the source model key capacity

Theorem - Source model key capacity [CN’04]

In a given source model PXM , the PK capacity is

C
A|D
PK (PXM) = H(PXM |PXD)−R

A|D
CO (PXM),

where R
A|D
CO (PXM) = min

RDc∈RCO

sum(RDc) and

RCO = {RDc |sum(RB) ≥ H(PXM |PXBc ), ∀B ⊂ Dc,A * B} .

[CN’04] Csiszár and Narayan, “Secrecy Capacities for Multiple Terminals,” IEEE Trans. Inf. Theory, Dec. 2004.
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The Lower Bound

Theorem - Lower Bound

For any given transceivers model W , and
for any random variable V satisfying
PV,TM = PV Πj∈MPTj |V , we have

CASK(W ) ≥ C
A|{0}
SK (PXM′ ), (3)

and

C
A|D
PK (W ) ≥ C

A|D′

PK (PXM′ ), (4)

where PXM′ = PV TMPYM|TM denotes
the associated source model with m + 1
terminals, M′ = {0, 1, . . . ,m}, where
D′ = D ∪ {0}, and X0 = V .

PTM|V

PXM′

WV

T1

T2

Tm

Y1

Y2

Ym

... ...
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The Lower Bound

Terminal 1, gen. vn

Terminal 1, sends vn

All Terminals gen. T n
j

DMC

...

DMC

n
us

e
of

D
M

C
W

(PXM′)
n is now realized

Source Model Protocol Π

Shared Secret Key K

Proof Idea: Source Emulation

Let Π be a source model SKA
protocol that achieves the source
model key capacity of PXM′ .
We emulate (realize) (PXM′ )

n,
and use protocol Π to achieve a
secret key K ∈ K such that, the
key rate, 1

n log |K|, approaches
the source model capacity of
PXM′ as n→∞.
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The Noninteractive Capacity

Definition - The Noninteractive Capacity

Consider the following limitations

(a) Noninteractive Communication. Only after all symbol
transmissions over the DMC, terminals each send a single message over
the public channel in one round. In this case, F = Fn = (F1, . . . , Fm),
where Fj denotes the public message of terminal j which is only a
function of Xn

j (not other messages).
(b) Independent Inputs. Terminals are locally controlling their

input variables, and the input variables are independent, i.e.,
PTM = Πj∈MPTj .

The noninteractive secret key capacity, is defined as the largest
achievable key rate of all SKA protocols satisfying (a) and (b), above;
and is denoted by CANI−SK(PYM|TM).
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The Noninteractive Capacity

Definition - The Noninteractive Capacity

Consider the following limitations

(a) Noninteractive Communication.

Only after all symbol
transmissions over the DMC, terminals each send a single message over
the public channel in one round. In this case, F = Fn = (F1, . . . , Fm),
where Fj denotes the public message of terminal j which is only a
function of Xn

j (not other messages).

(b) Independent Inputs.

Terminals are locally controlling their
input variables, and the input variables are independent, i.e.,

PTM = Πj∈MPTj .

The noninteractive secret key capacity, is defined as the largest
achievable key rate of all SKA protocols satisfying (a) and (b), above;
and is denoted by CANI−SK(PYM|TM).
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The Noninteractive Capacity

Theorem - Noninteractive capacity

Given any transceivers model W = PYM|TM , we have

CANI−SK(W ) = max
PTM

CASK(PTMPYM|TM). (5)

Proof Idea:

Converse: By our upper bound, the capacity of W is upper bounded
by the capacity of an associated multiaccess model. We, then, use the
upper bound given in [CN’13] for multiaccess models, and simplify it to
RHS of Eq.(5) using the noninteractivity assumptions (a) and (b).

Achievability: Use the source emulation approach with V = constant.

Csiszár and Narayan, “Secrecy Generation for Multiaccess Channel Models”, IEEE Trans. Info. 2013.
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Polytree-PIN

There exists a polytree G = (M, E) that
defines the underlying noisy DMC as:

W = PYM|TM

=
∏
eij∈E

PYij |Tji

1

3

2

4

5

6

Corollary - Noninteractive Capacity of Polytree-PIN

Given any Polytree-PIN model W , we have

CANI−SK(W ) = max
PTM

min
i,j∈M
s.t. eij∈E

I(Tij ;Yji). (6)
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Wiretapped Polytree-PIN

There exists a polytree G = (M, E) that
defines the underlying noisy DMC as:

W = PZYM|TM

=
∏
eij∈E

PYij |Tji
PZij |Yji

1

3

2

4

5

6

E

E

E

E

E

Theorem - Noninteractive WSK Capacity of Polytree-PIN

Given any Wiretapped Polytree-PIN model W , we have

CANI−WSK(W ) = max
PTM

min
i,j∈M
s.t. eij∈E

I(Tij ;Yji|Zij). (7)
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Summary

Polytree-PIN Example 1: Single-input Model

W1T1,2 Y2

W2T1,2 Y3

W

T1

Y2 Y3

P Y
2
|T 1

,2

P
Y
3 |T

1,3

Capacity Results [CN’08]

SK Exact

PK Exact

NI-SK Exact

Csiszár and Narayan, “Secrecy Capacities for Multiterminal Channel Models”, IEEE Trans. Info. 2008.
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Summary

Polytree-PIN Example 2: Multiaccess Model

W1T2 Y1,2

W2T3 Y1,3

W

Y1

T2 T3

P Y
1,
2
|T 2

P
Y
1,3 |T

3

Capacity Results [CN’13]

SK Bounds

PK Bounds

NI-SK Exact

Csiszár and Narayan, “Secrecy Generation for Multiaccess Channel Models”, IEEE Trans. Info. 2013.
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Summary

Polytree-PIN Example 3: Transceivers Model

W1T2 Y1

W2T1 Y3

W

T1

Y1

T2 Y3

P Y
1
|T 2

P
Y
3 |T

1

Capacity Our Results

SK Bounds

PK Bounds

NI-SK Exact

NI-WSK Polytree-PINs
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Future Directions

Finding tighter bounds for the SK and PK capacities

Finding the WSK capacity of wiretapped Polytree-PIN

Investigating interactive SKA protocols
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Thanks for your attention!


