
PQ TESLA and its
Application to DTLS

Simpy Parveen

1

Today’s Talk
• Motivation
• Contribution
• Background

• TESLA Protocol
• DTLS protocol
• K2SN-MSS

• TESLA Protocol
• Sketch of TESLA Protocol
• Pre-requisites – Time Synchronization, One way key

chain, TESLA initialization
• Message Transmission from sender to receiver
• Message Authentication at receiver

• DTLS
• Security Guarantees

• K2SN-MSS
• Merkle Tree Constructions X
• Signature Algorithms

• PQ TESLA
• PQ-TESLA and its Application to DTLS

• DTLS with Source authentication and
Data integrity

• TESLA Initialization in DTLS HS Layer
• TESLA Extension in DTLS Record Layer

• Sketch of Implementation
• Function Flow TinyDTLS
• Experimental Setup

• Experimental results -1

2

Motivation
• Data Stream : A data stream is a sequence of digitally

encoded coherent signals.

• Packets : A packet consists of control
information(headers, seq no, etc) and user
data(payload information).

• Popular applications like CoAP and WebRTC use DTLS
• Communication between RAN and Core Network in 5G Network –requires :

1. Packet Authenticity
2. Packet Integrity

• Transition to Quantum safe Cryptography

DTLS does not provide PQ security !!

Streaming Media needs :
* Timeliness of data
* Does not need retransmission

 Use of UDP Transport protocols – resilient to
packet drops

3

Our contributions is two-fold which includes design and implementation of :
1. PQ TESLA for the authentication/integrity of the packets generated by the

session's sender.
a. Implement TESLA algorithm 4.
b. Design & Implement PQ-TESLA

2. PQ-DTLS with source authentication and integrity only
a. Use TinyDTLS library for DTLS
b. Incorporate PQ-TESLA to DTLS library

3. Performance Evaluation : Overhead of adding PQ Security
a. Comparison :

• DTLS : PSK, ENC, MAC
• DTLS-TESLA : PSK, ENC(optional), MAC, ECDSA and TESLA-EXT
• PQ-DTLS-TESLA : PSK, ENC(optional), MAC, K2SN-MSS and TESLA-EXT

Contributions

4

Background

TESLA
Protocol DTLS K2SN-

MSS
Timed Efficient Stream Loss-
tolerant Authentication

Datagram Transport Layer
Security

K2SN Multi-message
Signature Scheme

5

Sketch of TESLA protocol

 Threat Model
 The adversary with full control over the network. The adversary can

eavesdrop, capture, drop, resend, delay, and alter packets.
 The adversary’s computational resources may be very large, but not

unbounded.

 Participants :
 Sender
 Receiver

 Security Guarantee
 The receiver does not accept any message Mi unless Mi was actually sent by

the sender and was not tampered on the way.

 Cryptographic Primitives
 Message Authentication Code(MAC)
 One-Way Hash Function
 Digital Signature Scheme

6

Goal : Provides source authentication and integrity to secure data stream on per-packet basis.
Idea : TESLA uses a new MAC key for each packet, which will be sent by the sender after sufficient delay.

Pre-requisite for TESLA

7

Time
Synchronization

One-way Key
Chain

TESLA
Initialization

Time Synchronization

t𝑆𝑆 : Sender’s local time when Synchronization request received.

𝑡𝑡𝑠𝑠 : Sender’s local time when Synchronization response is received.

𝑡𝑡𝑅𝑅 : Receiver’s local time Synchronization request packet is sent.

𝑡𝑡𝑟𝑟 : Receiver’s local time when Synchronization response is received.

Δ = Maximum time synchronization error

δ = Exact time difference

𝑡𝑡𝑠𝑠 ≤ 𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑅𝑅 ± t𝑆𝑆
𝑡𝑡𝑠𝑠 ≤ 4: 02 − 4: 00 + 4: 04 = 4: 06

Example.Goal: Know upper bound on sender’s clock

𝑡𝑡𝑠𝑠 ≤ 𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑅𝑅 ± t𝑆𝑆

8

One-way Key Chain

On-way key chain : The keys are revealed in reverse to their
generation order:

Generation: Slast, Slast-1, Slast-2,..., S0

Usage(Revealed): S0, S1,… Slast

 The first element in the chain, is committed to the entire
chain: Fi(si) = s0

 We can verify that an element sj is a part of the chain by
checking that Fj-i(sj) = si for some element si that is in our
chain (and i< j)
 Si commits to Sj if (I < j) and both belong to the chain

9

TESLA Initialization

• The receiver sends a synchronization request(nonce)
and the Sender prepares a synchronization response
packet, signed using sender’s private-key.

10

Message Transmission from TESLA Source to Receiver

11

The sender sends the messages after initial synchronization
is complete.
• Authentication Tag:

• To broadcast message Mj in interval i the sender
constructs packet as :

Algorithm 1: Basic Scheme
Algorithm 2: Tolerating Packet Loss is achieved using
keychain
Algorithm 3: Achieving Fast Transfer Rates by
introducing delay parameter(d).

Message Authentication at TESLA Receiver

Packet Safety :
• Packet is SAFE, if x < i + d , where x < [(ts – T0) /Tint]

(where ts is the upper bound on current server’s
time)

New Index Key Test :
• When current interval is i the disclosed key index

should be Ki-d.

Key Verification Test :
• The key revealed in current packet, that is, Ki is part of

key-chain commitment(K0).

Message Authentication :
• MAC verification of previously buffered packet using

the revealed key in current packet.

12

DTLS
• The DTLS protocol is designed to secure data

between communicating applications.
• Security Guarantees

• Origin Authentication : Using certificates or
Public key cryptography.

• Confidentiality : Using encryption
• Integrity : Using HMAC

• DTLS provides data stream authentication for
applications built on User Datagram
Protocol(UDP) channel.

• DTLS connection has two main phases:
• DTLS Handshake Protocol

• Key Exchange
• Peer Authentication
• Negotiate Ciphersuite

• Record Layer Protocol
• Records are protected with keys

exchange during handshake.

13

Security Guarantees by DTLS

• Replay attacks: The use of explicit sequence number in DTLS’s record layer
helps mitigate replay attacks.

• Denial of Service (DoS) attacks: DTLS makes Denial of Service (DoS) attacks
less effective by disabling fragmentation. During the handshake, a stateless
cookie exchange prevents DoS attacks like resource consumption attacks
and amplification attacks.

• Handling Invalid Records: Unlike TLS, DTLS is resilient in the face of invalid
records (e.g., invalid formatting, length, MAC, etc.). In general, invalid
records SHOULD be silently discarded, thus preserving the association.

14

K2SN Signature scheme
• K2SN-MSS extends the KSN-OTS to multi-message signature scheme and uses SWIFFT as the underlying

hash function.
• Each of KSN-OTS from K2SN-MSS is used to sign a single message, i.e., 2h KSN-OTS can be generated for

signing 2h messages.
• The parameters of SWIFFT are chosen such that it provides 512-bit classical (256-bit quantum) security

for K2SN-MSS against existential unforgeability in chosen message attack (EUF-CMA).
• K2SN-MSS Signature consists of three algorithms:

• Key Generation
• Uses Chacha20 as a sub- module, and computes the component secret keys, hash keys and the random pads.
• SWIFFT hash function was used to compute the component public keys and construct the Merkle tree.

• Signature Generation
• 1-CFF algorithm to determine the subset of component keys that are associated with a message.
• The signing also use ChaCha20 and SWIFFT.

• Signature Verification
• 1-CFF algorithm to determine the subset of component keys that are associated with a message.
• The signing and the verification algorithms use ChaCha20, SWIFFT, and the 1-CFF.

15

Li Tree
(or KSN-OTS
Tree)

H-Tree
(or MSS
Tree)

Merkle Tree Construction
Root is published as public
key

Sabyasachi Karati and Reihaneh Safavi-Naini. K2sn-mss: An efficient post-quantum signature. In Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pages 501–514, 2019.

Key Generation

Signature Generation Signature Verification

K2SN Signature Algorithms

D1 : Receiver

T-
Req(nonce)

(nonce, T-
Res)OTS1

Sender

• For each TESLA response message, OTSi is used.
• Saves state of the signature- Index of the OTS and Authentication path.

Fig : Using K2SN-MSS in TESLA

Pi(Ki-1,Di, hmacKi)

18

PQ-TESLA

• Threat Model of PQ-TESLA :
• Adversary having access to a

quantum computer.

• In PQ-TESLA, replace DSS with any hash-
based signature scheme.

• Replace ECDSA with K2SN-MSS

• In TESLA Initialization, the
Synchronization Message is signed using
K2SN-OTS of K2SN-MSS.

• All other sender and receiver operations
remains same as described in the
background.

Data Stream Authentication with PQ Security

+ TESLA Initialization + K2SN Signature

TESLA Extension

+ TESLA Initialization(113Bytes) : Nonce,
T_sender, rate, interval_id, T_start, n,
T_int, d, K_i, K2SN Signature(21.3KB)

TESLA Extension(68Bytes) : i, K_i,
Tesla_MAC

PQ TESLA and its Application to DTLS
(High level Overview)

RTT

ServerHello + Tesla Synchronization Request (32 Bytes)
ClientKeyExchange + Tesla Synchronization Response (113) + ECDSA(136Bytes)

ClientKeyExchange + Tesla Synchronization Response (113 Bytes) + K2SN-MSS(21331Bytes)19

PQ-DTLS with Source Authentication and Data
Integrity

• Security Goals : We aim to make DTLS PQ secure. We claim that integration of post-quantum TESLA
still preserves the security of DTLS.

• To provide DTLS with authentication and integrity with PQ security :
• Packet Authenticity : Every received packet inherits the sender authentication from the handshake layer, which

means that the receiver is ensured that origin of the packet is the same as the one established in the handshake.
Use of TESLA to provide source authentication(signing key commitment) at handshake layer using hash-based
signature.

• Packet Integrity : The data in the packet has not been tampered with. Use of TESLA authentication tag to provide
integrity at record layer.

• Adversary is/has :
• Capable of intercepting message eavesdrop, capture, drop, resend, delay, and alter packets.
• Unlimited storage capabilities, and his computing power is large but not unbounded.
• Access to a quantum computer capable of running Shor’s quantum algorithm in polynomial time.

Limitation : Nonetheless the adversary cannot invert a pseudorandom function (or distinguish it from a
random function) with non-negligible probability.

20

TESLA Initialization in DTLS Handshake Layer

• The following handshake flights were
modified:

• ServerHello + Tesla Synchronization
Request(32 Bytes)

• ClientKeyExchange + Tesla Synchronization
Response(113 Bytes) + :

• Signed with ECDSA (136 Bytes)
• Signed with K2SN-MSS (21331 Bytes)

21

TESLA Extension in DTLS Record layer

22

Each application record data has overhead of 68 Bytes added by TESLA extension.
Maximum Payload size: 16384 Or 65536Bytes.

Implementation

23

TinyDTLS is a light-weight implementation library of the DTLS protocol in C.

Implemented Protocol
• DTLS : PSK, MAC, ENC
• DTLS-TESLA : PSK, ENC(optionally), MAC, ECDSA, TESLA-EXT
• PQ-DTLS-TESLA : PSK, ENC(optionally), MAC, K2SN-MSS and TESLA-EXT

Function Flow of Sender and Receiver(TinyDTLS) with TESLA

Sender Receiver

D

D T-Ex

D T-Ex

D T-ExRH

RH

En(D)

Enc(D)

Dec(D)

Dec(D)

D T-ExRH

D T-ExRH

24

Experimental Setup
Objective:

• How much is overhead of adding PQ security to DTLS ??
• How much time consumed in PQ secure version of DTLS – handshake time and application data transfer time ??
• Computation time for signature schemes –ECDSA and K2SN-MSS.
• Performance Comparison : DTLS vs TESLA to DTLS (without PQ) vs TESLA to DTLS (with PQ).

Testing Environment:
• Client and Server both run on same host computer on Ubuntu 16.04 OS.
• Linux has POSIX support needed to run the TinyDTLS application.
• OS has support AVX2 CPU instructions needed to run K2SN-MSS.

Methodology/Routine:

• Communication is unicast, DTLS Server is in waiting state to accept DTLS client requests.

• Before a DTLS client can initiate the DTLS handshake, it needs to know the IP address of that DTLS server and PSK credentials to
use.

• We conduct experiments for 50 DTLS client consecutively sending requests to DTLS server.

We discuss about results of the experiments in three aspects: feasibility, performance, and efficiency.

25

Performance Metric Experiments Objective

Feasibility

Handshake layer overhead Measure extra bytes to be transferred during HS.

Record layer overhead Measure extra bytes to be transferred for each packet.

Code Size Measure the is theoretic value of code size measurement from
the implemented code in terms of lines of code(loc).

Performance and Efficiency

Evaluation of cryptographic primitives We evaluate the performance of ECDSA signature and hash-
based signature, K2SN-MSS

Handshake latency TESLA initialization and PQ-security to DTLS for the overall
duration of a handshake

Data transfer latency Compare latency time of authenticated messages.

Experiments

26

Experiment 1 : Handshake layer Overhead

• Aim. Aim of this experiment are to see the cost of adding post-quantum security to DTLS
handshake, in terms of bytes overhead.

27

Experiment 2 : Record Datagram Overhead

28

Aim. Aim of this experiment are to see the cost of adding post-quantum security to record
datagram of DTLS

29

Experiment 3 : Code Size
Aim. The aim was to measure the is theoretic value of code size measurement from the imple-mented
code, which is in C programming language

Experiment 4 : Evaluation of cryptographic primitives
Aim : We evaluate the performance of ECDSA signature and hash-based signature, K2SN on the targeted
machines, by measuring the run-time for key generation, signing and verification operations. We want to

measure the cost of implementing a hash-based signature in terms of how fast the algorithm takes as
compared to a currently used non-post-quantum signature, ECDSA.

30

31

Experiment 5 : Handshake Latency

Aim : We measure the handshake time from the beginning of client hello until the finished message has
been received.

Experiment 6 : Data Transfer Latency

Performance and Efficiency on Network
Aim. The data latency is considered as the measure of system’s cryptographic performance. A packet goes

through encryption and integrity at sender’s side and decryption and integrity check at receiver’s side.

32

Performance Metric Experiments Objective Results

Feasibility

Handshake layer overhead Measure extra bytes to be
transferred during HS.

TESLA initialization overhead is 145 Bytes
+ ECDSA(136Bytes) = 281 Bytes
+ K2SN-MSS(21331Bytes) = 21476 Bytes

Record Datagram overhead Measure extra bytes to be
transferred for each packet.

Overhead is 68 Bytes per packet.

Code Size Measure the is theoretic value of
code size measurement from the
implemented code in terms of lines
of code(loc).

DTLS : 11453
TESLA : 6824
K2SN-MSS : 197467
DTLS-TESLA : 18277
PQ-DTLS-TESLA : 216183

Performance and
Efficiency

Evaluation of cryptographic
primitives

We evaluate the performance of
ECDSA signature and hash-based
signature, K2SN-MSS

TKeyGen (K2SN-MSS) > TKeyGen (ECDSA)
TSigGen (K2SN-MSS) < TSigGen (ECDSA)
TSigVer(K2SN-MSS) < TSigVer (ECDSA)

Handshake latency TESLA initialization and PQ-security
to DTLS for the overall duration of a
handshake

THS (DTLS-TESLA) ~ 64 * THS (DTLS)
THS (PQ-DTLS-TESLA) ~ 28 * THS (DTLS)

Data transfer latency Compare latency time of
authenticated messages.

Tprocessing∝ PayloadSize (Observed)
Tprocessing (DTLS-TESLA) > Tprocessing (DTLS)
Tprocessing (PQ-DTLS-TESLA) > Tprocessing (DTLS)
Tprocessing (DTLS-TESLA) ~ Tprocessing (PQ-DTLS-TESLA)

Experiments & Results

33

Conclusion & Future Work

Our integration of quantum-resistant schemes into DTLS proves to be feasible: the induced
performance overhead is tolerable, to get PQ compatible protocol.

We provide and analyse the attacks in our modified DTLS that accommodates TESLA and makes DTLS
PQ secure, in our next phase, for security and scrutiny of proposed PQ system.

34

References

[1] A. Perrig, R. Canetti, J. D. Tygar, and D. Song,Efficient authenticationand signing of
multicast streams over lossy channels, 2000.
[2] . Perrig, R. Canetti, J. D. Tygar, and D. Song,Efficient authenticationand signing of
multicast streams over lossy channels, 2000.
[3] T. Kothmayr, C. Schmitt, W. Hu, M. Br ̈unig, and G. Carle,DTLS basedsecurity and
two-way authentication for the Internet of Things. Elsevier,2013, vol. 11, no. 8.
[4] S. Karati and R. Safavi-Naini, “K2sn-mss: An efficient post-quantumsignature,”
inProceedings of the 2019 ACM Asia Conference onComputer and Communications
Security, 2019, pp. 501–514.
[5] H.Technologies.(2019) Whitepaper: Partnering with industry for 5g security
assurance.
[Online] https://www-file.huawei.com/-/media/corporate/pdf/trust-center/huawei-
5g-security-white-paper-4th.pdf

35

https://www-file.huawei.com/-/media/corporate/pdf/trust-center/huawei-5g-security-white-paper-4th.pdf

Comments & Suggestions

• Key Storage for TESLA – how much storage is required?
• Why we use F and F’
• Emphasize on HS latency
• How to calculate upper bound on sender’s interval,(value x??)
• In the PQ DTLS, did you use certificate? If not, what did you do to

replace the certificate?
• RAM used before and after compiling

36

	PQ TESLA and its Application to DTLS
		Today’s Talk
	Motivation
	Slide Number 4
	Background
	Sketch of TESLA protocol
	Pre-requisite for TESLA
	Time Synchronization
	One-way Key Chain
	TESLA Initialization
	Message Transmission from TESLA Source to Receiver
	Slide Number 12
	DTLS
	Security Guarantees by DTLS
	K2SN Signature scheme
	Merkle Tree Construction
	K2SN Signature Algorithms
	PQ-TESLA
	Data Stream Authentication with PQ Security
	PQ-DTLS with Source Authentication and Data Integrity
	TESLA Initialization in DTLS Handshake Layer
	TESLA Extension in DTLS Record layer
	Implementation
	Function Flow of Sender and Receiver(TinyDTLS) with TESLA
	Experimental Setup
	Experiments
	Experiment 1 : Handshake layer Overhead
	Experiment 2 : Record Datagram Overhead
	Experiment 3 : Code Size
	Experiment 4 : Evaluation of cryptographic primitives
	Experiment 5 : Handshake Latency
	Experiment 6 : Data Transfer Latency
	Experiments & Results
	Conclusion & Future Work
	References
	Comments & Suggestions

