PQ TESLA and its
Application to DTLS

Simpy Parveen

Today’s Talk

Motivation

PQ TESLA
PQ-TESLA and its Application to DTLS

DTLS with Source authentication and
Data integrity

TESLA Initialization in DTLS HS Layer
TESLA Extension in DTLS Record Layer
Sketch of Implementation

Function Flow TinyDTLS

Contribution

Background
e TESLA Protocol
e DTLS protocol
e K2SN-MSS

TESLA Protocol
e Sketch of TESLA Protocol

* Pre-requisites — Time Synchronization, One way key
chain, TESLA initialization

* Message Transmission from sender to receiver
 Message Authentication at receiver

DTLS
e Security Guarantees

K2SN-MSS

e Merkle Tree Constructions X
e Signature Algorithms

Experimental Setup

Experimental results -1

Motivation

 Data Stream : A data stream is a sequence of digitally e Popular applications like COAP and WebRTC use DTLS

encoded coherent signals. e Communication between RAN and Core Network in 5G Network —requires :
 Packets : A packet consists of control 1. Packet Authepticity

information(headers, seq no, etc) and user 2. Packet Integrity

data(payload information). e Transition to Quantum safe Cryptography

DTLS does not provide PQ security !!

Stream Program

Data Network
(DN)

Core - 5GC
Network

Streaming Media needs :
* Timeliness of data e
* Does not need retransmission
» Use of UDP Transport protocols — resilient to e
packet drops ar

Interface

Contributions

Our contributions is two-fold which includes design and implementation of :
1. PQ TESLA for the authentication/integrity of the packets generated by the
session's sender.

Implement TESLA algorithm 4.

b. Design & Implement PQ-TESLA

d.

2. PQ-DTLS with source authentication and integrity only

3.

a. Use TinyDTLS library for DTLS PSk
b. Incorporate PQ-TESLA to DTLS library

Performance Evaluation : Overhead of adding PQ Security
a.

ECDSA

MAC o DTLS

» DTLS-TESLA

TESLA-EXT

ENC

Comparison :

DTLS : PSK, ENC, MAC
DTLS-TESLA : PSK, ENC(optional), MAC, ECDSA and TESLA-EXT
PQ-DTLS-TESLA : PSK, ENC(optional), MAC, K2SN-MSS and TESLA-EXT

» PQ-DTLS-TESLA

K2SN-MSS

Background

TESLA
Protocol

Timed Efficient Stream Loss-

tolerant Authentication

DTLS

Datagram Transport Layer
Security

K2SN-
IMSS

K2SN Multi-message
Signhature Scheme

Sketch of TESLA protocol

Goal : Provides source authentication and integrity to secure data stream on per-packet basis.
Idea : TESLA uses a new MAC key for each packet, which will be sent by the sender after sufficient delay.

Threat Model

= The adversary with full control over the network. The adversary can
eavesdrop, capture, drop, resend, delay, and alter packets. Adversary

= The adversary’s computational resources may be very large, but not Sender Receiver
unbounded. Xv

M,

Participants :

= Sender

= Receiver
MAG, (M)

Security Guarantee

= The receiver does not accept any message M, unless M. was actually sent by v
the sender and was not tampered on the way.

MAC, (M)

Cryptographic Primitives Y \
= Message Authentication Code(MAC) Message is Message

Authentic is altered

= One-Way Hash Function

= Digital Signature Scheme

Figure 3.1: A sketch of the TESLA protocol.

Pre-requisite for TESLA

Time
Synchronization

One-way Key
Chain

vy

TESLA
Initialization

Goal: Know upper bound on sender’s clock

Recetver time

Upper bound on
server’s time:

tg.Sender’s local time when Synchronization request received.
t, : Sender’s local time when Synchronization response is received.
tr : Receiver’s local time Synchronization request packet is sent.

t, : Receiver’s local time when Synchronization response is received.

]
t.<t, - tp +tg

Time Synchronization

Nonce

Sign(ts || Nonce)

A = Maximum time synchronization error

6 = Exact time difference

Sender t:me

ts

Example.

Receiver time Sender time
tg = 4:00 t, =4:03
0y,
ty = 4:01 Tt = 4104

— A\
_ uﬂe Lsh =
T O
e se
t,=4:02 00—] ts =1t, = 4:05
t - tR i tS

t.< t,
t,<4:02-4:00+4:04=4:06

One-way Key Chain

On-way key chain : The keys are revealed in reverse to their
generation order:

Generation: S, Sjast.1) Siast.21+-» So . The.first element in the chain, is committed to the entire
. chain: F{(s,) = s,
Usage(Revealed): S, Sy, Syay = We can verify that an element s; is a part of the chain by

checking that FI(s)) = s, for some element s;that is in our
Generate chain (and i< j)

" S;commits to §; if (I < j) and both belong to the chain

ap ™ — gy S g_T® . EE—T' 8¢

Use / Reveal

TESLA Initialization

» The receiver sends a synchronization request(nonce)
and the Sender prepares a synchronization response
packet, signed using sender’s private-key.

Receiver Sender

SyncReq(nonce)

R — S : Nonce
S — R : {Sender time {5, Nonce, Interval Rate,

Interval Id, Interval start time, AFionng Onac Saeponse Iﬁ
I

SyncRes(nonce,Ko....)signed with DSS

e e

S et e

Interval key, Disclosure Lag} -1

Dispatching Application Packet H

Sends packet Pi

(d

1
Buffers Pi and Authenticates Pi-d ﬁ
|

————— — —— — —

Figure 2.3: Sender-Receiver Operations in TESLA

10

Message Transmission from TESLA Source to Receiver

Algorithm 1: Basic Scheme Security condition: A data packet P; arrived safely,
Algorithm 2: Tolerating Packet Loss is achieved using if the receiver can unambiguously decide, based on its
keychain synchronized time and d,, that the sender did not yet

Algorithm 3: Achieving Fast Transfer Rates by send out the corresponding key disclosure packet P;.

introducing delay parameter(d).

F F
-~ i = ;= o
. L. . . F! F! FJ'
The sender sends the messages after initial synchronization l l
Is complete. Ki_y K} Kl
« Authentication Taa: Fic1 i Pita
(i, HMAC(K;,M;),K;_,) "‘f’*’”} Di_y M } . ""f'*'“} Dt
K;_o K;_q K ;
* To broadcast message M; in interval i the sender
constructs packet as : MAC(K]y, Pi—1) MAC(K], D) MAC(K] 4 1\ Dig1)
Pj = {M;l|i|Ki-a|| MAC(K],M;)} ~ N N
~ ~ ~
authenticated authenticated after not yet authenticated

reception of Pi+1

11

Message Authentication at TESLA Receiver

Packet Safety :
e Packet is SAFE, if x<i+d, where x<[(t,—T,) /T,]
(where t, is the upper bound on current server’s

time)
F(K;) F(Ki+1) F(Kiy2) F(Kiy3)
Ki—1 K; Ki Kiv2 New Index Key Test :

e When current interval is i the disclosed key index

should be K, 4.
| . _
Key Verification Test :
Interval i — 1 Interval i Intervali +1 Intervali + 2 e The key revealed in current packet, that is, K; is part of
Y J key-chain commitment(K,).

Ti-ni
Message Authentication :

* MAC verification of previously buffered packet using
the revealed key in current packet.

DTLS

Client(Sender) Server(Receiver)
| |
I I
I 1 ClientHello I
| gq
L 2 HelloVerifyRequest I
I I
I 3 ClientHello I
I q
I I
|< 4 ServerHello,"Certificate, ServerKeyExchange*, CertificateRequest", ServerHelloDone
I I
! 5 Certificate®, ClientkeyExchange, CertificateVerify*, [ChangeCipherSpec], Finished ’:
|
I I
u 6 [ChangeCipherSpec], Finished |
I I
| 7 Aoplcal |

plication Data
__ >
I
I
1

—— — —

Figure 2.6: DTLS Fully Authenticated Handshake

The DTLS protocol is designed to secure data
between communicating applications.

Security Guarantees

e Origin Authentication : Using certificates or
Public key cryptography.

* Confidentiality : Using encryption
* Integrity : Using HMAC

DTLS provides data stream authentication for
applications built on User Datagram
Protocol(UDP) channel.
DTLS connection has two main phases:
e DTLS Handshake Protocol
* Key Exchange
e Peer Authentication
* Negotiate Ciphersuite
e Record Layer Protocol

e Records are protected with keys
exchange during handshake.

13

Security Guarantees by DTLS

e Replay attacks: The use of explicit sequence number in DTLS’s record layer
helps mitigate replay attacks.

e Denial of Service (DoS) attacks: DTLS makes Denial of Service (DoS) attacks
less effective by disabling fragmentation. During the handshake, a stateless
cookie exchange prevents DoS attacks like resource consumption attacks
and amplification attacks.

* Handling Invalid Records: Unlike TLS, DTLS is resilient in the face of invalid
records (e.g., invalid formatting, length, MAC, etc.). In general, invalid
records SHOULD be silently discarded, thus preserving the association.

K2SN Signature scheme

K2SN-MSS extends the KSN-OTS to multi-message signature scheme and uses SWIFFT as the underlying
hash function.

Each of KSN-OTS from K2SN-MSS is used to sign a single message, i.e., 2" KSN-OTS can be generated for
signing 2" messages.

The parameters of SWIFFT are chosen such that it provides 512-bit classical (256-bit quantum) security
for K2SN-MSS against existential unforgeability in chosen message attack (EUF-CMA).

K2SN-MSS Signature consists of three algorithms:

* Key Generation
* Uses Chacha20 as a sub- module, and computes the component secret keys, hash keys and the random pads.
e SWIFFT hash function was used to compute the component public keys and construct the Merkle tree.

* Signature Generation
e 1-CFF algorithm to determine the subset of component keys that are associated with a message.
e The signing also use ChaCha20 and SWIFFT.

e Signature Verification
e 1-CFF algorithm to determine the subset of component keys that are associated with a message.
* The signing and the verification algorithms use ChaCha20, SWIFFT, and the 1-CFF.

15

Merkle Tree Construction

Root is published as public
key

/ A >
| Yh-20 J .
| \/\ /\/ |yﬁ e |
/// . 1 IYn llI
TN ///
\ / [E i) /&/
-yhrl-lo ! \ 1 / j\ /‘ |
Yh (Yh Yh.3 | e [¥ho-2 | [¥Yh 11 |
/ p .
A SN,
/ \ / 1
h+lt-2 h+lt-1
Varl0 Vaeld ri2 Va3 o, o,

& Cree
! IE Cree
Cﬁérj%d\ﬁ@@% oy OB

Cree)

K2SN Signature Algorithms

UNIVERSITY OF

CALGARY

Key Generation

User inputs index ¢ to get the sk; from sk secret it already has.

KeyGenTinyDTLS(sk, 1) has following input and output:
Input : sk,
Output : sk;

Signature Generation Signature Verification

sk; was generated for signing message 1. Signature verification works into two parts :
Input : sk;, msg

Output : sig(i, pk, PK;, Auth), where : 1. Verify pk against PK;

2. Verify PK; against yoo(Root of MSS tree)
* 4 : index of message signed(OTS index)
SignVerify() has following input and outputs:

* pk : Sum of component secret keys(By,es) Input : msg, sig

_ . Output : True/False
* PK; : Set of public component keys for i-th message

* Auth : Nodes of the MSS tree for authentication of OTS tree with MSS tree root.

Sabyasachi Karati and Reihaneh Safavi-Naini. K2sn-mss: An efficient post-quantum signature. In Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pages 501-514, 2019.

PQ-TESLA

Threat Model of PQ-TESLA :

e Adversary having access to a
guantum computer.

In PQ-TESLA, replace DSS with any hash-
based signature scheme.

e Replace ECDSA with K2SN-MSS

In TESLA Initialization, the
Synchronization Message is signed using
K2SN-OTS of K2SN-MSS.

All other sender and receiver operations
remains same as described in the
background.

CALGARY

* Foreach TESLA response message, OTS; is used.
e Saves state of the signature- Index of the OTS and Authentication path.

Sender

hub B oo

~ ~ « (nonce, T-
~ \R'ES),QTsl
~ ~
~ ~
T ~ ~
B ~
~

Req(nonce) A

~
~

~ [#]
D1 : Receiver

Fig : Using K2SN-MSS in TESLA

18

PQ TESLA and its Application to DTLS

(High level Overview)

Application Layer | , Application Layer
HandShake
Alert
. . RTT
e + TESLA Initialization(113Bytes) : Nonce, }
TS bk] l g J © DTLSRecord | ’ oy 1_sender, rate, interval_id, T_start, n,
Protocol Protocol Prowol | T _int, d, K_i, K2SN Signature(21.3KB)
Fragmentation/
Defragmentation
Compression/
: Decompression
upP | i TESLA Extension(68Bytes) : i, K
| B Tesla MAC
Network Layer ‘ Authentation l Network Layer |
Encryption/ !

ClientKeyExchange + Tesla Synchronization Response (113) + ECDSA(136Bytes)
ClientKeyExchange + Tesla S§ﬂ'&YﬁHﬂﬂml4o'r-‘|- %@é&ﬂ&@?‘iﬁ%ﬂ@s&%&%ﬁﬁ (RAs8Y1€851Bytes)

PQ-DTLS with Source Authentication and Data
Integrity

e Security Goals : We aim to make DTLS PQ secure. We claim that integration of post-quantum TESLA
still preserves the security of DTLS.

e To provide DTLS with authentication and integrity with PQ security :

e Packet Authenticity : Every received packet inherits the sender authentication from the handshake layer, which
means that the receiver is ensured that origin of the packet is the same as the one established in the handshake.
Use of TESLA to provide source authentication(signing key commitment) at handshake layer using hash-based
signature.

e Packet Integrity : The data in the packet has not been tampered with. Use of TESLA authentication tag to provide
integrity at record layer.

e Adversary is/has :
» Capable of intercepting message eavesdrop, capture, drop, resend, delay, and alter packets.
* Unlimited storage capabilities, and his computing power is large but not unbounded.
e Access to a quantum computer capable of running Shor’s quantum algorithm in polynomial time.

Limitation : Nonetheless the adversary cannot invert a pseudorandom function (or distinguish it from a
random function) with non-negligible probability.

20

TESLA Initialization in DTLS Handshake Layer

Client(Sender) Server(Receiver)
e The following handshake flights were ! !
modified: : 0 Clontiel N
* ServerHello + Tesla Synchronization e 1 Helo\eriyRequest |
| |
Request(32 Bytes) i _—)
. . . I
e ClientKeyExchange + Tesla Synchronization | ool S ore Sovatadons |
. ¢ — - |
Response(113 Bytes) +: | |
. . : | |
e Signed with ECDSA (136 Bytes) Ao el ine T) |
| |
¢ Slgned Wlth KZSN-MSS (21331 Bytes) : 4 ClientKeyExchange + SyncResponse(Nonce, T_s, rate,,T_start,T_int,d,n,K_0}, Sig(SyncResponse), *PubKey ’:
| |
/%% Structure of the TESLA Synchronization Request. 32 BYTES. */ | |)
typedef struct{ | l Records local time T_:b]
uint8_t nonce[32]; I |
} tesla_request; | |
| H Synchronizes clock: Delﬂy:T_s-T_rﬁ
/%% Structure of the TESLA Synchronization Response. 113 BYTES#/ : :
typedef struct {)
uint8_t nonce[32]; /% 32 BYTES of nonce in request packet */ : § ChangeCipherSpec, Finished ,:
uint8_t T_sender[16]; J#x 16 BYTES Sender's current time #/ | I
uint8_t rateld]; /%% 4 BYTES Interval rate */ L 6 ChangeCipherSpec, Finished |
uint8_t interval_id[4]; /¥k 4 ByTES : Interval index */ i‘ |
uint8_t T_start[16]; /#k 16 BYTES : Start Time corresponding to beginning of session Unix GMT %/ | | ‘
uint8_t T_int[4]; /% 4 BYTES : interval duration (in seconds) %/ 1 f| Waiting for Data P‘d“"slﬁ
uint8_t dis_delay[1]; /4t 1 BYTE: Key Disclosure Delay (in number of intervals)/ | |
uint8_t key_chain_len[4]; /%= 4 BYTES : Length of key chain %/ | - hws
uint8_t Key_comm[32]; /% 32 BYTES: Commitment Key %/ beceeoeceeeeeaa.] opication Data Teslabxt(|, K {id) teslamac) pl
} tesla_sync; | |
| |
I |

Figure 4.2: TESLA request and response structures
Figure 4.1: Overview of TESLA and its application in TinyDTLS

TESLA Extension in DTLS Record layer

Each application record data has overhead of 68 Bytes added by TESLA extension.
Maximum Payload size: 16384 Or 65536Bytes.

struct packet_store

{
uint32_t t_id;//[4];
uint8_t t_msg[10000] ; Content | Version | Epoch [Seq number [Length [Ciphertext MAC
uint8_t reveal_key[32]; , - -
uint8_t packet_mac[32]; type X[H‘ Mi
}; | Byte | 2Byte | 2Byte| 6Byte | 2Byte

typedef struct dtls_peer_t {
struct dtls_peer_t *next;

session_t session; /4k< peer address and local interface *

dtls_peer_type role; /%k DTLS_CLIENT or DTLS_SERVER %/ R S S S S S U S

dtls_state_t state; /% DTLS engine state */ i
fototototototototototototototodotodototodoto ot od bbbttt ot

dtls_security_parameters_t *security_params[2]; ~ Disclosed Key ~

dtls_handshake_parameters_t xhandshake_params; A O gt T IO OO IOt SO ROt SY SO INOY Y IO IOOY RO ISY IS ROt YISO ISOY SO ISP Y SO Y P IOOY Y S 8
- TESLA MAC ~

Uint32_t-Int,_index; /% INCOrval-XRaex, - LACremets 10r- avery: packet -4 $otatatatatatatatatatatatototatatotototototototototototototatatot

uint8_t K[1000] [32]; /% 1000 TESLA Key-chain storage */

uint8_t tesla_mac[32]; /% TESLA HMAC of current packet »

struct packet_store tesla_ps; /% buffer for storage packet */

} dtls_peer_t; 22

Implementation

TinyDTLS is a light-weight implementation library of the DTLS protocol in C.

Implemented Protocol
e DTLS : PSK, MAC, ENC

e DTLS-TESLA : PSK, ENC(optionally), MAC, ECDSA, TESLA-EXT
* PQ-DTLS-TESLA : PSK, ENC(optionally), MAC, K2SN-MSS and TESLA-EXT

PSK

MAC

DTLS

ENC

ECDSA

TESLA-EXT

DTLS-TESLA

yw

h 4

K2SN-MSS

PQ-DTLS-TESLA

23

dtls.c

dtls_write()
—

D

dtls_send()F B T-EX

dtls_send_multi()

e

dtls_prepare_record()

crypto.c

D T-Ex

RH

dtls_set_record_header()

dtls_encrypt()

RH D T-Ex

En(D)

! dtls_cem_encrypt()

dtls_ccm_encrypt_message()

ccm.c

rd

]AES_(JCM

T

l

CALL

T

dtl

dtls_handle_message()

S5.C

/

Enc(D)

decrypt_verify()

RH

A

crypto.c

Dec(D)

dtls_decrypt()

;

-Ex

T-Ex

Dec(D)

— dtls_ccm_decrypt()

ccm.c

dtls_cem_decrypt_message()

hY
7

] AES_CCM

s

Sender

Receiver

Function Flow of Sender and Receiver(TinyDTLS) with TESLA

24

Experimental Setup

Objective:
e How much is overhead of adding PQ security to DTLS ??
* How much time consumed in PQ secure version of DTLS — handshake time and application data transfer time ??
e Computation time for signature schemes —ECDSA and K2SN-MSS.
e Performance Comparison : DTLS vs TESLA to DTLS (without PQ) vs TESLA to DTLS (with PQ).

Testing Environment:
e Client and Server both run on same host computer on Ubuntu 16.04 OS.
* Linux has POSIX support needed to run the TinyDTLS application.
* OS has support AVX2 CPU instructions needed to run K2SN-MSS.

Methodology/Routine:
e Communication is unicast, DTLS Server is in waiting state to accept DTLS client requests.

e Before a DTLS client can initiate the DTLS handshake, it needs to know the IP address of that DTLS server and PSK credentials to
use.

e We conduct experiments for 50 DTLS client consecutively sending requests to DTLS server.

We discuss about results of the experiments in three aspects: feasibility, performance, and efficiency.

Performance Metric

Feasibility

Performance and Efficiency

- “\?’*?.
M >
iR

Experiments

Experiments

Handshake layer overhead
Record layer overhead

Code Size

Evaluation of cryptographic primitives
Handshake latency

Data transfer latency

Objective

Measure extra bytes to be transferred during HS.

Measure extra bytes to be transferred for each packet.

Measure the is theoretic value of code size measurement from
the implemented code in terms of lines of code(loc).

We evaluate the performance of ECDSA signature and hash-
based signature, K2SN-MSS

TESLA initialization and PQ-security to DTLS for the overall
duration of a handshake

Compare latency time of authenticated messages.

Experiment 1 : Handshake layer Overhead

* Aim. Aim of this experiment are to see the cost of adding post-quantum security to DTLS
handshake, in terms of bytes overhead.

Table 6.1: DTLS Handshake Flights Table 6.2: TESLA handshake Overhead
Flight DTLS | DTLS-TESLA | PQ-DTLS-TESLA Field TESLA PQ-TESLA
Client Hello 67 67 67 Nonce(Request) 32 32
. Nonce(Response) 32 32
Hello Verify Request | 44 4 44
T 16 16
Client Hello(cookie) 83 83 83
rate 4 4
Server Hello 63 95 95
i 4 4
Server Hello Done 25 25 25
Tsrant 16 16
Client Key Exchange 42 177 21481
Tint 4 4
Change Cipher Specs 14 14 14 d 1 1
FINISH(Client) 53 53 53 . 4 4
Change Cipher Specs 14 14 14 Ko 32 32
FINISH(Server) 53 53 53 Sig 136(ECDSA) | 21331(K2SN-MSS)
Total Bytes 458 625 21929 Total Bytes 273 21476

Experiment 2 : Record Datagram Overhead

Aim. Aim of this experiment are to see the cost of adding post-quantum security to record

datagram of DTLS

Table 6.3: Each DTLS packet(or record datagram).

Field Bytes
Interval Index 4
Disclosed Key | 32
TESLA MAC 32

Total 68

Field Bytes
Content Type 1
Version 2
Epoch 2
Seq Num 6
Length 2
Payload Data | N(variable)
MAC 32
Total 43+N

Table 6.4: TESLA per packet overhead.

28

Experiment 3 : Code Size

Aim. The aim was to measure the is theoretic value of code size measurement from the imple-mented
code, which is in C programming language

Table 6.5: Code Size

Module Code Size(loc)?
DTLS 11453

TESLA 6824
K2SN-MSS 197467
DTLS-TESLA 18277
PQ-DTLS-TESLA 216183
Application data(Bytes) Variable

Experiment 4 : Evaluation of cryptographic primitives

Aim : We evaluate the performance of ECDSA signature and hash-based signature, K2SN on the targeted
machines, by measuring the run-time for key generation, signing and verification operations. We want to
measure the cost of implementing a hash-based signature in terms of how fast the algorithm takes as
compared to a currently used non-post-quantum signature, ECDSA.

Table 4: Runtime of cryptographic primitives in seconds(Average of 100) in milliseconds

Phase ECDSA | K25N
Key Generation 000737 | 497.931
Signature Generation | 0.00599 | 0.001602
Verification 00136 | 0.000013

Experiment 5 : Handshake Latency

Aim : We measure the handshake time from the beginning of client hello until the finished message has
been received.

Table 5: Handshake latency: Avg = 50 handshakes versus time in millisecond

Machine Locations DTLS DTLS- PQ-DTLS-
TESLA TESLA

UofC Localhost 0.000196 0.035683 497.065846

Experiment 6 : Data Transfer Latency

Aim. The data latency is considered as the measure of system’s cryptographic performance. A packet goes
through encryption and integrity at sender’s side and decryption and integrity check at receiver’s side.

Payload size | DTLS | DTLS-TESLA | PQ-DTLS-TESLA
8 8.65062 9.9486 9.10512
16 8.682 9.94842 9.78072
32 9.38098 10.29086 10.10472
64 9.2415 10.10808 10.82236
128 9.05088 10.42008 12.1063
256 9.7941 10.45722 14.1649

I 2.65062
o I 9486

I ©.10512

DATA TRANSFER LATENCY

mDTLS mwmDTLS-TESLA mPQ-DTLS-TESLA

I 10.45722
I 14.1649

I S 652
I 094842
I 0.73072
I ©.35095
I 10.29086
I 10.10472
I O.2415
I 10.10808
I 10.82236
I ©.05

N I 10,4200
I 12.1063
I O.7041

-
[1)]
w
N
=]
¥
-
o
{5]
w
L+

32

Experiments & Results

Performance Metric

Feasibility

Performance and
Efficiency

- “\?’*?.
M >
iR

Experiments

Handshake layer overhead

Record Datagram overhead

Code Size

Evaluation of cryptographic
primitives

Handshake latency

Data transfer latency

Objective

Measure extra bytes to be
transferred during HS.

Measure extra bytes to be
transferred for each packet.

Measure the is theoretic value of
code size measurement from the
implemented code in terms of lines
of code(loc).

We evaluate the performance of
ECDSA signature and hash-based
signature, K2SN-MSS

TESLA initialization and PQ-security

to DTLS for the overall duration of a
handshake

Compare latency time of
authenticated messages.

Results

TESLA initialization overhead is 145 Bytes
+ ECDSA(136Bytes) = 281 Bytes
+ K2SN-MSS(21331Bytes) = 21476 Bytes

Overhead is 68 Bytes per packet.

DTLS : 11453

TESLA : 6824

K2SN-MSS : 197467
DTLS-TESLA : 18277
PQ-DTLS-TESLA : 216183

Tyeycen (K2SN-MSS) > T
Tsiggen (K2SN-MSS) < T
Toiaver(K2SN-MSS) < T

ceygen (ECDSA)
sigen (ECDSA)
(ECDSA)

SigVer

T, (DTLS-TESLA) ~ 64 * T, (DTLS)
T, (PQ-DTLS-TESLA) ~ 28 * T, (DTLS)

T

processing

T

processing

T

processing

T

processing

& PayloadSize (Observed)

(DTLS-TESLA) > T ocessing (DTLS)

(PQ-DTLS-TESLA) > T (DTLS)
(PQ-DTLS-TESLA)

processing
(DTLS-TESLA) ~ T

processing

Conclusion & Future Work

Our integration of quantum-resistant schemes into DTLS proves to be feasible: the induced
performance overhead is tolerable, to get PQ compatible protocol.

We provide and analyse the attacks in our modified DTLS that accommodates TESLA and makes DTLS
PQ secure, in our next phase, for security and scrutiny of proposed PQ system.

References

[1] A. Perrig, R. Canetti, J. D. ngar and D. Song,Efficient authenticationand signing of
multicast streams over Iossy channels, 2000.

2] . Perrig, R. Canetti, J. D. Tygar, and D. Song, Efficient authenticationand signing of
multicast streams over lossy ¢ annels 2000.

3] T. Kothmayr, C. Schmitt, W. Hu, M. Br'unig, and G. Carle,DTLS basedsecurity and
two-way authentlcatlon for the Internet of Th ings. EIseV|er 2013, vol. 11, no. 8.

4] S. Karati and R. Safavi-Naini, “K2sn-mss: An efficient post-quantumsignature,”
inProceedings of the 2019 ACM Asia Conference onComputer and Communications
Security, 2019 pp. 501-514.

[5] H.Technologies.(2019) Whitepaper: Partnering with industry for 5g security
assurance.

[Online] https://www-file.huawei.com/-/media/corporate/pdf/trust-center/huawei-
5g-security-white-paper-4th.pdf

35

https://www-file.huawei.com/-/media/corporate/pdf/trust-center/huawei-5g-security-white-paper-4th.pdf

Comments & Suggestions

e Key Storage for TESLA — how much storage is required?

* Why we use F and F’

* Emphasize on HS latency

 How to calculate upper bound on sender’s interval,(value x??)

* In the PQ DTLS, did you use certificate? If not, what did you do to
replace the certificate?

e RAM used before and after compiling

	PQ TESLA and its Application to DTLS
		Today’s Talk
	Motivation
	Slide Number 4
	Background
	Sketch of TESLA protocol
	Pre-requisite for TESLA
	Time Synchronization
	One-way Key Chain
	TESLA Initialization
	Message Transmission from TESLA Source to Receiver
	Slide Number 12
	DTLS
	Security Guarantees by DTLS
	K2SN Signature scheme
	Merkle Tree Construction
	K2SN Signature Algorithms
	PQ-TESLA
	Data Stream Authentication with PQ Security
	PQ-DTLS with Source Authentication and Data Integrity
	TESLA Initialization in DTLS Handshake Layer
	TESLA Extension in DTLS Record layer
	Implementation
	Function Flow of Sender and Receiver(TinyDTLS) with TESLA
	Experimental Setup
	Experiments
	Experiment 1 : Handshake layer Overhead
	Experiment 2 : Record Datagram Overhead
	Experiment 3 : Code Size
	Experiment 4 : Evaluation of cryptographic primitives
	Experiment 5 : Handshake Latency
	Experiment 6 : Data Transfer Latency
	Experiments & Results
	Conclusion & Future Work
	References
	Comments & Suggestions

