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Motivation
• Data Stream : A data stream is a sequence of digitally 

encoded coherent signals.

• Packets : A packet consists of control 
information(headers, seq no, etc) and user 
data(payload information).

• Popular applications like CoAP and WebRTC use DTLS
• Communication between RAN and Core Network in 5G Network –requires :

1. Packet Authenticity
2. Packet Integrity

• Transition to Quantum safe Cryptography

DTLS does not provide PQ security !! 

Streaming Media needs :
* Timeliness of data
* Does not need retransmission

 Use of UDP Transport protocols – resilient to 
packet drops
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Our contributions is two-fold which includes design and implementation of :
1. PQ TESLA for the authentication/integrity of the packets generated by the 

session's sender. 
a. Implement TESLA algorithm 4.
b. Design & Implement PQ-TESLA

2. PQ-DTLS with source authentication and integrity only
a. Use TinyDTLS library for DTLS
b. Incorporate PQ-TESLA to DTLS library

3. Performance Evaluation : Overhead of adding PQ Security
a. Comparison : 

• DTLS : PSK, ENC, MAC
• DTLS-TESLA : PSK, ENC(optional), MAC, ECDSA and TESLA-EXT
• PQ-DTLS-TESLA : PSK, ENC(optional), MAC, K2SN-MSS and TESLA-EXT

Contributions
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Background

TESLA 
Protocol DTLS K2SN-
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Timed Efficient Stream Loss-
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Datagram Transport Layer 
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K2SN Multi-message 
Signature Scheme
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Sketch of TESLA protocol

 Threat Model
 The adversary with full control over the network. The adversary can 

eavesdrop, capture, drop, resend, delay, and alter packets. 
 The adversary’s computational resources may be very large, but not 

unbounded.

 Participants : 
 Sender 
 Receiver

 Security Guarantee
 The receiver does not accept any message Mi unless Mi was actually sent by 

the sender and was not tampered on the way.

 Cryptographic Primitives
 Message Authentication Code(MAC)
 One-Way Hash Function
 Digital Signature Scheme
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Goal : Provides source authentication and integrity to secure data stream on per-packet basis.
Idea :  TESLA uses a new MAC key for each packet, which will be sent by the sender after sufficient delay. 



Pre-requisite for TESLA 
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Time Synchronization

t𝑆𝑆 : Sender’s local time when Synchronization request received.

𝑡𝑡𝑠𝑠 : Sender’s local time when Synchronization response is received. 

𝑡𝑡𝑅𝑅 : Receiver’s local time Synchronization request packet is sent.

𝑡𝑡𝑟𝑟 : Receiver’s local time when Synchronization response is received.

Δ = Maximum time synchronization error

δ = Exact time difference

𝑡𝑡𝑠𝑠 ≤   𝑡𝑡𝑟𝑟 −   𝑡𝑡𝑅𝑅 ± t𝑆𝑆
𝑡𝑡𝑠𝑠 ≤ 4: 02 − 4: 00 + 4: 04 = 4: 06

Example.Goal: Know upper bound on sender’s clock

𝑡𝑡𝑠𝑠 ≤   𝑡𝑡𝑟𝑟 −   𝑡𝑡𝑅𝑅 ± t𝑆𝑆
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One-way Key Chain

On-way key chain : The keys are revealed in reverse to their 
generation order:

Generation:  Slast, Slast-1, Slast-2,..., S0

Usage(Revealed): S0, S1,… Slast

 The first element in the chain, is committed to the entire 
chain:   Fi(si) = s0 

 We can verify that an element sj is a part of the chain by 
checking that  Fj-i(sj) = si for some element si that is in our 
chain ( and i< j)
 Si commits to Sj if (I < j) and both belong to the chain
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TESLA Initialization

• The receiver sends a synchronization request(nonce) 
and the Sender prepares a synchronization response 
packet, signed using sender’s private-key.
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Message Transmission from TESLA Source to Receiver
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The sender sends the messages after initial synchronization 
is complete.
• Authentication Tag: 

• To broadcast message Mj in interval i the sender 
constructs packet as :

Algorithm 1: Basic Scheme
Algorithm 2: Tolerating Packet Loss is achieved using 
keychain 
Algorithm 3: Achieving Fast Transfer Rates by 
introducing delay parameter(d).



Message Authentication at TESLA Receiver

Packet Safety :
• Packet is SAFE, if  x < i + d , where x < [(ts – T0) /Tint ]   

(where ts is the upper bound on current server’s 
time)

New Index Key Test : 
• When current interval is i the disclosed key index 

should be Ki-d.

Key Verification Test :
• The key revealed in current packet, that is, Ki is part of 

key-chain commitment(K0).

Message Authentication : 
• MAC verification of previously buffered packet using 

the revealed key in current packet.
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DTLS
• The DTLS protocol is designed to secure data 

between communicating applications.
• Security Guarantees 

• Origin Authentication : Using certificates or 
Public key cryptography.

• Confidentiality : Using encryption
• Integrity : Using HMAC 

• DTLS provides data stream authentication for 
applications built on User Datagram
Protocol(UDP) channel.

• DTLS connection has two main phases: 
• DTLS Handshake Protocol

• Key Exchange
• Peer Authentication
• Negotiate Ciphersuite

• Record Layer Protocol
• Records are protected with keys 

exchange during handshake.
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Security Guarantees by DTLS

• Replay attacks: The use of explicit sequence number in DTLS’s record layer 
helps mitigate replay attacks. 

• Denial of Service (DoS) attacks: DTLS makes Denial of Service (DoS) attacks 
less effective by disabling fragmentation. During the handshake, a stateless 
cookie exchange prevents DoS attacks like resource consumption attacks 
and amplification attacks. 

• Handling Invalid Records: Unlike TLS, DTLS is resilient in the face of invalid 
records (e.g., invalid formatting, length, MAC, etc.). In general, invalid 
records SHOULD be silently discarded, thus preserving the association.

14



K2SN Signature scheme
• K2SN-MSS extends the KSN-OTS to multi-message signature scheme and uses SWIFFT as the underlying 

hash function. 
• Each of KSN-OTS from K2SN-MSS is used to sign a single message, i.e., 2h KSN-OTS can be generated for

signing 2h messages.
• The parameters of SWIFFT are chosen such that it provides 512-bit classical (256-bit quantum) security 

for K2SN-MSS against existential unforgeability in chosen message attack (EUF-CMA).
• K2SN-MSS Signature consists of three algorithms:

• Key Generation
• Uses Chacha20 as a sub- module, and computes the component secret keys, hash keys and the random pads. 
• SWIFFT hash function was used to compute the component public keys and construct the Merkle tree.

• Signature Generation
• 1-CFF algorithm to determine the subset of component keys that are associated with a message.
• The signing  also use ChaCha20 and SWIFFT. 

• Signature Verification
• 1-CFF algorithm to determine the subset of component keys that are associated with a message.
• The signing and the verification algorithms use ChaCha20, SWIFFT, and the 1-CFF. 
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Li Tree 
(or KSN-OTS 
Tree)

H-Tree
(or MSS 
Tree)

Merkle Tree Construction 
Root is published as public 
key



Sabyasachi Karati and Reihaneh Safavi-Naini. K2sn-mss: An efficient post-quantum signature. In Proceedings of the 2019 ACM Asia Conference on Computer and Communications 
Security, pages 501–514, 2019. 

Key Generation

Signature Generation Signature Verification

K2SN Signature Algorithms



D1 : Receiver

T-
Req(nonce)

(nonce, T-
Res)OTS1

Sender

• For each TESLA response message, OTSi is used.
• Saves state of the signature- Index of the OTS and Authentication path.

Fig : Using K2SN-MSS in TESLA

Pi(Ki-1,Di, hmacKi)
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PQ-TESLA

• Threat Model of PQ-TESLA :
• Adversary having access to a 

quantum computer.

• In PQ-TESLA, replace DSS with any hash-
based signature scheme.

• Replace ECDSA with K2SN-MSS

• In TESLA Initialization, the 
Synchronization Message is signed using 
K2SN-OTS of K2SN-MSS.

• All other sender and receiver operations 
remains same as described in the 
background.



Data Stream Authentication with PQ Security

+ TESLA Initialization + K2SN Signature

TESLA Extension

+ TESLA Initialization(113Bytes) : Nonce, 
T_sender, rate, interval_id, T_start, n, 
T_int, d, K_i,  K2SN Signature(21.3KB)

TESLA Extension(68Bytes) : i, K_i, 
Tesla_MAC

PQ TESLA and its Application to DTLS
(High level Overview)

RTT

ServerHello + Tesla Synchronization Request (32 Bytes)
ClientKeyExchange + Tesla Synchronization Response (113) + ECDSA(136Bytes) 

ClientKeyExchange + Tesla Synchronization Response (113 Bytes) + K2SN-MSS(21331Bytes)19



PQ-DTLS with Source Authentication and Data 
Integrity

• Security Goals :  We aim to make DTLS PQ secure. We claim that integration of post-quantum TESLA 
still preserves the security of DTLS. 

• To provide DTLS with authentication and integrity with PQ security :
• Packet Authenticity : Every received packet inherits the sender authentication from the handshake layer, which 

means that the receiver is ensured that origin of the packet is the same as the one established in the handshake. 
Use of TESLA to provide source authentication(signing key commitment) at handshake layer using hash-based 
signature. 

• Packet Integrity : The data in the packet has not been tampered with. Use of TESLA authentication tag to provide 
integrity at record layer.

• Adversary is/has :
• Capable of intercepting message eavesdrop, capture, drop, resend, delay, and alter packets.
• Unlimited storage capabilities, and his computing power is large but not unbounded. 
• Access to a quantum computer capable of running Shor’s quantum algorithm in polynomial time. 

Limitation : Nonetheless the adversary cannot invert a pseudorandom function (or distinguish it from a 
random function) with non-negligible probability. 
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TESLA Initialization in DTLS Handshake Layer

• The following handshake flights were 
modified:

• ServerHello + Tesla Synchronization 
Request(32 Bytes)

• ClientKeyExchange + Tesla Synchronization 
Response(113 Bytes) + :

• Signed with ECDSA (136 Bytes)
• Signed with K2SN-MSS (21331 Bytes)
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TESLA Extension in DTLS Record layer
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Each application record data has overhead of 68 Bytes added by TESLA extension.
Maximum Payload size: 16384 Or 65536Bytes.



Implementation
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TinyDTLS is a light-weight implementation library of the DTLS protocol in C. 

Implemented Protocol
• DTLS : PSK, MAC, ENC
• DTLS-TESLA : PSK, ENC(optionally), MAC, ECDSA, TESLA-EXT
• PQ-DTLS-TESLA : PSK, ENC(optionally), MAC, K2SN-MSS and TESLA-EXT



Function Flow of Sender and Receiver(TinyDTLS) with TESLA

Sender Receiver

D

D T-Ex

D T-Ex

D T-ExRH

RH

En(D)

Enc(D)

Dec(D)

Dec(D)

D T-ExRH

D T-ExRH
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Experimental Setup
Objective: 

• How much is overhead of adding PQ security to DTLS ??
• How much time consumed in PQ secure version of DTLS – handshake time and application data transfer time ??
• Computation time for signature schemes –ECDSA and K2SN-MSS.
• Performance Comparison : DTLS  vs TESLA to DTLS (without PQ)  vs   TESLA to DTLS (with PQ).

Testing Environment: 
• Client and Server both run on same host computer on Ubuntu 16.04 OS. 
• Linux has POSIX support needed to run the TinyDTLS application.
• OS  has support AVX2 CPU instructions needed to run K2SN-MSS.

Methodology/Routine: 

• Communication is unicast, DTLS Server is in waiting state to accept DTLS client requests.

• Before a DTLS client can initiate the DTLS handshake, it needs to know the IP address of that DTLS server and PSK credentials to
use.

• We conduct experiments for 50 DTLS client consecutively sending requests to DTLS server.

We discuss about results of the experiments in three aspects: feasibility, performance, and efficiency. 
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Performance Metric Experiments Objective

Feasibility

Handshake layer overhead Measure extra bytes to be transferred during HS.

Record layer overhead Measure extra bytes to be transferred for each packet.

Code Size Measure the is theoretic value of code size measurement from 
the implemented code in terms of lines of code(loc).

Performance and Efficiency

Evaluation of cryptographic primitives We evaluate the performance of ECDSA signature and hash-
based signature, K2SN-MSS

Handshake latency TESLA initialization and PQ-security to DTLS for the overall 
duration of a handshake 

Data transfer latency Compare latency time of authenticated messages.

Experiments
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Experiment 1 : Handshake layer Overhead

• Aim. Aim of this experiment are to see the cost of adding post-quantum security to DTLS 
handshake, in terms of bytes overhead.
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Experiment 2 : Record Datagram Overhead
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Aim. Aim of this experiment are to see the cost of adding post-quantum security to record 
datagram of DTLS
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Experiment 3 : Code Size
Aim. The aim was to measure the is theoretic value of code size measurement from the imple-mented
code, which is in C programming language



Experiment 4 : Evaluation of cryptographic primitives
Aim : We evaluate the performance of ECDSA signature and hash-based signature, K2SN on the targeted 
machines, by measuring the run-time for key generation, signing and verification operations. We want to 

measure the cost of implementing a hash-based signature in terms of how fast the algorithm takes as 
compared to a currently used non-post-quantum signature, ECDSA.
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Experiment 5 : Handshake Latency

Aim : We measure the handshake time from the beginning of client hello until the finished message has 
been received.



Experiment 6 : Data Transfer Latency

Performance and Efficiency on Network
Aim. The data latency is considered as the measure of system’s cryptographic performance. A packet goes 

through encryption and integrity at sender’s side and decryption and integrity check at receiver’s side.

32



Performance Metric Experiments Objective Results

Feasibility 

Handshake layer overhead Measure extra bytes to be 
transferred during HS.

TESLA initialization overhead is 145 Bytes
+  ECDSA(136Bytes)                               = 281 Bytes   
+  K2SN-MSS(21331Bytes)                    = 21476 Bytes

Record Datagram overhead Measure extra bytes to be 
transferred for each packet.

Overhead is 68 Bytes per packet.

Code Size Measure the is theoretic value of 
code size measurement from the 
implemented code in terms of lines 
of code(loc).

DTLS : 11453 
TESLA : 6824
K2SN-MSS : 197467
DTLS-TESLA : 18277
PQ-DTLS-TESLA : 216183

Performance and 
Efficiency

Evaluation of cryptographic 
primitives 

We evaluate the performance of 
ECDSA signature and hash-based 
signature, K2SN-MSS

TKeyGen (K2SN-MSS ) > TKeyGen (ECDSA) 
TSigGen (K2SN-MSS ) < TSigGen (ECDSA)
TSigVer(K2SN-MSS ) < TSigVer (ECDSA)

Handshake latency TESLA initialization and PQ-security 
to DTLS for the overall duration of a 
handshake 

THS (DTLS-TESLA) ~ 64 * THS (DTLS)  
THS (PQ-DTLS-TESLA) ~ 28 * THS (DTLS)

Data transfer latency Compare latency time of 
authenticated messages.

Tprocessing∝ PayloadSize (Observed)
Tprocessing (DTLS-TESLA) >  Tprocessing (DTLS)
Tprocessing (PQ-DTLS-TESLA) >  Tprocessing (DTLS)
Tprocessing (DTLS-TESLA) ~  Tprocessing (PQ-DTLS-TESLA)

Experiments & Results
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Conclusion & Future Work

Our integration of quantum-resistant schemes into DTLS proves to be feasible: the induced 
performance overhead is tolerable, to get PQ compatible protocol. 

We provide and analyse the attacks in our modified DTLS that accommodates TESLA and makes DTLS 
PQ secure, in our next phase, for security and scrutiny of proposed PQ system. 
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Comments & Suggestions

• Key Storage for TESLA – how much storage is required? 
• Why we use F and F’
• Emphasize on HS latency
• How to calculate upper bound on sender’s interval,(value x??) 
• In the PQ DTLS, did you use certificate? If not, what did you do to 

replace the certificate?
• RAM used before and after compiling 
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