
Verifiable Computation using
Smart Contracts

Mahmudun Nabi
University of Calgary, Canada

June 26, 2020

Outline

• Verifiable computation
• Backgrounds

• CRR Protocol
• Ethereum and smart contract
• Merkle Hash Tree

• Our Work
• Verifiable Computation using Smart Contracts

• Conclusion

Motivation

3

Verifiable outsourcing: Efficiently verify the correctness of a
computation result that is provided by the cloud.

Outsourcing Computation

Verifiable Outsourcing
(Existing approaches)

• Using cryptography:
→Probabilistic checkable proofs [Kil92, Mic00]
→Homomorphic Encryption [GGP10, CKV10, AIK10]

→Expensive computation, inflexible

• Outsourcing by replication:
→ Outsource the computation to a number of clouds.
→ Select a solution that is generated by the majority of the clouds as the correct

solution.
• Verifiable outsourcing using two clouds (Canetti, Rothblum and Riva [CRR11])

4

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). STOC, 92
[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 2000.
[GGP10] Gennaro, R., Gentry C., and Parno B. Non-interactive verifiable computing: outsourcing computation to untrusted workers, CRYPTO’10.
[CKV10] Chung K.M., Kalai Y., and Vadhan S. Improved delegation of computation using fully homomorphic encryption, CRYPT’10
[AIK10] Applebaum B., Ishai Y., and Kushilevitz E.: From secrecy to soundness: efficient verification via secure computation. ICALP’10
[CRR11] Canetti, R., Riva, B., & Rothblum, G. N.: Practical delegation of computation using multiple servers, CCS’11

CRR Protocol

Cloud 2

Cloud 1

y1 = y2
?

y1 = y2

y1 = y2

Correct answer- Accept

Play refereed game - Identify
malicious cloud
- binary-search
- verify-reduced-step

[CRR11] Canetti, R., Riva, B., & Rothblum, G. N.: “Practical delegation of computation using multiple servers”, CCS’11

 Refereed Delegation of Computation (RDoC)

5

Strength:
- Provable security

Weakness:
- Client is trusted

Blockchain
• Key Components of Blockchain:

6

Node Transaction Block Consensus

- Full node
- Mining node (aka miner)
- Lightweight node

- A cryptographically signed
piece of instruction that is generated
by a node and submitted to the
blockchain.

- Transaction data is permanently
recorded in files called blocks.

- To add a new block to the blockchain,
all participating nodes must come to a
common agreement (also called consensus).

• Forming blockchain: by chaining blocks

Figure: Example of forming blockchain

• Key Characteristics:
- Decentralization
- Anonymity
- Transparency
- Immutability

Types of Blockchain

7

• From Academic point of view
• Public
• Private

• From administrative point of view
• Permissionless
• Permissioned

• Example:
• Bitcoin, Ethereum, Zerocash: Public
• Hyperledger fabric, Ripple, Corda: Private

Ethereum
• Ethereum: An open source, decentralized computing platform
• Enables users to develop smart contracts and decentralized applications

(DApps).
• Key terms

• Peer-to-peer network of computers
• Accounts

• externally owned accounts (EOA)
• contract accounts

• Consensus algorithm
• Ethereum Virtual Machine (EVM)
• Smart contract
• Gas

• Digital currency: Ether

8

Smart contracts
• A smart contract is a computer program that is stored on the blockchain.
• A contract creation transaction deploys the contract code in the blockchain.
• The execution of the code is triggered by the transactions added to the blockchain
• Execution fees are defined in terms of gas and smart contract execution in

Ethereum is bounded by gas limit.

→Advantages:
• Guarantee correctness
• Manage interaction between parties
• Manage payments
• Immutable

Goal: Smart contracts as a TTP for outsourcing

9

Merkle Hash Tree

10

• Binary tree constructed using collision-resistant hash function
where,
- each leaf node is the hash of data element 𝐷𝐷𝑖𝑖 of set D of n

elements,
- every internal node is the hash of the concatenation of its

two child nodes, and
- the root is the hash for the full data set, denoted as
𝑴𝑴𝑯𝑯𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝑫𝑫 , where 𝐷𝐷 = {𝐷𝐷1, … ,𝐷𝐷𝑛𝑛}

• Merkle Proof, (𝝆𝝆𝒊𝒊)
- A path consisting of hash values along the path from

the ith leaf to the root.
- Used to efficiently prove that an element is included

in the Merkle tree.
• VerifyMHProof

- Function that verifies whether the ith leaf element
corresponds to a Merkle tree with root 𝑴𝑴𝑯𝑯𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝑫𝑫
using proof 𝝆𝝆𝒊𝒊.

Our Contribution

• Verifiable Outsourcing
• by using a smart contract
• by using the CRR protocol for verifiable computation using two clouds

• Copy Attack
• Protection Mechanism

• Result Confirmation (RC) protocol

• Implementation idea
• Delay analysis

11

Cloud 2

Cloud 1
Request computation

Collect result

Problem:
Copy Attack

Our proposal
Verifiable Computation using Smart Contracts

Verify result

Assumptions:
- Client is untrusted.
- One of the clouds is malicious and

the other is rational.

12

Cloud 2

Cloud 1

EVM

EVM

EVM

EVM

EVM

EVM

EVM

EVM

Copy Attack

13

Cloud 2’s result
Cloud 1’s result

1. Cloud 1 sends f(x) to smart contract.

2. Cloud 2 sees f(x); copies f(x) and sends as its
result it to the network.

3. All Ethereum nodes see two identical values from two clouds.
The result is accepted as correct.

Copy attack

14

 An attractive strategy for rational (uncorrupted) cloud.

𝐶𝐶1

𝐶𝐶2 𝐶𝐶2

(Case 1)
- Results match
- Correct result
- Clouds get their

rewards

(Case 2)
- Results mismatch
- Correct result
- Honest cloud

rewarded
- Malicious cloud

penalized

(Case 3)
- Results match
- Correct result
- Clouds get their

rewards

(Case 4)
- Results mismatch
- Correct result
- Honest cloud

rewarded
- Malicious cloud

penalized

(Case 5)
- Results match
- Incorrect result
- Clouds get their

rewards

compute

compute compute
malicious

copy copy

malicious

Protection against copy attack

15

scCRR (smart contract using CRR) Protocol:
• Each cloud 𝑖𝑖 sends its result:

(𝑦𝑦𝑖𝑖, 𝑴𝑴𝑴𝑴𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝑪𝑪), N)

• If the results match,
• Result Confirmation (RC) protocol is used.

• If the results do not match,
• Malicious Cloud Identification (MCId)

protocol (of CRR) is used.

Notations:
𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐶𝐶 𝑏𝑏𝑏𝑏 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖
𝑁𝑁 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶

CCSW 2019

Computation Model

16

t: tape of configuration 𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟1 = (𝑠𝑠1, ℎ1, 𝑣𝑣1, 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜1)

Reduced Turing Machine configuration:
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡))

𝑟𝑟𝑟𝑟1 𝑟𝑟𝑟𝑟2 … … … … … 𝑟𝑟𝑟𝑟𝑁𝑁𝐶𝐶:

Array of reduced configuartions:

Result Confirmation (RC)

• 𝑆𝑆𝑆𝑆 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖: 𝑞𝑞𝑖𝑖 = (𝑖𝑖, 𝑥𝑥𝑖𝑖) ∀ 𝑖𝑖 ∈ {1,2}
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 → 𝑆𝑆𝑆𝑆: 𝑝𝑝𝑥𝑥𝑖𝑖
• For each cloud i

• 𝑆𝑆𝑆𝑆:𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑟𝑟𝑖𝑖 ,𝑝𝑝𝑥𝑥𝑖𝑖)
• If True => valid

Else invalid

17

Theorem: Let H be a collision resistant hash function that is used to construct the Merkle
hash tree on the array of reduced configurations, 𝐶𝐶. Then RC protocol provide protection
against copy attack.

RC (an example)

18

• 𝑆𝑆𝑆𝑆 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1: 𝑞𝑞1 = 1, 1
• 𝑆𝑆𝑆𝑆 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2: 𝑞𝑞2 = 2, 3

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 → 𝑆𝑆𝑆𝑆: 𝑝𝑝1 = (𝐻𝐻1,𝐻𝐻2,𝐻𝐻34,𝐻𝐻5678)
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 → 𝑆𝑆𝑆𝑆: 𝑝𝑝3 = 𝐻𝐻3,𝐻𝐻4,𝐻𝐻12,𝐻𝐻5678

• Smart contract verifies:

𝑟𝑟1 = 𝐻𝐻(𝐻𝐻(𝐻𝐻(𝐻𝐻1| 𝐻𝐻2 ||𝐻𝐻34)||𝐻𝐻5678)
?

𝑟𝑟2 = 𝐻𝐻(𝐻𝐻(𝐻𝐻(𝐻𝐻3| 𝐻𝐻4 ||𝐻𝐻12)||𝐻𝐻5678)
?

Abstract scCRR smart contract

19

Sketch of the implementation

Problem Giver
(Ethereum node)

scCRR
Smart

Contract
(in Solidity)

Initialize
computation Collect result

send result send result

result confirmation / dispute
resolution

Cloud 1
(Ethereum node)

result confirmation / dispute
resolution

register

Website

Publish computation
bytecode

register

Download
computation bytecodeDownload

computation bytecode

1

2

3 3

4 4

5 5

6 6

8

Cloud 2
(Ethereum node)

20

EVM EVM

Delay analysis

• The number of transactions that will be sent and received between the
clouds and the smart contract for a given computation.

21

Table: Number of transactions required in different phases of
the smart contract execution.

Conclusion

• Verifiable Computation system based on CRR protocol using
Smart Contracts.

• Smart contract as a TTP
• Copy attack and protection mechanism

• Future works

22

Thanks

23

	Verifiable Computation using Smart Contracts �
	Outline
	Motivation
	Verifiable Outsourcing�(Existing approaches)�
	CRR Protocol
	Blockchain
	Types of Blockchain
	Ethereum
	Smart contracts
	Merkle Hash Tree
	Our Contribution
	Our proposal�Verifiable Computation using Smart Contracts �
	Copy Attack
	Copy attack
	Protection against copy attack
	Computation Model
	Result Confirmation (RC)
	RC (an example)
	Abstract scCRR smart contract
	Sketch of the implementation
	Delay analysis
	Conclusion
	Thanks

