
Leakage Resilient Cheating Detectable
Secret Sharing

1

Sabyasachi Dutta University of Calgary

Joint work with Rei Safavi-Naini

What is Secret Sharing?
● Encryption is NOT the only way to keep Confidentiality of data
● Secret Sharing

○ Dividing secret in randomized way!

○ Share = “Divided, randomized data”

● Moreover :
secret can be recovered from the shares

Shamir’s (t,n) secret sharing

3

Sharing Phase (t=3)

4

Recovery Phase t = 3

5

Two main properties of any (t,n) SS:

● Correctness : Any t shares must recover the secret s

● Secrecy : Any t-1 shares must not reveal any information about the secret
s

● Secrecy : Any t-1 shares must not reveal any information about the secret
s ∊ Zp

Sh[i1] , Sh[i2] , …………… , Sh[it-1]

S = 0
???

S = 1
???

S = p-1
???

………
……...
.

● Secrecy : Any t-1 shares must not reveal any information about the secret
s

Sh[i1] , Sh[i2] , …………… , Sh[ik-1]

S = 0
???

S = 1
???

S = p-1
???

………
……...
.

All values are equally

probable as secret

Threshold Secret Sharing

● Numerous Applications

➢ Secure multiparty computation [GMW87,
BGW88, CCD88,...]

➢ Threshold cryptographic primitives
[DF90,Fra90, ….]

Security of these applications crucially depends on the SECRECY
property of secret sharing

Twist in the story (Introducing leakage)

sh[1] sh[2] sh[3] …………….. sh[n]

f1
f2 f3

fn

● Queries with leakage functions
f1 , f2 , … fn

● Leak ANY partial information
● Output of each fi is SMALL

Twist in the story (Introducing leakage)

sh[1] sh[2] sh[3] …………….. sh[n]

f1
f2 f3

fn

● Obtains f1 (sh[1]), f2 (sh[2]) , …
fn (sh[n])

● Leak ANY partial information
● Output of each fi is SMALL

f1 (sh[1])

fn (sh[n])

Is this model of (LOCAL) leakage reasonable?
● Physical Separation of servers where the shares are stored

● Shrinked output of leakage

● Adversarial leakage i.e. the adversary gets to choose the leakage functions
independent of each other

Shamir scheme not leakage resilient [BDS+18]

Over finite field F2^k

………..

sh[1] sh[n]

S

Shamir scheme not leakage resilient

Over finite field F2^k

………..

sh[1] sh[n]

Lagrange interpolation for recovery

S = ƛ1sh[1] + ….. + ƛnsh[n]

S

Shamir scheme not leakage resilient

Over finite field F2^k

………..

sh[1] sh[n]

Lagrange interpolation

S = ƛ1sh[1] + ….. + ƛnsh[n]

S

ƛ1 ƛn

Modelling the leakage

● Local / Independent leakage [GK 2018, BDS+ 2018, SV 2019]

● Semi-local leakage [SV 2019]

● Adaptive leakage [KMS 2019]

Stronger models of
leakage

In this talk

● Local / Independent leakage [GK 2018, BDS+ 2018, SV 2019] ✓

● Semi-local leakage [SV 2019] X

● Adaptive leakage [KMS 2019] X

Stronger models of
leakage

Two models of local leakage for (t,n)-SS

sh[1] sh[2] sh[t-1] …………….. sh[n]

f1
f2

ft-1
fn

……….

● [BDS+18] Weak : each leakage ≠ share (length of each leakage is l bits)
● [SV’19] Strong : any t-1 full shares + individual leakage from the rest n-t+1 ✔

Results with respect to Local Leakage
● Benhamouda et al. 2018 :

● Srinivasan-Vasudevan 2019:

➢ Shamir scheme is LR if field is of size
large prime p

➢ Threshold is high n - o(log n) (>0.85n)
➢ Leakage bound Ω (log p) bits

➢ Compiler to make (t,n) Shamir
scheme leakage resilient where t > 1

➢ Uses average case strong seeded
Extractor

Security against passive adversary (who follows protocol)

Indistinguishability Security of [SV 2019]

f1

fn

f3

M0 and M1

Choose
randomly
Mb and

secret
share

sh[2]

……………..

sh[t-1]

sh[n]

f1 =id

fn

ft-1 = id

sh[1]

Srinivasan-Vasudevan 2019

sh[2]

………………...

sh[t-1]

Leak (sh[t])

Leak (sh[n])

sh[1]

With this view unable to guess !!!

Pr[b’=b] ≈ 1/2

b’

Srinivasan-Vasudevan 2019

sh[2]

………………...

sh[t-1]

Leak (sh[t])

Leak (sh[n])

sh[1]

With this view unable to guess !!!

Pr[b’=b] ≈ 1/2

b’

● The secret is (statistically) hidden even when the
adversary has leakage information from all shares

● View of Adv. when M0 is secret shared ≈ View of Adv.
when M1 is secret shared

Overview of SV’19 construction : Secure against passive adversary

m

sh[1]

sh[2]

sh[n]

Shamir Share

Overview of SV’19 construction : Secure against passive adversary

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s)

Ext (w2 , s)⊕

⊕ Ext (wn , s
)

⊕

⊕

⊕

r

r

r

Run (2,n) Shamir SS :

(s , r)

(S1 , S2 ,........, Sn)

⊕

Overview of SV’19 construction : Secure against passive adversary

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s)

Ext (w2 , s)⊕

⊕ Ext (wn , s
)

⊕

⊕

⊕

r

r

r

w1 S1

w2

wn

S2

Sn

⊕ share[1]

share[n]

Reconstruction
● Rec s and r from Si ‘s

● Remove masking to obtain Shamir shares sh[i1] sh[i2] sh[it]

Reconstruct m ƛ1
sh[i1]

+ ƛt sh[it]+=

[SV’19] construction : Active adversary attacks !!

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s)

Ext (w2 , s)⊕

⊕ Ext (wn , s
)

⊕

⊕

⊕

r

r

r

w1 S1

w2

wn

S2

Sn

⊕ ⊕ Δ

Overview of SV’19 construction : Fails against Active adversary

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s)

Ext (w2 , s)⊕

⊕ Ext (wn , s
)

⊕

⊕

⊕

r

r

r

w1 S1

w2

wn

S2

Sn

⊕ ⊕ Δ

can choose Δ :

m + Δ is recovered instead of m

LRSS Schemes secure against active
● Existing LR SS constructions provide security against passive adversary
● We consider

➔ Can LRSS provide security against active attacks?

➔ Honest parties can detect that recovered secret is not correct

➔ This is the minimum requirement of security against active attacks

➔ Known as Cheating Detection

Stronger requirements : cheater identification, robustness etc.

Building Blocks

● Leakage-resilient Algebraic manipulation detection (AMD) codes

● LRSS of [SV’19]

AMD codes [CDF+2008]
AMD code = (ENC, DEC)

m c
ENC

m
DEC

Security:

m c
ENC + Δ = c + Δ m or ⟂

DEC

● Weak AMD code
● Strong AMD code

Initial idea:
We want :

1. Our scheme should be Leakage resilient

2. Any active attack should be detected i.e. either recover m or recover ⟂

● How about?

● LRSS guarantees leakage resilience
● AMD-DEC detects any additive tampering

m c
AMD-ENC

share[1] , share[2], ………., share[n]
LRSS [SV’19]

● Rec of [SV’19] is a linear sum ƛ1 sh[1] ƛ2 sh[2] ƛt sh[t]+ +

of Shamir shares ⇒ either c is obtained or c + Δ is obtained

● AMD-DEC can now output either m or ⟂
● Just a small glitch :

AMD provides security if does not see c

However, LRSS reveals some leakage information on c

Requirement : Leakage resilient AMD code
Good news : [Ahmadi, Safavi-Naini’13], [Lin,S-N,Wang’16], [Aggarwal, Kazana,
Obremski’18] studied LR-AMD codes

● The leakage from AMD codes is measured through leakage rate ⍴ = ratio of AMD
codeword symbols (bits) that are leaked to the adversary

● LR-AMD codes guarantee security when c is partially leaked to the adversary but the
entropy conditioned on the leakage information remain high

Main Challenge
● How to relate :
➔ leakage rate ⍴ of LR-AMD codes and
➔ privacy error / leakage on secret message ε of LR-Secret Sharing

We use average guessing probability

GP(C | Leak from LRSS) = 2^ {-- H∞ (C | Leak from LRSS) }

to bound the leakage - rate ⍴ of AMD code given Leak from LRSS

Our results
● Compiler for cheating detectable LRSS in local leakage model

● (OKS model of cheating) : LR-weak AMD Code + [SV’19] compiler
● (CDV model of cheating) : LR-strong AMD Code + [SV’19] compiler

➔ Extension to semi-local leakage model : (OKS & CDV models of cheating)

❏ Leakage-resilience rate is 1 (same as [SV’19] compiler)
❏ Information rate is 2 times the rate of [SV’19]

	
Leakage Resilient Cheating Detectable Secret Sharing�
	What is Secret Sharing?
	Shamir’s (t,n) secret sharing
	Sharing Phase (t=3)
	Recovery Phase t = 3
	Two main properties of any (t,n) SS:
	Slide Number 7
	Slide Number 8
	Threshold Secret Sharing
	Twist in the story (Introducing leakage)

	Twist in the story (Introducing leakage)

	Is this model of (LOCAL) leakage reasonable?
	Shamir scheme not leakage resilient [BDS+18]
	Shamir scheme not leakage resilient
	Shamir scheme not leakage resilient
	Modelling the leakage
	In this talk
	Two models of local leakage for (t,n)-SS

	Results with respect to Local Leakage
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Reconstruction
	Slide Number 29
	Slide Number 30
	LRSS Schemes secure against active
	Building Blocks
	AMD codes [CDF+2008]
	Initial idea:
	Slide Number 35
	Requirement : Leakage resilient AMD code
	Main Challenge
	Our results
	Slide Number 39

