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What is Secret Sharing?
● Encryption is NOT the only way to keep Confidentiality of data
● Secret Sharing

○ Dividing secret in randomized way!

○ Share = “Divided, randomized data”

● Moreover : 
secret can be recovered from the shares



Shamir’s (t,n) secret sharing
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Sharing Phase (t=3) 
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Recovery Phase t = 3
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Two main properties of any (t,n) SS:

● Correctness : Any t shares must recover the secret s

● Secrecy : Any t-1 shares must not reveal any information about the secret 
s



● Secrecy : Any t-1 shares must not reveal any information about the secret 
s ∊ Zp

Sh[i1] , Sh[i2] , …………… , Sh[it-1]

S = 0 
???

S = 1 
???

S = p-1 
???

………
……...
.



● Secrecy : Any t-1 shares must not reveal any information about the secret 
s

Sh[i1] , Sh[i2] , …………… , Sh[ik-1]

S = 0 
???

S = 1 
???

S = p-1 
???

………
……...
.

All values are equally 

probable as secret



Threshold Secret Sharing 

● Numerous Applications 

➢ Secure multiparty computation [GMW87, 
BGW88, CCD88,...]

➢ Threshold cryptographic primitives 
[DF90,Fra90, ….]

Security of these applications crucially depends on the SECRECY 
property of secret sharing



Twist in the story (Introducing leakage)

sh[1] sh[2] sh[3] …………….. sh[n]

f1
f2 f3 

fn 

● Queries with leakage functions            
f1 , f2 , … fn 

● Leak ANY partial information
● Output of each fi is SMALL



Twist in the story (Introducing leakage)

sh[1] sh[2] sh[3] …………….. sh[n]

f1
f2 f3 

fn 

● Obtains f1 (sh[1]), f2 (sh[2]) , … 
fn (sh[n])

● Leak ANY partial information
● Output of each fi is SMALL

f1 (sh[1])

fn (sh[n])



Is this model of (LOCAL) leakage reasonable?
● Physical Separation of servers where the shares are stored

● Shrinked output of leakage

● Adversarial leakage i.e. the adversary gets to choose the leakage functions 
independent of each other



Shamir scheme not leakage resilient [BDS+18]

Over finite field F2^k

………..

sh[1] sh[n]

S



Shamir scheme not leakage resilient

Over finite field F2^k

………..

sh[1] sh[n]

Lagrange interpolation for recovery

S = ƛ1sh[1] + ….. + ƛnsh[n] 

S



Shamir scheme not leakage resilient

Over finite field F2^k

………..

sh[1] sh[n]

Lagrange interpolation

S = ƛ1sh[1] + ….. + ƛnsh[n] 

S

ƛ1 ƛn



Modelling the leakage 

● Local / Independent leakage [GK 2018, BDS+ 2018, SV 2019]  

● Semi-local leakage [SV 2019]

● Adaptive leakage [KMS 2019]

Stronger models of 
leakage



In this talk

● Local / Independent leakage [GK 2018, BDS+ 2018, SV 2019] ✓

● Semi-local leakage [SV 2019] X

● Adaptive leakage [KMS 2019] X

Stronger models of 
leakage



Two models of local leakage for (t,n)-SS

sh[1] sh[2] sh[t-1] …………….. sh[n]

f1
f2 

ft-1 
fn 

……….

● [BDS+18] Weak : each leakage ≠ share (length of each leakage is l bits)
● [SV’19] Strong : any t-1 full shares + individual leakage from the rest n-t+1  ✔



Results with respect to Local Leakage
● Benhamouda et al. 2018 :  

● Srinivasan-Vasudevan 2019:

➢ Shamir scheme is LR if field is of size 
large prime p

➢ Threshold is high n - o(log n) (>0.85n)
➢ Leakage bound Ω (log p) bits

➢ Compiler to make (t,n) Shamir 
scheme leakage resilient  where t > 1

➢ Uses average case strong seeded 
Extractor

Security against passive adversary (who follows protocol)



Indistinguishability Security of [SV 2019] 

f1

fn

f3

M0 and M1

Choose 
randomly 
Mb and 

secret 
share 



sh[2]

……………..

sh[t-1]

sh[n]

f1 =id

fn

ft-1 = id

sh[1]



Srinivasan-Vasudevan 2019 

sh[2]

………………...

sh[t-1]

Leak (sh[t])

Leak (sh[n])

sh[1]

With this view unable to guess !!!

Pr[b’=b] ≈ 1/2

b’



Srinivasan-Vasudevan 2019 

sh[2]

………………...

sh[t-1]

Leak (sh[t])

Leak (sh[n])

sh[1]

With this view unable to guess !!!

Pr[b’=b] ≈ 1/2

b’

● The secret is (statistically) hidden even when the 
adversary has leakage information from all shares

● View of Adv. when M0 is secret shared ≈  View of Adv. 
when M1 is secret shared



Overview of SV’19 construction : Secure against passive adversary

m

sh[1]

sh[2]

sh[n]

Shamir Share



Overview of SV’19 construction : Secure against passive adversary 

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s )

Ext (w2 , s )⊕

⊕ Ext (wn , s 
)

⊕

⊕

⊕

r

r

r

Run (2,n) Shamir SS : 

( s , r ) 

( S1 , S2 ,........, Sn )

⊕



Overview of SV’19 construction : Secure against passive adversary

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s )

Ext (w2 , s )⊕

⊕ Ext (wn , s 
)

⊕

⊕

⊕

r

r

r

w1 S1

w2

wn

S2

Sn

⊕ share[1]

share[n]



Reconstruction
● Rec s and r from Si ‘s 

● Remove masking to obtain Shamir shares sh[i1] sh[i2] sh[it]

Reconstruct m ƛ1
sh[i1]

+ ƛt sh[it]+=



[SV’19] construction : Active adversary attacks !!

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s )

Ext (w2 , s )⊕

⊕ Ext (wn , s 
)

⊕

⊕

⊕

r

r

r

w1 S1

w2

wn

S2

Sn

⊕ ⊕ Δ



Overview of SV’19 construction : Fails against Active adversary

m

sh[1]

sh[2]

sh[n]

Ext (w1 , s )

Ext (w2 , s )⊕

⊕ Ext (wn , s 
)

⊕

⊕

⊕

r

r

r

w1 S1

w2

wn

S2

Sn

⊕ ⊕ Δ

can choose Δ  :

m + Δ  is recovered instead of m



LRSS Schemes secure against active 
● Existing LR SS constructions provide security against passive adversary
● We consider 

➔ Can LRSS provide security against active attacks?

➔ Honest parties can detect that recovered secret is not correct

➔ This is the minimum requirement of security against active attacks

➔ Known as Cheating Detection

Stronger requirements : cheater identification, robustness etc.



Building Blocks

● Leakage-resilient Algebraic manipulation detection (AMD) codes

● LRSS of [SV’19]



AMD codes [CDF+2008]
AMD code = (ENC, DEC) 

m c
ENC

m
DEC

Security:

m c
ENC + Δ =  c + Δ m or ⟂

DEC

● Weak AMD code
● Strong AMD code



Initial idea:
We want : 

1. Our scheme should be Leakage resilient

2. Any active attack should be detected i.e. either recover  m or recover ⟂

● How about?

● LRSS guarantees leakage resilience
● AMD-DEC detects any additive tampering

m c
AMD-ENC

share[1] , share[2], ………., share[n] 
LRSS [SV’19]



● Rec of [SV’19] is a linear sum ƛ1 sh[1] ƛ2 sh[2] ƛt sh[t]+ +

of Shamir shares    ⇒ either c is obtained or  c + Δ is obtained

● AMD-DEC can now output either  m or ⟂ 
● Just a small glitch :

AMD provides security if               does not see c

However, LRSS reveals some leakage information on c



Requirement : Leakage resilient AMD code
Good news : [Ahmadi, Safavi-Naini’13], [Lin,S-N,Wang’16], [Aggarwal, Kazana, 
Obremski’18] studied LR-AMD codes

● The leakage from AMD codes is measured through leakage rate ⍴ = ratio of AMD 
codeword symbols (bits) that are leaked to the adversary 

● LR-AMD codes guarantee security when c is partially leaked to the adversary but the 
entropy conditioned on the leakage information remain high



Main Challenge
● How to relate :
➔ leakage rate ⍴ of LR-AMD codes and 
➔ privacy error / leakage on secret message ε of LR-Secret Sharing 

We use average guessing probability

GP( C |  Leak from LRSS ) = 2^ {-- H∞ ( C |  Leak from LRSS) }

to bound the leakage - rate ⍴ of AMD code given Leak from LRSS



Our results
● Compiler for cheating detectable LRSS in local leakage model

● (OKS model of cheating) : LR-weak AMD Code + [SV’19] compiler
● (CDV model of cheating) : LR-strong AMD Code + [SV’19] compiler

➔ Extension to semi-local leakage model : (OKS & CDV models of cheating) 

❏ Leakage-resilience rate is 1 (same as [SV’19] compiler)
❏ Information rate is 2 times the rate of [SV’19]
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