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Complex Systems are Characterized By:
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Complex Systems are Characterized By:

eLarge-scale, Emergent Properties
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The Fundamental Task of Complex Systems

Order from Disorder
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The Fundamental Task of Complex Systems

Order from Disorder

<

But How Do We Measure Order?
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Order and Disorder: The Second Law of Thermodynamics

Entropy (disorder) tends to increase.
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echanics (Physics)

le entropy of a system?

Ludwig Boltzmann
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echanics (Physics)

le entropy of a system?

(microscopic) configuration of a system

.........

E.g. “All Heads”

of microstates

.....

Ludwig Boltzmann

e System is most likely to be found in macrostate with most microstates

Boltzmann says the most likely macrostate
is the macrostate with the greatest entropy

Monday, April 4, 2011



Microstate
Ways of arranging (ordering) parts of a system

|

Macrostate
Collection of microstates with same “type” of order

|

Entropy

Measure of likelihood of system to be in a particular macrostate
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Microstate
Ways of arranging (ordering) parts of a system

|

Macrostate
Collection of microstates with same “type” of order

|

Entropy

Measure of likelihood of system to be in a particular macrostate

Entropytendsto  JIICICASE
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Question: How can entropy decrease if (apparently) no work is
done?!
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Question: How can entropy decrease if (apparently) no work is
done?!

Answer: The act of obtaining information through measurement
constitutes the missing work.
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Question: How can entropy decrease if (apparently) no work is
done?!

Answer: The act of obtaining information through measurement
constitutes the missing work.

Information —— Order/Disorder —— Entropy
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The Next Step: Information Theory

Problem: How can you transmit signals with less loss of
information over telegraph and telephone wires?
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The Next Step: Information Theory

Problem: How can you transmit signals with less loss of
information over telegraph and telephone wires?

SOUrcé —> Macrostate (‘made up of’ lots of messages)

Microstate (a particular
configuration of ‘words’ )

.

N LT "
§ o

Information content is defined in terms of the
entropy of the message source.

shannon Entropy
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Where do we use Information Theory?

e Cryptography (codes and cyphers)
e Computer Science (data compression)

eBioinformatics (gene sequence alignment)
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Where do we use Information Theory?

e Cryptography (codes and cyphers)
e Computer Science (data compression)

eBioinformatics (gene sequence alignment)

What is the useful information in a system?
How non-random is the system?
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What is Network?

e “Picture” of interactions

¢ Agents become nodes, connected by an
edge if they interact
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What is Network?

e “Picture” of interactions

¢ Agents become nodes, connected by an
edge if they interact

Rgent | eraction
—

Agent
1/3

eEdges can be directed

¢ Nodes/Edges can be weighted to convey information
about, e.g. strength of interactions
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Networks, networks everywhere!
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Networks, networks everywhere!

Nodes: Genes (proteins) Edges: Activation/Inhibition
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Networks, networks everywhere!
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Networks, networks everywhere!
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The “ridiculogram”: How do you find order or
information in this mess?!

Structure?

- e
- -‘ vy
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The World Wide Web

Earlier: Order was a measure of information content-- of how
much a system differed from its random counterpart.
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An Example...

Alexandra

Kieran

Al

William

Lin;sey

/‘Courtney

Jason L.

Taryn
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Degree: How many edges are adjacent to a node \
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Degree: How many edges are adjacent to a node W
O O

Clustering Coefficient: 3 times number of closed triangles divided
by number of possible triads (two edges with a shared node)
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Degree: How many edges are adjacent to a node \l//’
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Clustering Coefficient: 3 times number of closed triangles divided
by number of possible triads (two edges with a shared node)

C=1/2
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Degree: How many edges are adjacent to a node \VP

O \Q

Clustering Coefficient: 3 times number of closed triangles divided
by number of possible triads (two edges with a shared node)

C=1/2

Distance: (Fewest) Edges between two nodes d_a

MANY other measures...
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Degree: How many edges are adjacent to a node \l/,

O \O

Clustering Coefficient: 3 times number of closed triangles divided
by number of possible triads (two edges with a shared node)

C=1/2

Distance: (Fewest) Edges between two nodes d_3

MANY other measures...
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Another look at the “EXCEL” network...

Emil - - -
y ILindsey, Emily, Alexandra, Kieranl?

|

i @ *Whatis the degree of each node?
®o
=5 @
; Al xandm\ *Whatis the average clustering coefficient of the subset

What is the shortest distance hetween Joshua and Jason L.2
William ‘
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Information from complex networks: Large-scale patterns

The Degree Distribution N
How many nodes of edch degree? .\
0.5 n 2
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< 0.25
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0

0 |.5 3 4.5 6

Degree (k)
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Other Patterns in Many Real-World Networks...
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Other Patterns in Many Real-World Networks...

eSmall average path length: d~1n(N) d \‘l@
e

sixdegrees

FSEPARATION
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ifides.

RATION

eSmall average path length: d~1n(N)

eLarge clustering coefficient
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ATI

eSmall average path length: d~1n(N)

eLarge clustering coefficient

eResilience to random attack
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Gontain similar information on a global scale because of...
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Protein-proteininteractions
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information on a glohal scale hecause of...

Gontains
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Gontain similar information on a global scale because of...
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eModeling network formation and structure (e.g. How do large
social networks, like Facebook form?)

eExploring disease/information spread in populations

ePredicting network dynamics (e.g. gene-regulatory networks)
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eModeling network formation and structure (e.g. How do large
social networks, like Facebook form?)

eExploring disease/information spread in populations

ePredicting network dynamics (e.g. gene-regulatory networks)

What is the most salient representation of a system?

How do interactions in the system self-organize to produce
emergent behaviors?

How do changes in system structure (local or global) affect
dynamics?
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