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The project:

We attempted to construct the association/friendship network for the tenth grade at 
William Aberhart High School.  In this network, students are nodes and two students are 
connected with a link if they are friends.  We developed a survey (see Methods) that 
would allow us to determine not only who was friends with whom, but also the strength 
of such friendships.  We could include these strength measurements by assigning 
weights to the networkʼs links;  “best friends” would then have a higher weight on their 
connecting edge than “acquaintances”.

The idea behind this project was that we could analyze some graph-theoretical 
properties of our network to determine, for example, which individuals have the most 
social links, who the most central people are (i.e. who are the people through which the 
most “friendship paths” pass), what cliques exist in the network, etc.  Ultimately, we 
wanted to make a simulation of a disease propagating in this network and then try 
different network rewiring strategies to see how we could most effectively stop or slow 
the propagation of the disease without too much disruption of the underlying network 
(e.g. Which individuals or groups might we target for vaccination or quarantine?).

After developing a survey that would help us extract the social network of Aberhartʼs 
10th grade, we ran into some difficulties getting permission to administer the 
questionnaire because of possible privacy issues.  Instead, we were able to obtain 
anonymized student class schedules, and from these we constructed a network of 
student-class relationships (to be discussed in more detail in Networks).  We were 
unable to get as far as simulating disease dynamics on our network(s), but we did look 
at the graph-theoretical properties of these networks (discussed in Network Properties) 
and from this analysis, we were able to draw some interesting conclusions about the 
structure of the student-class relationship network(s).

The Networks:

Initially, we had planned to take the results of our survey (see Methods) and construct a 
single network in which nodes would represent students, links would indicate existing 
social relationships, and link weights would correlate with the strength of these 
relationships.  However, as mentioned above, due to confidentiality issues, we ended up 
constructing networks from anonymized student schedules.  In the largest of these 
networks, which included all tenth grade students and all of the classes that they take, a 
node can be either a student or a course.  A link from a student to a course indicates 
that a student is enrolled in a particular class.  This type of network is bipartite, meaning 
that it can be separated into two groups (in this case, Students, and Courses); there are 
no links within a group (i.e. students are not connected to other students and courses 
are not connected to other courses), but there are links between  the groups.



This type of bipartite network can be transformed into a unipartite projection, meaning 
that it can be “reduced” to include only one type of node.  In our case, we could 
transform the “total network”-- i.e. the network containing students and courses-- into a 
network of “just students” or a different network of “just courses”.  Although we lose 
some information, we can create a network of “just students” by directly connecting 
individuals who share one or more courses.  A link between two students would then be 
weighted by the number of courses they share.  A similar game can be played to 
construct the “just courses” graph.  In this case, two courses are connected if they share 
one or more people.  A link on this graph would be weighted by the number of people 
who share the courses.  All analysis reported on in the Results section was performed 
on the unipartite projection graphs.

Methods

(1)  Creating a questionnaire for determining the social network of Aberhartʼs 10th 
Grade:

Although we did not end up using this questionnaire (see above for discussion), we 
spent a good deal of time brainstorming questions and figuring out controls that would 
allow us to extract-- to a rough approximation-- the friendship network of 10th grade 
students at Aberhart. The questionnaire we eventually devised is given below:

-------------------------------------------------------------------------------------
Survey	  of	  10th	  Grade	  Students	  

All	  informa+on	  gathered	  from	  this	  survey	  will	  be	  kept	  strictly	  confiden+al.	  

Instruc+ons:
-‐For	  all	  answers	  involving	  the	  names	  of	  people,	  please	  use	  the	  name/number	  reference	  list	  provided	  by	  
the	  survey	  administrator	  to	  find	  the	  random	  number	  associated	  with	  a	  name.	  	  To	  ensure	  confiden+ality,	  
please	  report	  this	  number	  and	  NOT	  the	  name	  when	  answering	  ques+ons.
-‐Students	  included	  in	  this	  ques+onnaire	  must	  be	  	  10th	  graders	  at	  Aberhart.
-‐All	  dura+ons	  of	  interac+ons	  need	  only	  be	  approximate.

Your	  Name:	  __________________

1.	  	  If	  you	  oLen	  aMend	  a	  club	  or	  other	  group	  ac+vity	  during	  the	  lunch	  hour,	  please	  list	  the	  club/ac+vity	  
name.

2.	  With	  whom	  do	  you	  interact	  at	  lunch	  on	  days	  during	  which	  you	  do	  not	  par+cipate	  in	  a	  club?	  (i.e.	  With	  
whom	  do	  you	  sit	  for	  the	  majority	  of	  the	  lunch	  period?)



3.	  Please	  list	  any	  school	  sponsored	  extra-‐curricular	  ac+vi+es	  (before	  &	  aLer	  school)	  in	  which	  you	  
par+cipate.

4.	  Non	  school	  sponsored,	  organized	  extra-‐curricular	  ac+vi+es:
Please	  complete	  the	  following	  table	  for	  all	  out-‐of-‐school	  ac+vi+es	  in	  which	  you	  par+cipate	  with	  10th	  

grade	  students	  from	  Aberhart
	  	  Ac+vity	  Name	  	  	  	  	  	  	  	  	  	  	  	  	  	  List	  of	  fellow	  students	  	  	  	  	  	  	  	  	  	  	  	  	  	  Days	  &	  Times	  the	  ac+vity	  meets

5.	  Other	  outside-‐of-‐school	  interac:ons	  (including	  friendships	  &	  transporta+on)	  –	  at	  least	  30	  minutes	  in	  
dura+on.
Student’s	  name	  	  	  	  	  	  Length	  of	  interac+on	  (on	  average)	  	  	  	  Number	  of	  days	  per	  week	  of	  interac+on

6. 	  Virtual	  interac:ons	  (playing	  online	  games,	  live	  cha_ng,	  tex+ng,	  etc.)
Student’s	  name	  	  	  Type	  of	  Interac/on	  	  Length	  of	  interac+on	  (on	  average)	  	  Number	  of	  days	  per	  week	  

Thank	  you	  for	  your	  par+cipa+on	  J
-------------------------------------------------------------------------

Had we been able to administer this questionnaire, we would have created a social 
network of student-student interactions that were weighted by the amount of time 
individuals spent together.  The data could have been merged with student class 
schedules to give a more complete description of individualsʼ daily social interactions.

For reasons mentioned in The Networks, we were unable to administer this survey, and 
so our final interaction networks only included student schedule data.



(2)  How we analyzed our networks

We chose to look at four dominant graph-theoretical measures when analyzing our 
networks.  These were:

1)  The degree distribution-- i.e. the probability distribution for the number of nodes in a 
network with degree greater than or equal to k;

2) The clustering coefficient-- i.e. the extent to which nodes tend to group together.  
Officially, the local clustering coefficient is the number of connections among 
neighbors of a node, divided by the total number of connections that could exist 
among these neighbors.  A clustering coefficient of 1 means that all nodes in a local 
neighborhood are connected to all other nodes in that neighborhood;

3) The betweenness centrality-- i.e. the number of shortest ij-paths that pass through 
node k, divided by the total number of these shortest paths;

4)  The community structure--community structure has many different possible 
definitions and there are also many algorithms for finding communities, or “groups” of 
nodes, in graphs.  We chose to define a community as a set of nodes for which the 
interlinking was denser than linking between these nodes and other nodes in the graph.  
This definition is essentially the idea of modularity, put forth by Newman, et al. [1].

We wrote our own Python code and implemented subroutines from NetworkX (a 
Python-based code suite for analysis of complex networks) for the basic graph-
theoretical analysis of our networks.  For the community finding algorithm, we relied on 
out-of-the-box code for the Louvain Algorithm [2] for finding modular structure in 
networks.



(3)  Results

After the full graph, containing all courses and all tenth grade students was collapsed 
into projections-- either a graph of people (PeopleGraph), connected if they shared 
courses, or a graph of courses (ClassGraph), connected if they shared students-- the 
unipartite projections were analyzed from a graph theoretical standpoint.  The results 
are reported, below.

i)  General characteristics of the unipartite graphs

The number of nodes in the PeopleGraph and ClassGraph is equal to the number of 
tenth grade students and courses, respectively.  These numbers, and the total number 
of edges in each graph, are reported in Table 1.  Note that as an alternative to edge-
weighting, we allowed for parallel edges in our graphs-- i.e. two nodes could share more 
than one edge, meaning, in the case of the PeopleGraph, that two students could have 
more than one class in common, or that, in the case of the ClassGraph, two classes 
could share more than one student.  The relative density (edges per node) in the 
ClassGraph is lower (12.1) than it is in the PeopleGraph (44.1).  This reflects the fact 
that on average, if classes contain ~20-30 students and if each student takes (typically) 
a maximum of 4 classes, the upper bound for edges adjacent to a node in the 
ClassGraph is essentially ~120, but is unlikely to occur (students can, to some extent, 
select the courses they take, so, presumably, they might select sections in which they 
have friends);  in the PeopleGraph, however, it is fairly likely that there will be little 
overlap in the students comprising each of the 4 classes an individual takes, and 
therefore the number of edges adjacent to an individual may well be ~120.

Table 1:  Sizes of unipartite projection graphs, ClassGraph and PeopleGraph.

Network Number of Nodes Number of Edges

ClassGraph 131 1,587

PeopleGraph 520 22,957

ii)  Degree Distributions

For reasons explained above, the average degree of the PeopleGraph is substantially 
higher than the average degree of the ClassGraph (<k>=88.3 vs. <k>=24.2).    The 
argument presented in (i) for the relative difference in edge densities between the 
ClassGraph and the PeopleGraph can be seen clearly in Figs. 1(a,b).  The peak in the 
ClassGraph degree distribution occurs at very low degree, indicating that many classes 



share few students;  on the other hand, the degrees of the PeopleGraph are roughly 
Gaussian distributed and peak around k=100.

Figure 1:  (a)  Degree distribution of the ClassGraph.  Many classes have degree k<10, indicating they 
share few students.  (b)  Degree distribution of the PeopleGraph.  Most people have degree 80<k120.

(a)! ! ! ! ! ! (b)

The degree distributions presented in Fig. 1 give rise to interesting cumulative degree 
distributions (i.e.  the probability that a node will have degree greater than k).  It is often 
the case that complex networks exhibit so-called scale-free degree distributions (see, 
for example, [3]), where the probability that a node has degree k is a power-law of the 
degree, P (k) ∼ k−α

.  When plotted on a log-log scale, this type of distribution is a 
straight line, whose slope is α. Interestingly, neither the ClassGraph nor the 
PeopleGraph exhibits this type of distribution.  As can be seen in Fig. 2, the ClassGraph 
cumulative degree distribution is linear, while that of the PeopleGraph is S-shaped (Fig. 
3).  Again, the S-shaped curve of the PeopleGraph cumulative degree distribution 
corroborates the notion that most people probably take ~4 courses, each of which has 
~20 students, and all of which are largely disjoint in terms of the sets of students that 
take them.  This is evidenced by the fact that more than 60% of the nodes in the 
network have degree k>80.



Figure 2:  ClassGraph cumulative degree distribution.  Distribution is approximately linear.

Figure 3:  PeopleGraph cumulative degree distribution.  Distribution has a characteristic S-shape  and 
demonstrates switching behavior between 80<k<120.



iii) Clustering Coefficients

In an unweighted graph, the local clustering coefficient is simply

Ci =
2ti

ki(ki − 1)" " " " " " " " " " (1)

where ti is the number of triangles in which node i participates, normalized by the 
maximum possible number of such triangles, given that node i has degree ki.    We can 
also extend the idea of a clustering coefficient to weighted networks [4], such that the 
definition becomes

Ci =
1

si(ki − 1)
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where wij are the edge weights, where aij = 1 if there is an edge between node i and 
node j, and 0 otherwise, and where si = ki < wi >.  Basically, the form of Eq. 2 causes 
each triangleʼs contribution to be weighted by a factor that is equal to the ratio of the 
average weight of two adjoining edges in the triangle to the average weight of node i.  

It is interesting to compare the weighted and unweighted forms of the clustering 
coefficients for the ClassGraph and the PeopleGraph.  While the ClassGraph shows 
greater clustering than the PeopleGraph in the unweighted case, when weighting is 
taken into account, the PeopleGraph is more highly clustered than the ClassGraph (see 
Table 2).

Table 2:  ClassGraph and PeopleGraph (global average) clustering coefficients.
Network Unweighted Clustering 

Coefficient
Weighted Clustering 

Coefficient

ClassGraph 0.5062 0.0734

PeopleGraph 0.4072 0.1179

Given that individuals within a specific class are completely connected (i.e. everybody 
has a link to everybody else), which would, a priori, suggest a clustering coefficient of 1, 
it might be a bit surprising that the unweighted global average clustering coefficient in 
the PeopleGraph is relatively low.  We suspect that while individuals are tightly clustered 
within a given class, there is little overlap between classes, and therefore many of the 
neighbors of a specific node will remain unconnected, ultimately resulting in a low 
clustering coefficient.  



iv)  Betweenness Centralities

As was the case with the clustering coefficient, it is possible to calculate both an 
unweighted and a weighted edge betweenness centrality.  In addition to calculating the 
global averages of these quantities for the two graphs (see Table 3), we also identified 
the nodes in each network with the top 10 betweenness centralities.  For the 
ClassGraph, only 3 of the 10 classes with highest betweenness centrality were core 
subjects (i.e. English, Math, Science, Social Studies, Phys. Ed., etc.);  the other classes 
were electives.  In fact, this hints at the possible composition of the underlying 
community structure of the ClassGraph:  namely, groups of core subjects are likely 
densely connected into small communities, which are, in turn, sparsely interconnected 
through electives.

The betweenness centrality can often help in anticipating how information (or disease) 
will propagate through a network, as nodes with high betweenness centrality will be 
“central” to the flow on the network-- i.e. a great number of paths will have to pass 
through them.  For certain network structures, this can also be true for the nodes of high 
degree.  To this end, we were interested in determining whether or not the top 10 
betweenness centrality nodes of each network were also the top 10 nodes of highest 
degree.  While there was some overlap between the classes of high betweenness 
centrality and the classes with high degree (45% overlap for the ClassGraph and 50% 
overlap for the PeopleGraph), the character of the top 10 classes of high degree is 
distinctly different from that of the high betweenness centrality classes:  8 of the top 10 
high degree classes were core subjects.

Table 3:  Global average and maximum edge betweenness centralities for the ClassGraph and the 
PeopleGraph.

Network Unweighted 
Betweenness 

Centrality

Weighted 
Betweenness 

Centrality

Maximum 
Unweighted 

Maximum 
Weighted

ClassGraph 0.006135 0.007627 0.041637 0.051887

PeopleGraph 0.001545 0.00158 0.003696 0.003830

We were also interested in determining how frequently the top 10 high betweenness 
centrality people appeared in the top 10 high betweenness centrality classes (people-
class overlap), and, conversely, what fraction of a top 10 high betweenness centrality 
personʼs class schedule was constituted by top 10 high betweenness centrality classes 
(class-people overlap).  In both graphs, while the maximum centrality is at least twice 
the average measure, it is still not particularly high.  If the maximal centrality measures 
were close to one, we could probably expect that people taking classes with high 



betweenness centrality in the ClassGraph would, themselves, have high betweenness 
centrality in the PeopleGraph (and conversely).  However, this is not the case with our 
networks, so it is therefore not surprising that the overlap previously discussed is rather 
low: class-people overlap ranged from 0% to 50%, with an average of 20.45% (roughly 
one class), while people-class overlap ran between 0% and only 9%, with an average of 
2.6% (roughly one person).  

v)  Community Structure

The final graph-theoretical feature that we examined was the community structure of 
each of our unipartite projections.  When looking for communities, we were primarily 
interested in identifying groups of nodes-- a community-- for whom the density of 
interlinks was greater than the density of links to other communities.  We used a 
community-finding algorithm to first identify large communities within the global structure 
of each network, and we then further divided these communities into a second stratum 
of subcommunities.  

The community finding algorithm we employed identified 10 main communities within 
the PeopleGraph and 6 main communities within the ClassGraph.  The algorithm was 
immediately successful in classifying, as one community within the ClassGraph, a group 
of nodes constituting Aberhartʼs Assisted Learning Program.  

When we further subdivided the ClassGraph communities into subcommunities, we 
found that 20 of the 21 subcommunities were composed of at least 40% core courses.  
The average and median core course percentages were 57% and 56%, respectively.    
This result fits nicely with our initial hypothesis of the ClassGraph structure from 
studying betweenness centrality:  namely, the network is composed of small groups of 
core courses that are then interconnected through electives.

Perhaps not surprisingly, there is a large difference between the average size of 
ClassGraph communities and the average size of PeopleGraph communities (6 vs. 16).  
The distribution of community sizes for the PeopleGraph is much broader than for the 
ClassGraph (Fig. 4).



Figure 4:  Normalized frequency plot of community sizes:  ClassGraph vs. PeopleGraph.
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We were not surprised that the community sizes for the PeopleGraph were larger than 
for the ClassGraph,   and assumed that this result arose because a class would 
manifest itself in the PeopleGraph as a completely connected set of nodes, and 
therefore, as a-- we guessed-- maximal community.  Since the average class size was 
~20-30, we expected that most communities in the PeopleGraph would have size 
~20-30.  We were surprised to find that this is not the case.

To gain a better understanding of why our hypothesis failed, we compared the sizes and 
compositions of the 50 largest cliques (completely connected subgraphs) in each 
network to the sizes and compositions of the communities identified with the 
community-finding algorithm.  For the ClassGraph, all 50 of the largest cliques had size 
5, which was comparable to the average and median of the sizes found for the 
communities.  In the PeopleGraph, however, a marked difference was evident (Fig. 5):  
while the community size distribution is broad, most of the 50 largest cliques had size 
between 25 and 35, indicating that they are, truly, individual classes.

Figure 5:  Community and clique sizes for PeopleGraph.
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To further track this difference between cliques and communities, we asked, for each 
person in a PeopleGraph community, what fraction of classes are shared with all other 
people in the community?  If communities in the PeopleGraph were formed solely from 
classes, and therefore constituted cliques, we would expect this fraction to be exactly 1.  
If we plot this fraction as a function of community or clique size, we can see that for 
cliques, as the size of the clique passes 21, the fraction goes to 1, corroborating our 
hypothesis that large cliques are simply classes (Fig. 6).  However, we can also see that 
the opposite trend is true for communities and subcommunities;  as the community size 
grows, the fraction of classes that an individual shares with all other members of his 
community falls off (Fig. 6), though even for very large communities, it never dips below 
~30% (roughly one course).   What this suggests is that the community detection 
algorithm tends to pick out class participation overlap between courses.  

Figure 6:  (Maximal) fraction of classes shared with all other members of a community 
or clique as a function of clique size.
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This phenomenon can be seen with a different approach.  If, for a community in the 
PeopleGraph, we identify courses in which every person in the community participates 
and then ask what fraction of the full course the community size constitutes, we can see 
(Fig. 7) that the fraction increases with community size, but never actually reaches 1.  



This implies that the most dense abundance of links is likely achieved not by taking the 
full completely-connected subgraph that represents an individual course, but by taking a 
section of this subgraph whose nodes, in general, share more than one pairwise 
connection (i.e. students who are in more than one class together).

Figure 7:  Fractional coverage of classes as a function of community size in the PeopleGraph.
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When we “attacked” the PeopleGraph network by removing cliques (respectively, 
communities) in descending order of size and looked at the size of the largest remaining 
connected component (a set of path-connected nodes), we found a linear relationship 
between the size of the removed clique (community) and the size of the remaining 
connected component.  Moreover, there was almost no difference between clique 
removal and community removal (Fig. 8).  It is interesting to note that at face value, 
what this tells us is that we do the same “damage” to the graph whether we remove a 
clique of size S or a community of size S.  However, a community of size S presumably 
has a greater density of paths than an equivalently sized clique, and, as stated 
previously, many of these paths-- at the level of individual edges-- may be redundant.  
Though removing a community of a given size has virtually the same effect on network 
breakdown as removing a clique of the same size when edge redundancy is ignored, 
the scenario may change if edge multiplicity is considered important.

For example, if we think about disease propagating through a portion of a graph, 
spreading from infected nodes to susceptible nodes along connecting edges, the 
probability for a susceptible individual to become infected may in some way be tied to 
the edge density between the susceptible node and the infected node (for example, if 
each edge represents a certain amount of time spent together, more edges would 
correlate with a longer exposure period and a higher probability of infection).  Thus, if 
we were looking to remove or isolate groups of students to prevent the further spread of 



a disease, there could be an intrinsic advantage in removing communities, as opposed 
to cliques, since a disease may spread more quickly within a community.

Figure 8:  Targeted attack of the PeopleGraph by selective removal of cliques and communities in 
descending order of size.  After each removal the size of the largest remaining connected component is 
measured in terms of the size of the original network.
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Discussion and Summary

Though our project ultimately underwent significant redesign, we were, in the end, able 
to capture a rough representation of the social/academic network of the tenth grade at 
William Aberhart High School, eventually decomposing the full network into two 
unipartite projections.  Graph theoretical analyses of these projections yielded 
interesting information about the underlying social/academic “scaffolding” of Aberhartʼs 
tenth grade.  

In future work, we hope to explore disease and/or information transmission on the 
complex networks we have developed.  In particular, we would like to test our 
hypothesis that removal of communities might be more advantageous for preventing the 
spread of disease (information) than would removal of cliques.  
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