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ABSTRACT

This paper presents an alternative form of attitude
determination algorithm based on vector observations
from GPS antenna array. This method is based on a
simple iterative least-squares estimation procedure. The
quaternion parameterization is adopted for the practical
reason that the representation of quaternion for attitude
is free from singularity problem. The proposed method
estimates four elements of quaternion parameters
directly from the observations without estimating the
nine elements of the attitude matrix or the Direction-
Cosine-Matrix (DCM). It is shown that the cost function

used in our method is equivalent to that of Wahba’s
problem in a special case. The uncertainties in attitude
solution are given in terms of a simple form of error
covariance matrix.

The proposed algorithm is evaluated via simulation
for the situation where the observed vectors are the
estimated baselines of a GPS antenna array. The
performance of the proposed algorithm is compared with
other eight existing methods. They are two versions of
QUaternion ESTimator (QUEST), Singular Value
Decomposition (SVD) method, Fast Optimal Attitude
Matrix (FOAM), Slower Optimal Matrix Algorithm
(SOMA), Transformation Method (TM), Vector
Observation Method (VOM), and TRIAD algorithm.
Results indicate that the new algorithm accurately
estimates the attitude of a moving vehicle and provides
attitude uncertainties correctly.

INTRODUCTION

The problem of attitude determination is to find the
rotation matrix or a set of orientation parameters which
rotates the baseline vectors in the reference frame into
the corresponding vectors in the body frame from a set
of attitude sensor measurements [1].

The utilization of precise carrier phase
measurements from GPS provides a novel approach for
three-axis attitude determination [2-5]. The attitude
determination methods using GPS may be classified into
two types of approaches. One approach is to determine
the attitude parameters directly from the differenced
carrier phase measurements [6-9]. The most common
scheme in this approach minimizes a cost function
constituting the normalized sum weighted two-norm
residuals between the measured and the known
differenced carrier phase quantities as proposed by
Cohen[6]
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where 3Rs ∈  is the normalized line-of-sight vector to the
GPS satellite in the reference frame, 3Rb∈  is the
normalized baseline vector of the GPS antenna array in
the body frame, A is the proper orthogonal attitude
matrix with ATA=I and det(A)=1, T denotes a matrix
transpose, subscripts i and j represent the baseline and
the observed GPS satellite identifiers, respectively, and
the parameter 

ijϖ  is a weighting factor for individual

carrier phase measurement. The optimal attitude solution

New Quaternion-based Least-squares Method for Attitude
Determination with Vector Observations

Jong-Hoon Won, Sun-Jun Ko and Ja-Sung Lee
Control Application Lab, Division of Electronics Engineering,

Ajou University, Suwon 442/749, Korea
Tel:+82-31-219-2487, Fax:+82-31-212-9531, E-mail:jhwon@madang.ajou.ac.kr



that minimizes this nonlinear cost function is obtained
by iteration. Note that the measurement, j

iφ∆  in the

Cohen’s cost function is a scalar value of single
differenced carrier phases measured by two GPS
receivers associated with baseline i and satellite j. This
type of cost function is only applicable to the specially
dedicated GPS antenna array which contains more than
three GPS receiver hardware modules connected to one
common oscillator to eliminate the receiver-dependent
clock bias error.

The other approach is to determine the attitude
parameters from the estimated baseline vectors of an
antenna array. The motivation behind this approach is to
use the well-established result of precise relative
positioning technique with GPS carrier phase
measurements. Once the baseline vectors are obtained,
the attitude determination becomes much simpler. In this
approach the attitude determination problem may be
considered as the problem of finding a proper 3-by-3
orthogonal transformation matrix which minimizes the
Wahba’s loss function.

In this paper, an alternative approach is presented to
determine the four elements of the quaternion directly
from the baseline vector measurements instead of
finding 3-by-3 transformation matrix. An instantaneous
least-squares solution method is derived. This alternative
method extends the Wahba’s problem into the nonlinear
least-squares estimation problem with vectorized
measurements and constraint equation.

The organization of this paper proceeds as follows.
After a general loss function is described for GPS
attitude determination from vector observations, a
simple nonlinear least-squares estimation technique is
introduced for estimating quaternion parameters.
Constraint solutions in terms of quaternion norm are
also described. It is shown that the Wahba’s cost
function is equivalent to a special case of the cost
function defined in this paper. Simulation results for a
moving vehicle with near-optimal and nonorthogonal
baseline configurations are described.

ATTITUDE DETERMINATION FROM
VECTORIZED MEASUREMENTS

In this section, the problem of attitude
determination from vector measurements is reviewed

and a new method for attitude determination from GPS
phase measurements is derived.

By using double differenced carrier phase
measurements between a pair of antennas and a pair of
satellites, the user can determine the relative range
between the pair of antennas very precisely with a mm-
level accuracy. Baseline vectors thus obtained from an
array of three or more GPS antennas and multiple
satellites can be used as observations for estimating the
full three-axis attitude of a rigid body.

It is assumed in this paper that baseline vectors of
the GPS antenna array are estimated in the WGS-84
frame ( zyx δδδ ,, ) and transformed into the local-level
frame ( DEN δδδ ,, ). Either a transformation matrix or a
set of orientation parameters defined in the local-level
frame is estimated. The attitude determination
algorithms are described on the assumption that the
measured directions depend explicitly on the attitude
alone not on other component such as sensor bias [17,
18]. The procedure for determining attitude from GPS
measurements is summarized in Figure 1.

Wahba’s Problem
The problem of attitude determination from vector

measurements can be considered as the problem of
determining an orthogonal transformation matrix A in
the following relationship:

iii elAr +⋅= ,  for i=1,…,n          (2)

where 
il  denotes the vector representation of the

direction to some observed object in the local-level
frame, 

ir  is the previously defined vector representation
of the corresponding observation in the vehicle body
frame, 

ie  represents an error vector, and n is the number

of vector observations.
    Wahba posed the problem of finding the proper
orthogonal matrix A  that minimizes the loss function
defined as [10]:
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where 
iϖ  represents a weighting factor. By simple

Figure 1. Procedure for attitude determination with GPS measurements



matrix manipulations, this Wahba’s problem is
equivalent to the problem of finding the proper
orthogonal matrix A  that maximizes the trace of the
matrix product ABT where the matrix B  is given by
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Davenport suggested a solution to the Wahba’s
quadratic loss function by utilizing quaternion method
[11]. Many practical attitude determination algorithms
have been developed based on this method. This method
by Davenport, called the q-method, directly led to an
eigenvalue equation for quaternion by Keat [12] and the
QUaternion ESTimator (QUEST) by Shuster [13]. The
QUEST was derived by using either Gibbs vector or
quaternion. Markley suggested an algorithm based on
the Singular Value Decomposition (SVD) method
focusing on theoretical analysis and robust computing
[14]. The algorithm requires extra computation for the
singular value decomposition. He also presented two
improved SVD solutions to the Wahba’s problem,
known as Fast Optimal Attitude Matrix (FOAM) and
Slower Optimal Matrix Algorithm (SOMA), without
performing the singular value decomposition [15]. A
more complete survey of other attitude representations is
given in Reference 16.

Quaternion-based Least-squares Method
Given a set of reference vectors and a

corresponding set of directional measurements between
a body axis and these reference vectors, the problem of
three-axis attitude determination can be formulated as a
linear least squares problem with norm constraint on the
solution [19]. The attitude determination algorithm
based on a simple iterative least-squares can easily be
derived for three element parameters of Euler angle [3].
The transformation matrix derived from Euler angles
can take any of the 12 possible forms depend on the
sequence of rotation angles. Since the attitude matrix
derived from Euler angles is not inherently nonsingular,
special procedures are needed to deal with singularity of
180 degree rotations. The problem of singularity can be
solved by using a quaternion parameterization of the
rotation matrix. In this section, a complete solution
algorithm for estimating quaternion parameters based on
least-squares with quaternion constraints is developed.
The solution of the proposed algorithm is equivalent to
the solution of the Wahba’s problem in the case
explained later.

The four elements of quaternion parameters used in
this paper are defined as [20]:

TTT qqqqqqqqqq ),(kji),,,( 032103210 q=+++==   (5),

where 
0q  is the amount of rotation about a vector

defined by 
1q , 

2q  and 
3q  in space. The transformation

matrix derived from these quaternion parameters can be
uniquely defined as:
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Substitution of the transformation matrix A of Eq. (6)
into Eq. (2) for any i and with some manipulation yields
another nonlinear observation equation in terms of
quaternion parameters as:
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which can be written in a vector form as:

iqii wXhl += )(               (8)

where 
qX  is the vector of unknowns Tqqqq ),,,( 3210

.

Linearization of Eq. (8) about nominal values yields

iqqiqi vXHl +⋅= δδ              (9)

where 
qilδ  is the vector of corrections of the

observations, 
qXδ  represents the corrected unknown

quaternion vector and 
qiH  is the matrix of partial

derivatives which has the general form as:

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂

∂
=

=

3210

3210

3210

*|
)(

q
h

q
h

q
h

q
h

q
h

q
h

q
h

q
h

q
h

q
h

q
h

q
h

X

Xh
H

DDDD

EEEE

NNNN

XX
q

qi

qi
qq

  (10)

where
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It is shown in the above expressions for the partial
derivatives that only four different elements need to be
computed; i.e., the elements in the second and the third
rows of the matrix can readily be obtained by using the
elements in the first row of the matrix. Thus, the partial
derivative matrix can simply be written as
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The attitude solution can be obtained by
expanding Eq. (9) to a matrix form and applying a
simple iterative least-squares with the following
correction equation:

q
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and Q represents the noise covariance matrix.

Least-squares with Quaternion Constraint
The attitude matrix obtained from the solution in

Eq. (12) may not be proper orthogonal because of the
noise contained in the measurements. This problem can
be corrected by applying the orthogonal constraint of the
quaternion parameters which has a form of nonlinear
equation as:
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The solution to this constraint problem can be obtained
by first linearizing Eq. (13) about nominal values as:
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The correction vector for the iterative least-squares
solution and its covariance matrix are then given by [21]
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The covariance of the attitude estimate in Eq. (16) is a
statistical measure of the estimation errors arising from
errors in the reference and observation vectors. The
relationship between constraint least-squares and
unconstrained least-squares is given by
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The solution of constrained least-squares approach
described in Eqs. (15) and (17) provides more accurate
results than the unconstrained least-squares in Eq. (12)
in general, although the difference is often negligible.
The constrained solution takes considerably more
computations than the non-constained solution. This
additional computational time can be reduced by using a
simple ad hoc approach. A common ad hoc approach,

especially in the field of attitude determination, where
one often has to solve a linear system with normalization
constraint, is to solve the unconstrained linear system
and then to normalize the solution to unity [19]:

qqq XXX ˆˆ~
=                 (18).

Cost Function of Least-squares
This section shows that the Wahba’s problem is a

special case of our nonlinear least-squares problem. For
a multi-baseline situation, the cost function of nolinear
least-squares in terms of four elements of quaternion
parameters in Eq. (12) is given in a matrix form as:
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and Wi denotes a weighting matrix corresponding to
measurement noise statistics of the i-th baseline.
This cost function can be written in another matrix form
as:
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and T
XA  is an attitude transformation matrix expressed in

terms of unknowns ( 4210 ,,, qqqq ) as in Eq. (6),

respectively. If we assume that the weighting matrix W
has the form of a diagonal matrix as W=diag{W1,
W2,…,Wm} where Wi is a weighting matrix for individual
baseline, then the matrix form of cost function in Eq.
(19) can be rewritten in terms of the individual attitude
matrix, T

XA  as:
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If the weighting matrix for each baseline measurement is
a scalar times the identity matrix, i.e., IW ii ⋅= 21 σ , where

I denotes the 3-by-3 identity matrix, the resulting cost
function of Eq. (20) reduces to
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As the result, the cost function of nonlinear least-squares
in attitude determination problem in Eq. (21) is
equivalent to that of Wahba’s problem in Eq. (2). The
Wahba’s cost function is a special case of nonlinear



least-squares problem that a vector measurement has one
same weighting factor, 

iϖ , for the i-th baseline. If the

baselines do not form an orthonormal basis, then the
attitude solution is suboptimal.

SIMULATION

Three forms of our new algorithms for estimating
the quaternion parameters; namely, the unconstrained
least-squares (QULS), the constrained least-squares
(QCLS) and the constrained least-squares of ad hoc
approach (QACLS) proposed by this paper and a
nonlinear least-squares algorithm for Euler angles (ELS)
were coded in double precision MATLAB and executed
on a Pentium III 650 MHz computer with Window
Millennium Edition Operating System. In order to
compare their performance with other existing
algorithms, Eight attitude determination algorithms were
also simulated. They are TM, VOM, TRIAD and
QUEST-based methods such as two versions of QUEST,
SVD, FOAM and SOMA. Brief reviews, computational
steps and several simulation results of these attitude
determination algorithms are summarized in Reference
22.

Four test cases were simulated as shown in Table 1.
Each test cases were specified by a set of unity baseline
vectors, 

ir  and standard deviations of carrier phase

measurements, 
Φσ . The VOM is not applicable to the

situation when 
1r  is not placed on the longitudinal axis.

Also it can accommodate only two observations; i.e., it
does not use the additional redundant vector
measurements. The third measurement vector,

Tr ]1,0,0[3 −=  was used only in the TM in our simulation.
Other algorithms use only two measurement vectors, 

1r
and 

2r . The time history of the true Euler angles in the
simulation are shown in Figure 2. The performance of
each algorithms are compared in terms of the root-mean-
squared Euler angle errors as shown in Table 2. The
attitude error from TRIAD is relatively large because its
accuracy depends on the first choice of reference-
observation vector pair. The QUEST-based methods
such as two versions of QUEST, SVD, FOAM and
SOMA which were derived from Davenport’s q-method
have the same error characteristics as described in
Reference 14. The iteration process in the QUEST for
estimating quaternion caused large computation time to
converge to its global minimum in computing λ  from
characteristic equation, )(λp . QULS, QCLS and QACLS

have the slightly different error characteristics, but not
significantly, mainly due to their different approaches in
dealing with the constraint condition. The QULS is
preferable if small deviations from orthogonality can be
tolerated. The output of ELS shows large errors, as
shown in Figure 3, when the yaw attitude angle
approaches 180 degrees because of the singularity
associated with the Euler expressions. In Figure 4 depict
the performances of the QUEST-based algorithms and
the proposed algorithms. It is shown in the figure that
the proposed algorithms have good performance
comparable to those of the most efficient existing
algorithms.

CONCLUSIONS

In this paper, a new alternative form of attitude
estimation algorithm was proposed for the situation
when the observed vectors are the estimated baselines of
a GPS antenna array. The algorithm was first derived for
an unconstrained nonlinear least-squares solution of the
four elements of quaternion parameters. Two variants of
the algorithm with a constraint on quaternion norm were
also given. The second variant of the solution based on
an ad hoc constraint approach reduces computation
significantly with little loss in accuracy. It was shown
that the cost function of the proposed least-squares
based attitude estimation algorithms is equivalent to that
of Wahba’s problem in a special case. The performance
of the proposed algorithm was compared with existing
attitude determination algorithms via simulation.

Table 1. Simulation Test Cases

Body Frame Vector(m)

Case Tr1
Tr 2 Φσ (mm)

1 [1, 0, 0] [0, 1, 0] 2
2 [1, 0, 0] [0, 1, 0] 20
3 [1, 0, 0] [ 21 , 21 , 0] 2

4 [1, 0, 0] [ 21 , 21 , 0] 20

Table 2. Comparison of RMS Errors
Case 1 Case 2 Case 3 Case 4

yaw 0.101 0.901 0.088 0.979
pitch 0.245 2.670 0.191 2.660VOM
roll 0.339 2.175 N/A N/A
yaw 0.101 0.901 0.089 0.979
pitch 0.262 2.922 0.217 2.867TM
roll 1.369 2.198 0.308 3.700
yaw 1.231 1.433 1.254 1.702
pitch 11.305 11.813 11.240 11.988TRIAD
roll 6.477 6.048 6.505 6.755
yaw 0.081 0.769 0.069 0.878
pitch 0.245 2.681 0.191 2.634

QUEST
based

methods roll 0.285 2.075 0.275 3.448
yaw 0.081 0.812 0.068 0.877
pitch 0.246 2.445 0.190 2.634QACLS
roll 0.285 2.870 0.274 3.447

Unit : Deg

Figure 2. True Euler angles



Figure 3. Euler Angle Outputs of ELS

Figure 4. Comparison of Algorithms
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