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ABSTRACT

In integrated navigation systems Kalman filters are
widely used to increase the accuracy and reliability of the
navigation solution.

Usually, an indirect Kalman filter formulation is applied
to estimate the errors of an INS strapdown algorithm
(SDA), which are used to correct the SDA. In contrast
to that, in the direct Kalman filter formulation total
quantities like position, velocity and attitude are among
the state variables of the filter, which allows them to be
estimated directly.

This contribution investigates the influence of these two
different approaches of Kalman filtering on the overall
system performance of a loosely coupled GPS/INS sys-
tem for aerospace applications. Both filter formulations
were implemented and compared via Monte Carlo sim-
ulation runs with focus on the accuracy of the estimated
inertial sensor biases and on GPS drop out situations.

We found a comparable performance of both navigation
algorithms concerning attitude and position errors as
well as inertial sensor bias estimation as long as GPS
aiding was available. However, the simulation results
indicate a superior performance of the direct Kalman
filter formulation in GPS drop out situations, which can
by explained by the way the inertial measurements are
processed.

1 INTRODUCTION

An integrated navigation system exploits the complemen-
tary characteristics of different navigation sensors to in-
crease the precision of the navigation solution. In addi-
tion, the resulting redundancy allows the detection of bad
sensor data, which then can be rejected. Such an integrity
monitoring increases the reliability of the navigation so-
lution significantly. The navigation technique common
to almost all integrated navigation systems is the iner-
tial navigation. In a strapdown inertial navigation sys-
tem (INS), an inertial measurement unit (IMU) mounted
to the vehicle senses accelerations and angular rates for all
six degrees of freedom of the vehicle. From these data, a
strapdown algorithm (SDA) can compute a navigation so-
lution presumed that initial position, velocity and attitude
are known. This type of navigation is autonomous, there-
fore intentional or unintentional external jamming is im-
possible. Unfortunately, only short-term accuracy of the
navigation solution is assured as the measurement errors
of the inertial sensors sum up. Therefore, further navi-
gation sensors such as global positioning system (GPS),
terrain reference navigation (TRN) by baro-altimeter and
radar-altimeter, and image based navigation (IBN) by IR
seekers are used to aid the INS and to assure the long-
term accuracy of the navigation solution. The data fusion
of these different sensors is commonly accomplished by
a Kalman filter [1],[2]. The performance of the Kalman
filter is crucial to overall system performance, especially



when low-cost sensors are integrated. This paper focusses
on filtering GPS and IMU data.

In the classical way of aiding the INS, which is consid-
ered here for reference purposes, an indirect Kalman fil-
ter formulation is chosen. The Kalman filter estimates the
errors of the SDA state vector, which can be corrected
subsequently. The development of this design took place
when due to limited computational ressources, the com-
putational efficiency of the algorithm was of superior im-
portance [3]. In a direct Kalman filter formulation, total
quantities like position and velocity are estimated. As it
is considered to be computationally more demanding, this
design was commonly used only for alignment and cali-
bration tasks and applications in which only slow dynam-
ics were involved [4]. However, as CPU clock speeds are
increasing, the computational cost of the algorithms used
in an integrated navigation system is becoming less im-
portant.

This paper describes in detail both approaches to design
Kalman filters for the data fusion task in integrated navi-
gation systems. In the next section, the navigation equa-
tions are introduced. In Section three, indirect and direct
Kalman filter formulations are described. In Section four,
an alternative direct formulation with a computational ef-
ficiency comparable to the indirect formulation is derived.
In Section five, simulation results are given. Finally, con-
clusions are drawn.

2 THE NAVIGATION EQUATIONS

The navigation equations are important for both the SDA
and the Kalman filter. In the SDA, these differential equa-
tions are integrated to keep track of position, velocity and
attitude of the vehicle. For the indirect Kalman filter for-
mulation, the navigation equations are used to derive the
error propagation equations by means of a Taylor series
expansion which is truncated after the linear part. The
error propagation equations represent the system model
according to which the indirect Kalman filter is designed.
For the direct Kalman filter, the navigation equations rep-
resent the nonlinear system the filter has to observe. The
investigations presented in this paper were carried out us-
ing the navigation equations in a navigation frame (n-
frame) mechanisation. The axes of the n-frame are given
by the directions north, east and down. The down axis is
parallel to the local gravity vector, which is the sum of the
gravitational acceleration and the centripetal acceleration
caused by the rotation of the earth. The n-frame as well
as the body-fixed coordinate frame (b-frame) have their
origins at the location of the navigation system. The axes
of the b-frame are aligned with the roll, pitch and yaw
axes of the vehicle. In the SDA, the attitude information
was represented using a quaternion [5] in order to avoid
singularities that can occur when Euler angles are used.

The continuous form strapdown inertial navigation equa-
tions are given by following set of nonlinear differential

equations[6]:

∂~q

∂t
=

1
2
~q ∗
(
0, ~ωbib − Cbn [~ωnie + ~ωnen]

)
(1)

∂~vne
∂t

= Cnb
~f bib − (2~ωnie + ~ωnen)× ~vne + ~g nl (2)

∂L

∂t
=

vne,north

Rn + h
(3)

∂λ

∂t
=

vne,east

(Re + h) cos(L)
(4)

∂h

∂t
= −vne,down (5)

Herein denotes

~q attitude quaternion
∗ quaternion multiplication
Cnb Direction cosine matrix that transforms a

vector from its b-frame component form
to its n-frame component form, computed
from ~q.

~f bib specific force acceleration
~ωbib angular rate of the b-frame with respect to a

nonrotating inertial frame (i-frame), given
in b-frame component form

~ωnie angular rate of a coordinate frame with one
axis parallel to the Earth’s polar axis and
the other axes fixed to the Earth (e-frame)
with respect to the i-frame, given in n-
frame component form

~ωnen angular rate of the n-frame with respect to
the e-frame, given in n-frame component
form

~vne velocity in north, east, and down direction
with respect to the Earth, given in n-frame
component form

L, λ, h lattitude, longitude, height
Rn, Re Earth’s meridian, and transverse radius of

curvature.
~g nl local gravity vector in n-frame component

form

The IMU and the SDA which integrates (1)-(5) using the
currently available angular rate and specific force mea-
surements form the INS. Without any further aiding, the
error in the computed position provided by the INS grows
with second or even third order of time, respectively. In
this contribution only loosly coupled systems are consid-
ered: it is assumed that the long-term accuracy of the
navigation solution is assured by aiding the INS with the
position information provided by a GPS receiver. The
data fusion of INS and GPS can be accomplished using
different Kalman filter formulations, which are described
in the next section.



3 INDIRECT AND DIRECT KALMAN FILTER
FORMULATION

3.1 Indirect Formulation

For the indirect Kalman filter formulation in which the
errors of the SDA are estimated, the error propagation
equations are needed. The equations for the position and
velocity errors follow from (2)-(5). These nonlinear equa-
tions can be written in the following form:

∂~x

∂t
= ~f(~x) (6)

Expanding Eq. (6) into a Taylor series and neglecting
higher order terms leads to

∂~x

∂t
≈ ~f(~x)|~x=~xSDA +

∂ ~f(~x)
∂~x
|~x=~xSDA · (~x− ~xSDA) (7)

where~xSDA denotes the state of the SDA. Rearranging
Eq. (7) gives the error propagation equations

∂∆~x
∂t

=
∂ ~f(~x)
∂~x
|~x=~xSDA∆~x (8)

where

∆~x = ~x− ~xSDA. (9)

The attitude error propagation equations cannot be de-
rived from (1) directly. As the attitude errors are con-
sidered to be small, they are commonly described using
Euler angles. It is shown in [7] that the attitude errors
propagate according to

∂Ψ
∂t

= −~ωnin ×Ψ− Cnb δ~ωbib + δ~ωnin (10)

whereΨ is a vector containing the attitude errors in form
of Euler angles,~ωnin is the angular rate of the n-frame with
respect to an inertial frame given in n-frame component
form, δ~ωbib are the angular rate sensor biases andδ~ωnin are
the errors in the n-frame rate estimates.
The linear system model, of which the discrete equiva-
lent was used in the indirect Kalman filter formulation, is
given by adding a zero-mean white gaussian noise pro-
cess~w multiplied with an appropriate input matrix G to
the position, velocity and attitude error propagation equa-
tions. This model was augmented by six additional states
to allow the estimation of time-constant or slowly varying
angular rate sensor and accelerometer biases. The struc-
ture of the resulting fifteen-state linear system model can
be seen from Eqs. (11) - (13).

∂∆~x
∂t

= A∆~x+G~w (11)

∆~x =


∆~xned

∆~vned

Ψ
δ ~f bib
δ~ωbib

 , G~w =


0 0
Cnb 0
0 Cnb
0 0
0 0


(

~wAcc

~wGyro

)

(12)

A =


A11 I 0 0 0
A21 A22 A23 Cnb 0
A31 A32 A33 0 Cnb
0 0 0 0 0
0 0 0 0 0

 (13)

Herein I denotes the3× 3 unity matrix and0 denotes
a 3 × 3 matrix containing only zeros. Finally, the mea-
surement model which is needed to process the position
information provided by a GPS receiver is given by

∆~zk = H∆~xk + ~νk (14)

where

H =

 1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

 (15)

and ~νk is a zero-mean, white gaussian noise sequence.
When GPS data is available at timestepk, the errors of
the SDA can be estimated by applying

∆~x +
k = ∆~x −k −Kk(H∆~x −k −∆~zk) (16)

where

∆~zk =

 (LSDA − LGPS)(Rn + hSDA)
(λSDA − λGPS)(Re + hSDA) cos(LSDA)

hSDA − hGPS

 .

(17)

Kk denotes the Kalman gain matrix at timestepk, the su-
perscripts− and+ distinguish quantities before and af-
ter the measurement is processed, respectively. The sub-
scriptsSDA andGPS distinguish quantities provided by
the SDA and the GPS receiver, respectively. With the es-
timated errors∆~x, the state of the SDA is corrected. In
the indirect Kalman filter formulation described here, the
time-consuming Kalman filter estimation step is only ap-
plied when GPS information is available. Accelerometer
and angular rate sensor data enter the SDA directly after
a correction by means of the estimated sensor biases. The
noise of these sensors is therefore treated incorrectly as
system noise. A simplified block diagram of the indirect
Kalman filter formulation is shown in Fig. 1.

∫ ∫
∫ ∫

GPS

ACC pos.

velo.

accl.

a+ ∆a â v̂ x̂

∆x∆v∆a

KALMAN GAIN

Figure 1: Simplified block diagram of the indirect
Kalman filter formulation



3.2 Direct Formulation

In the direct Kalman filter formulation, total quantities
like position, velocity and attitude are estimated directly,
as these quantities are among the state variables of the
filter. The nonlinear system model, according to which
the filter is designed, is given by the navigation Eqs. (1)-
(5). Furthermore, six states were added for the accelera-
tions ~f bib and the angular rates~ωbib which were modeled as
random constants. The model is completed by six states,
which are needed to estimate the inertial sensor biases,
and an appropriate input matrixG multiplied with a zero-
mean, white gaussian noise process~w to take into account
model inadequacies, see Eq. (18)

∂~x

∂t
= ~f(~x) +G~w (18)

The required linear system model is obtained by lineariz-
ing about the estimated state vector~̂x:

F =
∂ ~f(~x)
∂~x
|~x=~̂x (19)

The structure of the resulting twenty-two-state linear sys-
tem model can be seen from Eqs. (20)-(22).

∂~x

∂t
= F~x+G~w (20)

~x =



L, λ, h
~vned

~f bib
ωbib
~q

δ ~f bib
δ~ωbib


, G~w =



0 0
0 0
I 0
0 I
0 0
0 0
0 0


(

~w1

~w2

)
(21)

F =



F11 F12 0 0 0 0 0
F21 F22 Cnb 0 F25 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
F51 F52 0 F54 F55 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(22)

Again, I denotes the3 × 3 unity matrix and0 denotes
3 × 3 , 4 × 3, and3 × 4 matrices containing only zeros.
The measurement models which are needed to process the
GPS receiver, angular rate sensor, and accelerometer data
are straight forward, although an appropriate scaling of
the GPS measurement matrix is necessary to assure the
numerical stability of the algorithm. In opposite to the
indirect Kalman filter formulation, all sensor data is pro-
cessed in the estimation step of the filter. Therefore, all
sensor noise is modeled correctly as measurement noise.
The inherent disadvantage of this filter algorithm is its in-
creased computational cost. This is due to the fact that the
Kalman gain matrix has to be computed more frequently,
which involves a time consuming matrix inversion. In the

indirect Kalman filter formulation described previously,
this computation is required only when a GPS measure-
ment is available. Here the Kalman gain matrix has to
be computed additionally when accelerometer and angu-
lar rate sensor measurements are available, which occur
at a high rate. A simplified block diagram of the direct
Kalman filter formulation is shown in Fig. 2.

∫∫

GPS ACC

v̂ x̂â
pos.

velo.

accl.

KALMAN GAIN

Figure 2: Simplified block diagram of the direct Kalman
filter formulation

4 AN ALTERNATIVE DIRECT KALMAN FILTER
FORMULATION

In order to avoid the increased computational cost caused
by the processing of the inertial sensor data in the Kalman
filter estimation step as in the algorithm described above,
an alternative direct Kalman filter formulation was de-
rived. The idea is to discard the state variables reserved
for the angular rates~ωbib and accelerations~f bib. Instead,
the inertial sensor measurements are treated as known in-
put vector~u. This leads to the sixteen-state system model
given by Eqs. (23)-(26).

∂~x

∂t
= F~x+G~u+G~w (23)

~x =


L, λ, h
~vned

~q

δ ~f bib
δ~ωbib

 , G =


0 0
Cnb 0
0 F54

0 0
0 0

 (24)

~u =

(
~f bib,measured

~ωbib,measured

)
, ~w =

(
~wAcc

~wGyro

)
(25)

F =


F11 F12 0 0 0
F21 F22 F25 −Cnb 0
F51 F52 F55 0 −F54

0 0 0 0 0
0 0 0 0 0

 (26)

The indexing of the submatrices in Eq. (26) is taken
from Eq. (22), so that identical submatrixes receive the
same index in both equations. The measurement model



Table 1: Characteristics of the sensors used for simulation

source cycle time noise

angular rate sensors 5 ms 0.1 ◦/
√

h

accelerometers 5 ms 0.05 mg/
√

Hz

GPS receiver 1 s 10 m

required to process the GPS receiver data is straightfor-
ward and nearly identical to the direct Kalman filter for-
mulation described before. This algorithm offers a com-
putational cost comparable to the indirect Kalman filter
formulation. Unfortunately, the inertial sensor noise is
treated incorrectly as system noise, too. A simplified
block diagram of this alternative direct Kalman filter for-
mulation is shown in Fig. 3.

ACC
∫∫ v̂ x̂â

GPS

pos.

velo.

accl.

KALMAN GAIN

Figure 3: Simplified block diagram of the alternative di-
rect Kalman filter formulation

5 SIMULATION RESULTS

The aim of the numerical simulations was to compare the
performance of the different Kalman filter formulations
described in the previous sections during a representative
twenty-minute mission flight. Hypothetical inertial sensor
and GPS receiver data was generated by corrupting the
ideal values with white noise according to Table 1. In
addition, constant accelerometer and angular rate sensor
biases were assumed. At the 900 second point into the
mission, a GPS outage lasting one minute was assumed.
As the initial values of the covariance matrix of the
Kalman filter state have a significant influence on filter
performance especially in the first few minutes after start
of the mission, all corresponding values were initialized
identically: The variances of the initial attitude errors of
the indirect Kalman filter formulation given in terms of
Euler angles were used to compute the initial variances
of the quaternion coefficients of the two direct Kalman
filter formulations. In the same way, the variances of lat-
titude and longitude were initialized from the variances
of the errors in north and east directions. With this pro-
cedure, the initial values of the state covariance matrix of
the sixteen-state direct formulation were specified com-
pletely. For the twenty-two-state direct formulation, some
degrees of freedom persisted.
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Figure 4: Position errors obtained with different Kalman
filter formulations. (The red graph is covered almost com-
pletely by the blue one.)
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Figure 5: Velocity errors obtained with different Kalman
filter formulations. (The red graph is covered almost com-
pletely by the blue one.)

Figures 4 to 6 show the averaged position, velocity and
attitude errors of the different filters obtained by Monte
Carlo simulation runs. The GPS outage is marked yel-
low. Although there are significant structural differences
between the alternative direct and the indirect Kalman fil-
ter formulations shown in blue and red, respectively, the
plots indicate an identical performance of these two fil-
ters. During the time when GPS-aiding is available, the
direct formulation shows a performance comparable to
the indirect and alternative direct formulation. However,
in the case of GPS loss, the errors in position, velocity and
attitude grow slower for the direct formulation. This ad-
vantage results from the processing of the inertial sensor
data in the estimation step of the Kalman filter.

Based on appropriate system models, the Kalman filters
are able to estimate the biases of the inertial sensors. Fig-
ures 7 and 8 show the biases estimated by the different
filter formulations. The true biases that were added to the
noisy inertial meassurements are shown in black. Again,
the performance of the indirect and the alternative di-
rect formulation is identical and comparable to the per-
formance of the direct formulation.
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Figure 6: Attitude errors obtained with different Kalman
filter formulations. (The red graph is covered almost com-
pletely by the blue one.)
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Figure 7: Estimation of accelerometer biases obtained
with different Kalman filter formulations. (The red graphs
are covered almost completely by the blue ones.)
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Figure 8: Estimation of angular rate sensor biases ob-
tained with different Kalman filter formulations. (The red
graphs are covered almost completely by the blue ones.)

6 CONCLUSION

In this paper, the design of different Kalman filters for
the datafusion in integrated navigation systems was
described. Simulation results indicate an identical per-
formance of the widely used indirect formulation where
the errors of the SDA are estimated, and the alternative
direct formulation where total quantities like position,
velocity and attitude are estimated directly. The direct
formulation, which processes the inertial sensor data in
the estimation step of the filter, offers better results in
GPS drop out situations at the expense of an increased
computational load.

Further work will be carried out to assess the robustness
of these algorithms concerning unknown correlations and
variances of the inertial sensor noise in the case of strong
mechanical missile vibrations [8] as well as to extend the
present systems to tightly coupled GPS/INS systems with
additional aiding sensors.
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