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ABSTRACT 

Conventional Kalman filtering has been the widely used and accepted procedure for 

integrating the inertial navigation systems (INS) with the global positioning system 

(GPS). In this respect, two main application areas are of interest to geomatics, direct 

georeferencing of imagery from mobile multi-sensor systems and estimating the 

anomalous gravity field by airborne gravity systems. In both cases, a conventional 

Kalman filter designed with a fixed estimation algorithm is used to fuse the INS and GPS 

streams of information. In such applications, the estimation environment is not always 

fixed. In a changing environment, imperfect a priori information and insufficient 

estimation time will affect the obtained accuracy of the integrated INS/GPS system if a 

fixed filter formulation is used. An adaptive filtering formulation, therefore, tackles the 

problem of imperfect a priori information and provides better tracking of the filter states. 

In this research, an adaptive Kalman filtering approach is developed, analyzed, and 

proposed to replace the fixed (conventional) Kalman filtering approach for the INS/GPS 

integrated system. The adaptivity of the estimation procedure is carried out through the 

use of the measurement innovation sequence as piece-wise stationary process inside an 

estimation window to estimate either or both of the system noise matrix, Q or/and the 

measurement noise covariance matrix, R. In this dissertation, the performance of each of 

the two filters in kinematic environment is studied. Besides the flexibility it provides, the 

proposed adaptive approach has shown that an improvement of 10%-15% (rms) can be 

achieved to an airborne gravity system, and, in normal flight environments, an 

improvement of the attitude estimation by 20% (rms) could be achieved. 

GPS positioning accuracy directly represents the positioning accuracy of the 

INS/GPS integrated system. It also indirectly enhances the attitude accuracy through the 

coupling effect between the filter states. Since the phase observable delivers the best 

possible GPS positioning information, its initial integer cycle ambiguity must be correctly 

resolved. It provides robustness and strength to the overall integrated system accuracy and 

reliability. A new method is developed in this research to resolve the GPS phase 

ambiguity using the so-called whitening filter. The method is discussed in this 

dissertation where it proved successful for short baselines and fair satellite coverage. 
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COORDINATE FRAMES 

 
Operational Inertial Frame - i-frame 

origin : at the center  of mass of the Earth 

x-axis : pointing towards the mean equinoctial colure 

y-axis : being orthogonal to the two other axes to complete a right-handed frame 

z-axis : being parallel to the mean spin axis of the Earth 

 

Body Frame - b-frame (measurement) 

origin : at center of accel proof masses 

x-axis : pointing left for right-handed systems and right for left-handed systems 

y-axis : pointing forward (direction of motion) 

z-axis : pointing upward 

 

Local-level Frame - l-frame (navigation) 

origin : at topocenter; coincide with sensor frame origin  

x-axis : completing a right-handed orthogonal frame 

y-axis : pointing towards geodetic north 

z-axis : pointing outwards orthogonal to a reference ellipsoid 

 

Earth-fixed Frame - e-frame (geocentric) 

origin : at the center  of mass of the Earth 

x-axis : pointing towards the mean meridian of Greenwich 

y-axis : completing a right-handed orthogonal frame 

z-axis : parallel to the mean spin axis of the Earth 

 

Camera Frame - c-frame (imagery) 

origin : at camera perspective center 

x-axis : completing a right-handed orthogonal frame 

y-axis : pointing forward 

z-axis : pointing upward 



 

 

 1. 

INTRODUCTION 

In this chapter, background information on the formulation of the INS/GPS 

integrated system estimation problem is given. The problem of optimizing the estimation 

procedure of the INS/GPS integrated system is stated. Adaptive Kalman filtering and 

GPS phase ambiguity resolution are proposed as vehicles to the optimization problem. 

Research objectives, the contribution of the research, and the dissertation outline are 

given. 

1.1 Background and Problem Statement 

When surveying systems based on the principle of inertial navigation were 

developed in the early 1970’s for military agencies, and became available to non-military 

users in 1975, Kalman filtering was the main vehicle to carry out the sequential 

processing of data. After a short period of testing, it was almost immediately employed in 

geodetic work, where it proved quite successful [Babbage 1977, Schwarz 1983].  The 

main focus was then on two major application areas: efficient control of point positioning 

from moving vehicles and precise interpolation of the anomalous gravity vector. Both 

tasks could be solved with a Kalman filter processing the inertial system output at zero 

velocity update points (ZUPTs) in a semi-kinematic mode. However, during the 1980’s, 

major changes have taken place, which were driven by the rapid development of GPS and 

the increased use of strapdown inertial systems. GPS, with its continuous updates, has 

freed inertial techniques from the need for zero velocity updates and has thus 

considerably extended their kinematic functionality. The use of the Kalman filter with the 

integrated INS/GPS has, since then, gained greater importance. 

The progress of the INS/GPS integration during the last two decades can be 

identified as: evolution of the integration concept and development of production systems 

that make use of the integrated system. In the former, the development of new 

algorithms, see e.g. [Wei and Schwarz, 1990a] and the development of the integrated 
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system itself, see e.g. [Liu 1992, Schwarz and Zhang, 1994, Zhang 1995] characterizes 

the evolution. The production systems that make use of the integrated INS/GPS system 

are either mobile multi-sensor systems or airborne gravity systems. 

Mobile multi-sensor systems, land-based or airborne, use INS/GPS as a means for 

positioning and orientation to directly georeference the production system, see e.g., 

[Schwarz et al., 1993a, El-Sheimy et al., 1995, Mostafa et al. 1997]. In this case, high 

frequency trajectory information becomes highly important; the attitude (orientation) 

information is especially critical. Tracking of such information requires high data rate 

and an efficient algorithm capable of preserving high frequency trajectory information 

content. In the airborne gravity systems, however, acceleration information derived from 

both GPS and INS is used to recover gravity, see e.g. [Wei and Schwarz, 1995, Schwarz 

and Glennie 1997]. High frequency trajectory information becomes critical for short 

wavelength resolution of the gravity field especially in situations where higher 

interpolation is required, e.g. trajectory turns.  

In the process of adapting the original integration concept to the growing number of 

applications, the concept has grown in leaps and bounds and contains contributions from 

many individuals. In this process, the use of a conventional filter designed with a fixed 

estimation algorithm in mind was dominant. In the meantime, the subject of adaptive 

filters has matured to the point where it has become an important part of statistical signal 

processing. The use of an adaptive filter offers an attractive solution to the integration 

problem as it usually provides a significant improvement in performance over the fixed 

filter. Furthermore, the use of adaptive filters provides new signal processing capabilities 

that would not be available otherwise [Haykin 1996].  

The fixed integration formulation has shown success in fulfilling the accuracy 

requirements of many kinematic applications. However, it was not fully successful in 

other applications especially with medium accuracy INS systems like the LTN 90-100. In 

some cases, it did not fulfill the accuracy requirements at all times; in others, it did not 

fulfill them all the time. In the first case, it was not a suitable system for applications that 

require accuracy better than ten centimeter like engineering and cadastral applications. In 
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the second case, it was not a one hundred percent reliable system especially in situations 

like bad geometric satellite coverage or loss of lock, see [Schwarz et al., 1993a] for 

accuracy requirements.  

It can be seen from the Kalman filter basic formula (Eq. (1.1)), that at estimation 

epoch k, the estimate of the INS/GPS filter after update, )(x̂ k + , is dependant on the INS 

system model through the predicted state, )(x̂ k − , the GPS update measurement through 

the measurement innovation, kν , and on the system noise and measurement noise a 

priori statistical information through the filter weighting (gain) matrix, kK  

kkkk K)(x̂)(x̂ ν+−=+ . (1.1) 

Therefore, the problem of achieving better performance (reliability and accuracy) 

of INS/GPS systems can be divided into a modeling problem and an estimation problem. 

While the modeling problem is concerned with developing better error models that more 

accurately describe the INS/GPS system, the estimation problem is concerned with 

achieving better trajectory and sensor error estimates through the proper use of the 

available process and measurement information. From the estimation viewpoint, the 

optimality of conventional Kalman filter requires, in principle, good a priori knowledge 

about the process and infinite (or sufficiently long) estimation time or data length 

[Kalman 1960, Gelb 1974, Brown and Hwang, 1992]. These criteria have limited the 

applicability of the Kalman filter in the case of INS/GPS systems, both conceptually and 

practically.  

From the conceptual point of view, good a priori information, because it is difficult 

to obtain, depends on factors such as the type of application and the process dynamics. 

The insufficiently known a priori filter statistics will on the one hand reduce the precision 

of the estimated states or introduce biases to their estimates (robustness). On the other 

hand, wrong a priori information will lead to practical divergence of the filter. From the 

implementation point of view, estimation time is always finite and, in some cases, not all 

filter states can be estimated; this applies specifically to the filter weak observable 
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components. Limited data length will not only invalidate the optimality criterion of the 

Kalman filter, but also will, in many cases, have the practical problem that the weak 

observable components of the filter cannot be estimated, e.g. accelerometer bias and gyro 

drift. Through the coupling effect, these weak observable components directly affect the 

quality with which the main components of the filter (position, velocity, and attitude) can 

be estimated.  

In kinematic applications, the estimation environment of the integrated system is 

not always fixed but changing. In a changing estimation environment, imperfect a priori 

information and finite data length will affect the obtained accuracy of the integrated 

INS/GPS system if a fixed filter formulation is used. This implies that there is a major 

drawback in using a fixed filter designed by conventional methods in this case. An 

adaptive filtering formulation, therefore, tackles the problem of imperfect a priori 

information and may  provide a significant improvement in performance over the fixed 

filter through the filter learning process based on the innovation sequence [Mehra 1970, 

1971]. In this case, perfect knowledge of a priori information is only of secondary 

importance because the new measurement and process covariance matrices are adapted 

according to the filter learning history. This requires frequent adaptation of the 

integration. The fixed estimation formulation should, therefore, be replaced by an 

adaptive estimation formulation to suit the changing integration environment. It can be 

expected that with adaptive estimation of the integrated system, better performance can 

be achieved.  

As seen from Eq. (1.1), optimizing the estimation procedure of the INS/GPS 

integrated system requires the measurement update to the Kalman filter to be of the 

highest accuracy possible. Quality of GPS position and velocity directly represent the 

positioning accuracy of the integrated system. They, also, indirectly enhance the attitude 

accuracy of the integrated system through the updates and the interaction (coupling) of 

the attitude and the position and velocity states of the filter. Since phase observables 

deliver the best possible GPS navigation information, their initial integer cycle 
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ambiguities must be resolved correctly because they provide robustness to the GPS 

observables and strength to the overall accuracy and reliability of the integrated system.  

Over the last decade various methods for ambiguity resolution have been proposed. 

In these methods, the ambiguity is either resolved in the measurement domain where a 

search is employed to locate the correct ambiguity set through statistical testing, see e.g. 

[Hatch 1990], or in the position domain (code-guided) where a precise pre-determined 

receiver position is required to search a physical space for the correct receiver position, 

see e.g. [Almgren 1998]. The latter requires receivers that have low noise level, while the 

former usually employ complicated search algorithms. Over short baselines, however, the 

residual errors in the double differenced GPS observable don't exceed half the phase 

observable wavelength [Parkinson and Spilker, 1996]. After a few observations, the float 

ambiguity estimate becomes very close to the integer ambiguity. A space projection 

method, like the integer whitening filter, reduces the data noise and allows a reliable 

estimation over a shorter observation time. Therefore, the integer whitening filter 

provides an algorithm for the problem of GPS ambiguity resolution on the fly over short 

baselines which does not require a search, is easy to understand, simple to implement, 

applicable in real time, economic for hardware, and, of course, is reliable.  

1.2 Research Objectives 

The main objective of this research is to optimize the estimation procedure of the 

INS/GPS integrated system by replacing the conventional Kalman filtering formulation 

of the integration by an adaptive one. The adaptive formulation is superior to the 

conventional one as it provides a means to accommodate irregular situations. This, in 

return, enhances the reliability and accuracy of the INS/GPS integrated system providing 

improved accuracy and reliability in kinematic applications. The GPS phase ambiguity 

resolution algorithm is also revisited and a new simple technique is developed. 

To achieve the goals of this research, the following are identified: 
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1. investigate an alternative to conventional Kalman filtering, in general, and in 

formulating the INS/GPS integration, in particular, and then develop and 

implement an adaptive Kalman filter for the INS/GPS integrated system  

2. analyze the performance of the developed adaptive Kalman filter against the 

conventional Kalman filter for kinematic applications 

3. develop an efficient and simplified approach to the GPS phase ambiguity 

resolution problem for short baselines. 

1.3 Author's Contribution 

In this dissertation, the adaptive Kalman filter is introduced as an alternative to the 

widely used conventional Kalman filter for application in an integrated INS/GPS. A 

thorough analysis of the developed method is carried out for different kinematic 

applications to show the effectiveness and suitability of the adaptive technique. It is 

shown that the adaptive filter is not only more convenient and relaxes the requirement on 

the a priori statistical information, but also outperforms the conventional filter. It, 

therefore, has potential for kinematic applications requiring high reliability and accuracy. 

A new method for GPS phase ambiguity resolution is also introduced in this 

dissertation. The efficiency of the method stems from the fact that it requires only one 

transformation step and no search. The method proved very efficient for short baselines 

over short observation periods. A thorough analysis of the method is given with details 

on the  transformation used.   

1.4 Dissertation Outline 

In Chapter 2, a general overview of the dynamic processes is given. Stationary and 

non-stationary processes are outlined. The treatment of the non-stationary process as a 

piece-wise stationary is discussed for the case of innovation-based adaptive Kalman 

filtering. 
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Chapter 3 covers the Kalman filtering theory and implementation for the INS/GPS 

integrated system. The problem of the integrated system is discussed and its Kalman 

filtering formulation is outlined. Details of the INS/GPS Kalman filter structure are also 

discussed. The role of the a priori statistical information and its effect on the filter 

formulation is given. Adaptive filtering methods, in general, and those useful for 

application in Geomatics and Navigation are discussed. 

The development of an innovation-based adaptive Kalman filter for the INS/GPS 

integrated system is documented in Chapter 4. A discussion of the appropriateness of the 

maximum likelihood approach as opposed to the least squares approach is outlined. The 

maximum likelihood derivation of the filter is then given in details. Special cases where 

the filter system noise covariance and/or the measurement noise covariance matrices are 

adapted are derived. Whitening of the innovation sequence via the float-whitening filter 

is also discussed. 

In Chapter 5, a preliminary analysis of the developed adaptive Kalman filter is 

carried out through simulation studies. Various performance parameters are used to 

analyze the performance of the developed adaptive filter and compare it to the 

conventional filter. 

Introduced in Chapter 6 is a new method for GPS phase ambiguity resolution on 

the fly, the OTFWhite method. The problem of GPS phase ambiguity resolution is first 

discussed. The solution of the ambiguity problem through transforming the problem from 

the original space to a space that is easier to analyze is then discussed. Geometric and 

precision implications are also discussed. 

Field tests, results, and analysis pertaining to the developed OTF ambiguity 

resolution technique are covered in Chapter 7. Investigations of the new method and its 

applicability for short baselines are also discussed in this chapter. 

In Chapter 8, four different types of testing are outlined. The first test is carried out 

in a well-controlled environment to test the overall performance of the developed 

adaptive Kalman filter. The second test is a field flight test similar to the simulated flight 
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test to support the simulation studies. The third and fourth are flight tests covering the 

two most demanding INS/GPS applications, direct georeferencing and gravity systems. 

The first flight test is carried out in an attitude-controlled environment, while the second 

is flown over an area of well-known ground gravity field. Results and analysis of the 

developed adaptive filter is carried out on the field tests and presented in this chapter. 

Finally, Chapter 9 summarizes the work done in this research and draws 

conclusions from it. It also gives recommendations for further developments in the same 

field. 



 

 

2. 

DYNAMICS OF ERROR PROCESSES 

In this chapter, fundamental characteristics of random variables and processes are 

outlined. The concept of stationary random process is discussed. The treatment of non-

stationary random process as a piece-wise stationary process in adaptive estimation is 

given. Standard references such as [Papoulis 1965, Gelb 1974, Maybeck 1982, Yaglom 

1987, Brown and Hwang, 1992] are used extensively in this chapter. 

2.1 Random Variables and Random Processes 

Random (or stochastic) events are the very first object of study in the theory of 

probability. Their importance in geomatics lies in the interaction with the estimation 

theory. There can not be a fair treatment of the estimation theory, especially adaptive 

estimation, without the proper treatment of the random events. Random variables are 

characterized by their distribution functions which require statistics, which can be derived 

from experiments, in order for it to be defined. 

Random variables are the outcome of random experiments. These random variables 

take on values at random according to their probability distribution (or density) functions. 

What is observed of a random variable are some of its realizations. Because of their 

nature, measurement and system (or process) errors that cannot be modeled take the form 

of random variables. It is this property of the error behavior that makes the estimation of 

the trajectory in the case of INS/GPS kinematic applications to deal with random 

processes. 

If X is a random variable, then the occurrence of the values of X which is less than 

a fixed number x is a random event. The probability distribution function of x, F(x), is 

defined as 

F(x) = P(X<x).  (2.1) 
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where P represents probability. In probability theory, a random variable is considered 

given if its distribution function is known; this will become evidently clear in the 

discussion of the special case of the Gaussian distribution. It is clear that not every 

function can be a distribution function. The condition for a function to be a distribution 

function is that it should be a monotone non-decreasing function of x, i.e. 

0)x(F)ax(F ≥−+ , 

0)x(Flim
x

=
−∞→

,             for a > 0  (2.2) 

1)x(Flim
x

=
∞→

.  

For continuous random variables, the probability distribution function can be represented 

by its derivative, the probability density function f(x), where 

 
dx

)x(dF)x(f = . (2.3) 

It is evident from Eq.(2.3) that the distribution function can be computed once the density 

function is known, i.e. 

∫=
∞−

x
'dx)'x(f)x(F . (2.4) 

The condition in Eq.(2.2) is then rewritten in terms of the density function as 

,1dx)x(f =∫
∞

∞−
              f(x) > 0 for all x. (2.5) 
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One very important probability distribution/density function, in geomatics, is the 

normal (or Gaussian) distribution/density function. The importance of this distribution 

stems from the following facts: 

1. the distribution is totally defined by only two statistics, namely, the mean and the 

variance of the random variable 

2. according to the central limit theorem, if the random phenomenon we observe is 

generated as the sum of effects of many independent infinitesimal random 

phenomena, then the distribution of the observed phenomenon approaches a 

Gaussian distribution as more random effects are summed, regardless of the 

distribution of each individual phenomenon [Maybeck 1982]. Therefore, the 

Gaussian distribution has engineering importance because it provides adequate 

modeling of random phenomena observed empirically. In [Papoulis 1965], it was 

shown that three uniformly distributed random variables convolve together to a 

very good approximation of a Gaussian distribution. 

Figs. (2.1a) and (2.1b) show a schematic plot of the normal distribution and density 

functions, respectively. 

 

The probability density function of the normal distribution is 

 

2
'x

2
x

2

e
2

1)x(f
−

πσ
= , (2.6) 

 

where, 
x

x )mx(
'x

σ
−

= is the normalized variable and mx and σx will be defined in the 

following. 
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Fig. (2.1a) : Normal Distribution Function 
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Fig.(2.1b) : Normal Density Function 
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The two statistics required to define a uni-variate normal distribution of a 

random variable are the mean and the variance. The mean value of a random 

variable X, and consequently of its distribution, is defined as 

∫==
∞

∞−
dx)x(xf]X[Em x .  (2.7) 

The mean value is the first moment, µx, of the random variable. It is also the 

mathematical expectation of the random variable which tends to the average observation, 

in a probabilistic sense, as the number of observations increases.  

The variance of a random variable is the mean squared deviation of the random variable 

from its mean; it is defined as 

∫ −=−=σ=
∞

∞−
dx)x(f)mx(])mX[(EXvar 2

x
2

x
2
x . (2.8) 

It is evident from Eq.(2.8) that the variance of a random variable is not its second 

moment (mean squared values), µx
2. Expanding Eq.(2.8), it can be seen that the variance 

of a random variable deviates from its second moment by the squared value of the mean 

of the random variable, i.e.  

2
x

2
x

222
x m])x[E(]x[E −µ=−=σ . (2.9) 

 

The mean squared value and the variance are equal for zero-mean random variables, 

however. It should be noted that the above definitions of the mean value and the variance 

are also valid for discrete data; in this case, the integral will be replaced by the averaging 

summation. 
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In geomatics, one is usually concerned with more than one random variable. In this 

case, a multidimensional (or multivariate) distribution is used. In addition to the above 

mentioned two statistics, a third statistic is required to define the multivariate model, the 

covariance. The covariance is the partial indication of the degree by which one random 

variable is related to another. It is defined as the expectation of the product of the two 

random variables after their means have been subtracted, 

∫ ∫ −−=

−−=σ=
∞

∞−

∞

∞−
dxdy)y,x(f)my)(mx(

)]mY)(mX[(EXYcov

yx

yxxy
. (2.10) 

Again, the covariance of two random variables is not the first moment of their 

product, but is related to it as follows 

yxxyxy mm−µ=σ . (2.11) 

A more convenient representation of the relationship between two random variables 

is given by the correlation coefficient. It is the covariance of the two variables 

normalized by the square root of their variances (standard deviations), and is expressed as 

yx

yxxy

yx

xy
xy

mm
corXY

σσ
−µ

=
σσ

σ
=ρ= . (2.12) 

The range of possible values of the correlation coefficient ρ is restricted by the inequality 

11 ≤ρ≤− . (2.13) 

The previous expression is a rephrasing of the Schwarz inequality 

yxxy || σσ≤σ , (2.14) 
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which defines the relationship between the covariance of two random variables and their 

variances.  The probability density function of the bi-variate normal distribution is 

]
)2

xy1(2

2'y'y'xxy22'x
[

2
y

2
x

22
xy

e
)2)(1(

1)y,x(f ρ−

+ρ−
−

σσπρ−
=  (2.15) 

where, x' and y' are the normalized variables.  

 

Two random variables are said to be statistically uncorrelated if their correlation 

coefficient vanishes, i.e. ρxy = 0. They are said to be linearly independent if their joint 

distribution can be expressed as a product of their individual distributions, i.e. f(x,y) = 

f(x) f(y). In case of a normal distribution, the statistical non-correlatedness implies linear 

independence. This is evident from Eq.(2.15) by substituting ρ = 0, one can express f(x,y) 

as a product of f(x) and f(y). 

The correlation coefficient can also be used between two different time epochs of 

the same variable; in this case, it is called auto-correlation or auto-covariance coefficient. 

In general, the auto-covariance takes the form 

∫ ∫ −−=

−−=σ=
∞

∞−

∞

∞−
2121)t(x2)t(x1

)t(x2)t(x1)t(x)t(x21

dxdx))t(x),t(x(f)m)t(x)(m)t(x(

)]m)t(X)(m)t(X[(E)t(X)t(Xcov

21

2121
. 

     (2.16) 

If the normalized variables are used instead, the auto-correlation can be defined as 

∫ ∫=

=ρ=
∞

∞−

∞

∞−
212121

21)t(x)t(x21

dxdx))t(x),t(x(f)t('x)t('x

)]t('X)t('X[E)t(X)t(corX
21

. (2.17) 
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In case two different variables at two different time instants are of interest, cross-

covariance and cross-correlation coefficients are defined. Eqs.(2.16) and (2.17) are then 

used with one of the X's replaced by Y to represent the second variable. 

The extension of the concept of random variable in time-space is the random 

function or random process. A Random Process can be thought of as a collection, or 

ensemble, of functions of time. The value of the observed member of the ensemble at a 

particular time is a random variable. As it is computed at different time instants, the 

correlation coefficient can be replaced by the correlation function for a random process. 

Substituting t2 = t1 + τ, an auto-correlation function can be defined as 

)]t(x)t(x[E)()(corXX 11xx τ+=τρ=τ , (2.18) 

and the cross-correlation function as 

)]t(y)t(x[E)()(corXY 11xy τ+=τρ=τ . (2.19) 

It should be noted, that for discrete processes, the previous definitions are also valid. The 

difference is that sequences, rather than processes, are used. 

2.2 Stationarity  

A stationary process is a process whose statistical properties are invariant in time, 

in a probabilistic sense. It follows that the probability distribution function of the process 

remains the same when shifted along the time axis. In other words, the first probability 

distribution for the process, F(x1,t1), is independent of the time of observation, t1. For the 

distribution function to remain independent of the time of observation, the first and 

second moments of the process, and consequently the mean value and the variance, 

should also be independent of the time of observation. They may take different values at 

random as time elapses, but stay independent of the absolute time of observation. A 
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random process satisfying this condition is called a stationary random process in the strict 

sense or strictly stationary.  

The previous definition of stationarity requires the estimation of the distribution 

function for the estimation of the process itself; this is a typical Bayesian approach. In 

practice, however, the strict stationarity condition is very difficult to fulfill. If Gaussian 

distributions are of concern, as is the case in most geomatics applications, wide-sense 

stationarity suffices. And, consequently, a more simplified approach to the estimation 

problem can be taken. 

A random process is said to be stationary in the wide sense or widely stationary if 

its mean value remains constant, its mean-squared value is finite, and its correlation 

function is independent of the absolute time of observation, t1 or t2, but still dependent on 

the difference between them τ = t2 – t1. In this case, Eqs.(2.18) and (2.19) are used to 

define the correlation functions. Since the Gaussian distribution of a random process is 

completely defined by the process mean value, m, and its correlation function, ρ(τ), the 

concept of stationarity in the wide sense and in the strict sense are exactly the same for 

Gaussian random processes. 

The correlation function of a stationary random process is a positive definite 

function. It follows, that the following conditions hold 

0)0(xx >ρ   

)(|)(| xxxx τρ=τ−ρ  (2.20) 

)0(|)(| xxxx ρ≤τρ . 

One important stationary correlation function widely used in geomatics and in 

INS/GPS integrated systems is the correlation function of a first-order Gauss-Markov 
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process. The process is generated by passing white noise, w(t), through a simple first-

order lag filter, as shown in Fig.(2.2). 

 

The state-space representation of this process (system) takes the form of the 

following first-order differential equation 

)t(w)t(x)t(x +β−=& , (2.21) 

where, β is the correlation length (the reciprocal of the correlation time at 1/e point). 

Solving the above differential equation and evaluating Eq.(2.18), the correlation function 

of the process is 

2||2
0xx me)( +σ=τρ τβ− , (2.22) 

where m is the process mean value, and σo is the square root of its mean squared value 

(its power) at time zero. The probability distribution for the process x(tk) is dependent 

only on the value at one point immediately in the past, x(tk-1), i.e. 

)]x(t|)F[x(t  )]x(t),x(t|)F[x(t 1-kk11-kk =… . (2.23) 

The Fourier transform of the auto-correlation function, ρxx(τ), is the power spectral 

density function of the process, which is defined as 

22

2
02

)(
ω+β

βσ
=ωΡ , (2.24) 

where, ω represents the frequency parameter. Figs(2.3a) and (2.3b) show a 

schematic plot of the first-order Gauss-Markov auto-correlation and spectral density 

functions.
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Fig.(2.2) : First-order Gauss-Markov Process 
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2.3 Piece-wise stationarity and Adaptive Estimation 

Stationarity is an idealization of the real world. Under stationarity, it is assumed 

that the random process is defined for all values of time t, and has precisely identical 

properties for all t. In other words, stationarity refers to a state of statistical equilibrium or 

steady state. In reality, there is a state of transition before the process goes to steady state. 

The transient state is obviously dependent on the choice of the process initial conditions 

and is non-stationary in nature. A similar state, as the transient state, can also occur when 

the process dynamics change. In both cases, the validity of the process stationarity 

assumption becomes questionable. 

Brownian motion or random walk is a non-stationary random process. Its mean 

squared value grows unbounded as time increases. Many navigation sensors partially 

display random walk behavior. Inertial sensors, such as gyroscopes and accelerometers, 

usually are characterized by random walk effects. A microscopic observation of the 

random walk shows clearly the non-stationary nature of the process. However, there is 

still something resembling stationarity involved in the microscopic observation. The set 

of increments of the random walk process X(t) during consecutive and equal time 

intervals, i.e., the set of random variables 

)kN(X)N)1k((XXNk →+≡ , (2.25) 

where, k is a counter and N is an arbitrary fixed number describing the sample size, form 

a stationary random sequence. In other words, the random walk, and in effect a non-

stationary process can be considered stationary within small time intervals. 

Ergodicity is one further concept associated with random processes. A process is 

claimed ergodic if any statistic calculated by averaging over all members of the ensemble 

at a fixed time can also be calculated by averaging over all time on a single representative 

member of the ensemble. For a stationary random process X, 

xx mM →  for all T (2.26)
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Fig.(2.3a) : First-order Gauss-Markov Auto-correlation Function 
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Fig.(2.3b) : First-order Gauss-Markov Spectral Density Function
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under the condition that 

0])mM[(E 2
xx →−  as ∞→T , (2.27) 

where, Mx is the time average of the process X, corresponding to the time period T. This 

last condition is understood in the mean square sense. It is clear that an ergodic process 

satisfying this condition guarantees any desirable degree of accuracy, provided the 

observation time is chosen long enough, and stems from a single realization of the 

process. It follows, that the statistics for an ergodic stationary random process can be 

calculated by time averaging as follows 

∫==µ
−∞→

T

T

)i(
T

)i(
x

)i(
x dt)t(x

T2
1limM , (2.28) 

and the auto-correlation function by  

∫ τ+=τρ
−∞→

T

TT
xx dt)t(x)t(x

T2
1lim)( . (2.29) 

With this heuristically motivated approach, one can treat non-stationary processes 

as piece-wise stationary ones in an adaptive fashion and obtain satisfactory results. The 

trade-off will always be the size of window used against the process dynamics. For more 

details on the subject of random variables and stationarity, one may refer to the numerous 

statistical books especially those taking the estimation problem viewpoint such as 

[Papoulis 1965, Gelb 1974, Maybeck 1982, Yaglom 1987, Brown and Hwang, 1992]. 



3. 
INS/GPS KALMAN FILTERING  

In this chapter, the integration of INS and GPS will be discussed from the 

estimation viewpoint. The error characterization of the integrated system will be given 

first and the conventional as well as the adaptive estimation approaches will then be 

discussed. The contents of this chapter is considered as background material and, 

therefore, extensive use of standard references is made. 

3.1 INS/GPS Integration  

The integration of Inertial Navigation Systems (INS) with the Global Positioning 

System (GPS) has become widely accepted as a full kinematic solution of the navigation 

problem. The complementary nature of the two systems gives rise to the increasing use of 

the integrated system. In georeferencing applications, GPS provides the positioning 

component, while INS gives the attitude component and fills the gaps between the GPS 

updates.  In airborne gravimetry, both data streams are used simultaneously to estimate 

the gravity disturbance. 

3.1.1 Error characteristics of the GPS phase observables 

For an INS/GPS integrated system, GPS is responsible for the update measurement. 

It provides three different observables, namely, pseudo code, carrier phase, and Doppler 

(or phase rate) observables. For precise kinematic applications, however, carrier phase 

observables are generally used. The carrier phase observation equation can be written as 

[Wells et al. 1987, Hoffmann-Wellenhof et al. 1992, Parkinson and Spilker, 1996, 

Lachapelle 1998] 

 noisemulttropion ddN)dTdt(cd ΦΦ ε+ε++−λ+−+ρ+ρ=Φ , (3.1) 

where, 
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Φ : observed carrier phase (measurement) 

ρ : geometric spatial distance between the receiver and the satellite (observable) 

dρ : satellite orbital error (nominal and ε-error due to Selective Availability) 

c : speed of light 

dt : satellite clock offset (nominal and δ-error due to Selective Availability) 

dT : receiver clock offset  

λ : carrier wavelength 

N : initial carrier ambiguity 

dion : ionospheric signal delay 

dtrop : tropospheric signal delay 

εΦmult : carrier phase signal multipath 

εΦnoise : carrier phase signal noise. 

Errors contributing to the phase observable in single point positioning mode (SPP) 

are due to satellite orbital perturbations and clock bias, receiver clock bias and 

measurement noise, signal delay through the ionosphere, the troposphere, signal 

multipath, and due to the intentional denial of full GPS system accuracy to non-

authorized users, the so-called Selective Availability or SA. Table (3.1) summarizes 

typical values for these errors [Wells et al 1987, Parkinson and Spilker, 1996, Lachapelle 

1998]. Because the errors incurred in SPP mode cannot meet the accuracy requirements, 

SPP mode is not suitable for precise applications. 
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Table (3.1) : Typical SPP GPS Phase Range Measurement Errors 

Error Source Typical Error [m] 
Nominal Orbital Perturbation 5 - 30 
Nominal Satellite Clock Bias up to 300,000 
SA (Orbital & Clock) 0 - 100 
Ionospheric Delay 2 - 150 
Tropospheric Delay 2 - 30 
Signal Multipath < 0.05 
Receiver Clock Bias 10 - unlimited 
Receiver Measurement Noise < 0.005 
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To eliminate or reduce measurement errors, differential observables are used. In 

real-time kinematic applications, single differencing between receivers is often used to 

reduce measurement errors and eliminate satellite clock error. It, however, does not 

eliminate the receiver clock error. Since the receiver clock drifts over time, a new 

receiver clock term has to be modeled for each observation epoch. The estimation of the 

receiver clock term requires precise modeling which is not always achievable, especially 

for quartz clocks commonly used in GPS receivers. In precise kinematic applications, 

double differencing is often used to eliminate receiver and satellite clock errors and 

reduce the correlated measurement errors. Double differencing is carried out by 

differencing between receivers and between satellites at the same observation epoch. The 

double differenced phase observation equation takes the form [ibid.] 

 
noisemult

tropion ddNd

∆Φ∇∆Φ∇ ε+ε+

∆∇+∆∇−∆∇λ+ρ∆∇+ρ∆∇=∆Φ∇
, (3.2) 

where ∆∇ represents the double differencing operator. 

 In the double differenced observable, the receiver and satellite clock offsets are 

eliminated, the correlated measurement errors are reduced, but the phase signal noise is 

amplified. The phase noise is a function of the receiver tracking bandwidth. It is usually 

within one percent of the phase signal wavelength [Lachapelle 1998, Parkinson  and 

Spilker 1996]. For the GPS L1 signal, the phase noise corresponds to about 2 millimeters 

(1 σ), which will double after double differencing [ibid.].  

Due to the high geometric correlation of range measurements between the receivers 

and the satellite over short baselines, the orbital error is considerably reduced by 

differencing. The relative position error resulting from the remaining orbital error, with 

Selective Availability (SA) on, is well below one part per million [ibid.]. For a baseline 

of 20 kilometer length, the maximum expected range error due to δρ is 20 millimeters 

with a relatively long wavelength (slow variation). 
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50 percent of the Ionospheric delay can be removed by using the broadcast 

Klobuchar model [Klobuchar 1991]. Based on the dispersiveness of the ionosphere, 

ionospheric delay can be determined and subsequently totally eliminated by combining 

L1 and L2 phase observations of a dual frequency receiver. This combination, however, 

is not recommended for short baselines as it results in a 3 times noisier observable than 

the double differenced one [Lachapelle et al, 1987, Langley 1993]. It also destroys the 

integer nature of the phase ambiguity of the resulting observable. For short baselines, the 

ionospheric delay is spatially and temporally correlated; the spatial correlation is found to 

be 200 km up to 1000 km, and the temporal correlation ranges from 2 to 50 minutes 

under disturbed and normal conditions, respectively [Wild et al, 1990]. This means that 

the major part of the ionospheric delay is removed by differencing. The remaining part of 

the ionospheric delay is normally less than 10 percent of the signal wavelength 

[Lachapelle et al, 1992] or about 1 to 2 ppm of the baseline length [Lachapelle 1998]. For 

instance, for a double differenced L1 phase observable over a 10 km baseline, the 

maximum expected residual ionospheric delay is 20 millimeters. 

The troposphere, a non-disperse medium, delays both L1 and L2 signals identically 

and consequently cannot be removed by dual frequency receivers. It shows a maximum 

effect at the horizon and minimum at the zenith. Up to 90 percent of the tropospheric 

delay is due to the so-called dry component and the rest is due to the so-called wet 

component. The dry component can be predicted with high accuracy using empirical 

models [Wells et al, 1986, Lachapelle 1998]. The wet component, however, requires 

either meteorological data and a model or measurements from water vapor radiometers to 

be accurately determined. On the other hand, for short baselines, the tropospheric residual 

error almost completely disappears by using double differenced measurements and rarely 

exceeds 10 millimeters for land-based applications [ibid.]. However, for airborne 

applications, where the height separation between the master station and the rover can 

easily reach a kilometer, a refined tropospheric model becomes important [Seeber 1993]. 

 Multipath is totally uncorrelated between stations and therefore cannot be removed 

by differencing. However, at the same station, the multipath signature repeats itself every 
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sidereal day because of the repeated satellite-receiver geometry. The phase multipath 

cannot exceed quarter wavelength, i.e. 50 millimeters for L1 observations [Braasch 

1998]. Temporal correlation between 1 to 20 minutes have been reported depending on 

the observation site [El-Rabbany 1996]. Multipath is considered the limiting factor when 

ambiguities are to be resolved within a few epochs. Modern receivers usually employ 

multipath mitigation techniques to reject the reflected signal. In general, multipath has 

less effect on kinematic applications than on static ones.  

The variation of the antenna phase (or physical) center from its electronic center, to 

which the position is referred, introduces another source of range error. This is 

particularly important for kinematic applications, where the GPS antenna keeps moving 

most of the time. In modern GPS antennas, however, the phase center is usually defined 

to sub-millimeter accuracy [Seeber 1993].  

In order to achieve high accuracy with phase observations, the double differenced 

ambiguities need to be resolved to their correct values. Double differencing introduces 

additional complexity to the ambiguity resolution by increasing the mutual correlation of 

the phase observables [El-Rabbany 1994]. An ambiguity which has been incorrectly fixed 

by one cycle (19 cm for L1 signal), introduces a 19 cm of error in the range and 

propagates into the baseline solution depending on the receiver-satellite geometry. Table 

(3.2) summarizes typical values for the phase measurement errors incurred in double 

differenced mode [Wells et al 1987, Seeber 1993, Parkinson and Spilker, 1996, 

Lachapelle 1998]. A schematic plot of the spectrum of the errors in the double 

differenced GPS mode is shown in Fig. (3.1), see [Schwarz et al., 1993c] for more 

details. 

Velocity information is derived from GPS Doppler or phase rate observables. 

Double differenced Doppler observables display similar error characteristics as of the 

phase observable. In general, they are less sensitive to orbital and atmospheric effects. 

They are not subject to cycle slips and have no initial ambiguity.  The noise level of the 

double differenced Doppler observable for modern geodetic GPS receivers is usually 

below 10 mm/s [Lachapelle 1998].   
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Table (3.2) : Typical DDGPS Phase Range Measurement Errors 
Error Source 

 
Relative Error 

 [ppm] 
Typical Error*  

[m] 

Orbital Perturbation (Nominal + SA) < 1 < 0.02 
Ionospheric Delay 1-2 0.02-0.04 
Tropospheric Delay 0.3**- 3*** 0.01-0.06 
Signal Multipath < 0.05 0-0.05 
Measurement Noise < 0.01 0.002-0.01 
*Baseline Length = 20 km, **Land-based,  ***Airborne. 
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Fig. (3.1) : Spectrum of Phase Errors in Double Differenced GPS Mode 
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3.1.2 Error characteristics of the inertial observables 

Within the integrated system, the inertial navigation system (INS) plays the role of 

the interpolator between updates (short-term positioning component), and provides 

attitude information. The INS system comprises two types of inertial sensors, 

accelerometers which measure incremental linear velocities and gyroscopes which 

measure incremental angular velocities. In order to show the general characteristics of the 

inertial navigation system, simplified models will be used in the following. 

At the sensor level, an inertial measurement can be described in a simplified form 

as follows [Savage 1983], 

  llll lNlSbLl ε++++= , (3.3) 

where, 

l : inertial measurement (specific force or angular velocity) 

L : inertial observable (specific force or angular velocity) 

bl : measurement bias 

Sl : diagonal matrix of measurement scale factors 

Nl : skew symmetric matrix representing sensor axes misalignment 

εl : measurement random noise.  

 The measurement bias is usually defined as a constant bias in the accelerometer or 

the gyroscope. This means that the derived velocity errors and attitude errors are linear 

with time. Both biases are the result of the manufacturing imperfection of the sensors. 

The bias value is determined by calibrating the system in lab or field tests. Measurements 

are then compensated for the estimated bias. In actuality, these biases are never 

completely constant. Their time-variable part is modeled as stochastic noise. 
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The scale factor is the ratio between the sensor input and output. It depends on the 

system dynamics and the temperature variation. Under normal operational condition and 

relatively low dynamics, the scale factor remains constant. In high dynamics, however, it 

becomes a function of the dynamics itself. Scale factors are usually determined by lab 

calibration of the system; in some cases, field calibration is also used [Salychev 1998]. 

Axes misalignment is the result of mounting imperfections of the sensors inside the 

system. It results in a non-orthogonality of the axes that define the inertial coordinate 

system. As a result, each axis is affected by the other two axes of the triad. In kinematic 

applications, the misalignment effect becomes of less significance if frequent maneuvers 

occur. In this case, the misalignment error changes in a random manner that permits 

lumping it among the random errors. However, if a strapdown system is mounted in an 

aircraft that flies in a straight line, the misalignment error effect will be systematic. 

The previously discussed errors represent systematic effects of the sensors that can 

be deterministically modeled and removed from the measurements. On the other hand, 

the inertial measurement noise represents the effects that cannot be deterministically 

modeled and are time variable, such as bias instability, dynamics dependence and white 

noise. Noise represents the overall uncertainty in the sensor model. These remaining 

errors are characterized by quasi-systematic and random types of behavior [Schwarz 

1986]. They are often modeled as first-order Gauss-Markov or random walk processes 

with model parameters derived from lab experiments. The stochastic model is used to 

represent the remaining error effects after the systematic sensor errors have been removed 

by deterministic models and lab or field calibrations. 

Various error sources contribute to the behavior of the errors of the inertial 

navigation system. They are due to sensor errors, initial navigation errors, vehicle 

dynamics, and the mechanization used. The local-level frame will be used for the 

mechanization of the inertial navigation system in this study. In this specific 

mechanization, the inertial navigation system can be looked at to have two horizontal 

channels and a vertical channel. For each channel, a position error, a velocity error and an 

attitude error are modeled; 9 all together for the three channels, the so-called the 9 



3. INS/GPS KALMAN FILTERING  35 
 

 

Benson inertial navigation errors [Benson 1975, Maybeck 1997]. The simplified INS 

error model in Appendix A will be our vehicle to the following discussion. 

In a horizontal channel, position, velocity, and leveling errors grow systematically 

but are bounded by the Schuler envelope, cf. Eqs. (A.10), (A.12), (A.13). The reason for 

the systematic error growth is the fact that navigation parameters (position, velocity, and 

attitude) are the outcome of integrating incremental linear velocity and angular velocity 

corrupted measurements with time; the sensor and initial errors are also integrated and 

contribute to the systematic navigation errors. The reason for the Schuler envelope in a 

horizontal channel is the interaction between the attitude errors and the velocity errors in 

the model, the gε and δv/R terms in Eq. (A.4). Because it is integrated twice, position 

error is linearly dependant on time which causes the position to drift. For a navigation-

grade INS, like the one simulated in appendix A, a Schuler envelope of 20" for the 

leveling error, an envelope of 1 m/s for the velocity error, and an envelope of 1 km with a 

drift rate of 0.3 m/s for the position error are expected. 

In the vertical channel, position error is quadratic dependant on time while velocity 

error is linearly dependant on time; they both drift away as observation time elapses, cf. 

Eqs. (A.15, A.16). Because of the interaction between the azimuth misalignment (the 

vertical attitude error) with the horizontal velocity, the azimuth error grows 

systematically but is bounded by the Schuler envelope. It, however, has linear 

dependence on time which causes it to drift, cf. Eq. (A.18). For a navigation-grade INS, a 

Schuler envelope of 20" with a drift rate of about 0.002"/s for the azimuth error is 

expected. Velocity error and position error have no Schuler envelopes and they drift are 

expected to drift with a rate of 10-4 m/s2 for velocity error and almost half this value plus 

0.005 m/s for position error for the same navigation-grade INS.   

Short-term error characteristics of the navigation errors is due to the propagation of 

the inertial sensors noise in the navigation parameters. Through the integration process, 

the measurement noise is reduced, resulting in smooth position, velocity, and attitude 

parameters. Under optimal dynamic conditions, like lab conditions, a navigation-grade 
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INS is capable of a short-term position accuracy of better than 1 mm, velocity accuracy 

of about 1 mm/s, and attitude accuracy of about 3" after all Schuler-type errors have been 

eliminated [Schwarz and Wei, 1995b, Schwarz et al, 1993c]. The spectrum of the freely 

navigating inertial system is characterized by the Schuler frequency in the low-frequency 

band and by white noise in the high-frequency band as illustrated in Fig. (3.2).  

3.1.3 The complementary nature of the INS system and the GPS system  

From the discussion of §3.1.1 and §3.1.2, and that in Appendix A, the following 

can be concluded: 

GPS has long-term stability with a homogeneous accuracy 

The double differenced GPS measurement errors are mostly of high frequency nature and 

occupy a wideband in the high frequency spectrum 

residual atmospheric, orbital, and multipath GPS errors occupy a rather wideband in the 

medium to low frequency spectrum (60 - 3000 s) 

the short-term stability of the INS system is excellent with high navigation accuracy 

INS stand-alone positioning accuracy deteriorates very rapidly with time 

navigation errors of the two INS horizontal channels are bounded by the Schuler 

envelope 

position and velocity drift away in the vertical channel, while azimuth, besides being 

drifting, is also bounded by the Schuler envelope 

INS Schuler-type errors occupy a narrow bandwidth in the low frequency spectrum (5000 

s) 

the quasi-systematic errors of the INS system have a narrow bandwidth in the medium to 

low frequency spectrum 
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Fig. (3.2) : Spectrum of INS Position Error 
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Therefore, for modeling the INS/GPS integrated system, the following assumptions can 

be made: 

For short baseline, where residual non-white errors can be neglected, GPS errors are 

white noise with flat spectrum 

INS Schuler-type errors are highly systematic and predictable in nature 

INS non-Schuler-type quasi-systematic errors are not predictable and need external 

aiding 

Hence, in the estimation filter design, the following is assumed: 

DGPS errors are modeled as white noise 

INS Schuler-type errors are systematic and modeled according to their respective error 

models 

INS non-Schuler quasi-systematic errors are modeled as first-order Gauss-Markov 

processes, with the short-term errors modeled as white noise 

It is, then, clear that the global positioning system and the inertial navigation 

system complement each other. On one hand, INS needs the long-term stability of GPS to 

have a handle on its non-predictable quasi-systematic errors. On the other hand, INS 

short-term highly-accurate positioning and attitude information provides trajectory 

interpolation between GPS updates. INS, also, fills between GPS signal outages and 

helps it recover after loss of lock, for short periods.  

3.1.4 Error characteristics of the INS/GPS integrated system 

The integration of the INS and GPS systems, makes the error spectra of the two 

data streams to overlap. GPS provides position and velocity information which are used 

to update INS through an integration filter, a Kalman filter. With frequent GPS updates, 

the error spectra of the navigation parameters of the integrated system change from that 
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of the freely navigating INS system. Position and velocity error spectra of the integrated 

system become characterized by the error spectra of the GPS position and velocity errors 

because they are directly observable components of the filter. The Schuler loop 

configuration of the position and velocity errors of the INS horizontal channels is 

destroyed. Attitude errors of the integrated system, however, retain a modified Schuler 

loop configuration because they are coupled with velocity errors, the term gε in Eq. 

(A.4). The coupling effect shows up in the INS/GPS Kalman filter through the gain 

matrix. In other words, the modified Schuler frequency of the INS/GPS attitude errors, ν', 

is a function of the original Schuler frequency, ν, and the respective attitude-velocity gain 

factor, K, and takes the form ν'=(ν2+K2)0.5 [Schwarz and Wei, 1995b].  

3.2 Kalman Filtering of the INS/GPS Integrated System 

The Kalman filtering approach to the integration of inertial and GPS data is 

discussed in the following with special emphasis on the gain matrix and the innovation 

sequence.  

3.2.1 INS/GPS complementary filtering 

The discussion in §3.1 revealed the complementary nature of the errors of the INS 

and GPS systems. It is, therefore, natural to use linear complementary filtering (as 

opposed to quadratic complementary filtering, e.g. QMF) as an optimal integration 

technique of the two systems. In complementary filtering two filters are in use, one to 

pass high frequencies and its complement which passes low frequencies. For such a 

combination, where the transfer function of the high-pass filter (HPF) is denoted by 

G1(s), and the one of the low-pass filter (LPF) is denoted by G2(s), the two filters must 

have the following properties [Brown and Hwang, 1992, Levy 1996, Merhav 1996]: 

 0)s(Glim 1
0s

=
→

, 
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 0)s(Glim 2
s

=
∞→

,  (3.4) 

 1)s(G)s(G 21 =+ ,  

where s is the Laplace parameter and refers to the frequency domain. 

In the INS/GPS complementary filtering setup, the same quantity, x, is measured 

twice, once by INS with a systematic low frequency error (e1), and once by GPS with a 

high frequency noise (e2). Fig. (3.3) below shows a schematic illustration of the situation. 

 

Denoting the gain of the LPF by G(s), the gain of the HPF becomes 1-G(s), and the 

filtered signal takes the form 

 )s(e)s(G)s(e))s(G1()s(x)s(x̂ 21 +−+= . (3.5) 

Eq. (3.5) shows that the INS narrow band error, e1, is blocked by the HPF, 1-G(s), 

and the GPS wide band error, e2, is low-pass filtered by G(s). This setup is equivalent to a 

differencing and feed-forward complementary filtering as in Fig. (3.4).  

 

It will be shown later that the complementary filtering setup is equivalent to the 

INS/GPS Kalman filter used in this research.  
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Fig. (3.3) : Complementary Filtering of INS/
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Fig. (3.4) : Feed-forward Complementary Filtering of INS/GPS Data 
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3.2.2 Measurement and dynamics models 

At the INS/GPS Kalman filter where both streams of information are fused, both 

measurement and dynamics models interact. The measurement model in a generic form is 

z = H x + v (3.6) 

where,  

z : filter measurements 

x : filter states 

H : measurement design matrix 

v : measurement noise.  

In the case of the INS/GPS error filter formulation, it results by differencing the 

INS navigation information from that of the GPS [KINGSPAD 1994] 

 
z

GPSINS
GPSINS

ex
)nX()nxX(

XXz

−δ=
+−+δ+=

−=
 (3.7) 

where, 

X : navigation information 

δx : INS navigation error state vector 

GPSINS
z nne −= : measurement model noise.  

The dynamics model comprises two types of error states, the navigation error states 

which result from mechanizing the INS in the computational frame and the sensor error 

states. The former are a function of the vehicle dynamics and the Earth's rotation and 

gravity field. The dynamics model takes the following generic form 

kkk wFxx +=& , (3.8) 
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where, 

x&  : the time derivative of x at epoch k 

F : the dynamics matrix 

w : the process noise. 

In a local-level frame, it takes the form [Schwarz and Wei, 1994] 
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 (3.9) 

where, 

the superscripts* b, l, e : represent the body (measurement), local-level (navigation), and 

earth-fixed (geocentric) frames  

δp, δv, ε  : position, velocity, and attitude INS errors 

F, V, Rb : matrices describing specific force (measured), vehicle velocity and attitude 

Ωie, Ωil, Ωel, δωie, δωil, δωel: Earth's rotation, local-level-to-inertial, and local-level-to-

earth frame rotation rates and their respective errors 

bA, bG : accelerometer and gyro biases 

δγ : normal gravity error. 

Appendix A gives a simplified form of this system of differential equations. Details 

of the mechanization in different computational frames and the derivation of the 

dynamics matrix can be found in [Britting 1974, Schwarz and Wei, 1994].  

 

3.2.3 Structure of the INS/GPS integration Kalman filter 

Data processing, in the developed INS/GPS filtering algorithm, is divided into two 

stages. In the first stage, GPS data is filtered in a local filter and a local best estimate of 

                                                 
* For simplicity, when the superscript is omitted, it is assumed to be 'l', the local-level frame. 
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the positioning information is sought. The GPS local estimate is then fused with the INS 

data in a master filter to obtain the best global estimate of the filter state vector [Wei and 

Schwarz, 1990]. Advantages of this approach are a flexible combination of GPS and INS 

and higher processing speed because two smaller parallel Kalman filters replace one large 

Kalman filter [Schwarz and Wei, 1994]. A disadvantage is that covariance information 

from the GPS filter is required for an optimal solution, otherwise the solution will be sub-

optimal. One limitation of this approach for GPS/INS integration is that at least four 

satellites are required to provide acceptable GPS update for the INS. The general 

structure of the used filter is shown in Fig. (3.5) below. 

 

The main integration procedure and the master Kalman filter are shown in Fig. 

(3.6) below.  

 

In Fig. (3.5) above, a GPS reset is required when carrier phase cycle slips occur. 

While the INS reset happens all the time because it prevents the navigation errors from 

growing beyond the limit where the linearity assumption of the Kalman filtering still 

valid. It closes the error growth estimation loop in an extended Kalman filter formulation 

fashion. The Kalman filter estimation model takes the form 

)Hxz(KFxx kkkkk −+=&  (3.10) 

in continuous time, and in discrete time as 

)xHz(Kxx 1kkk1kk −− Φ−+Φ=  (3.11) 

where F is the dynamics matrix and Φ is the transition matrix. More discussion on 

the INS/GPS Kalman filter structure can be found in [Wei and Schwarz, 1990], and 

details of the filter used in this research is found in [KINGSPAD 1994].
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Fig. (3.6) : INS/GPS Integration Procedure and Master Kalman Filter 
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The mathematical equivalence of the structures of the complementary and the 

INS/GPS Kalman filters of Figs. (3.4) and (3.5) is given in [Merhav 1996]. In the 

following, a brief description of this mathematical argument will be given. According to 

Eq. (3.7), the two streams of navigation information from the INS mechanization and the 

GPS Kalman filter output are differenced, where the low frequency component common 

to both systems, X in Eq. (3.7), is attenuated, i.e. the signal is high-pass filtered. The 

remaining errors are essentially the noise and quasi-systematic errors of the INS system 

with wavelength shorter than the high-pass filter and the GPS Kalman filter estimation 

noise. Since a Kalman filter is essentially a low-pass filter [Hammada 1996], the high-

frequency error (noise) of the mixed INS/GPS measurement is attenuated when it passes 

through the master Kalman filter. Therefore, the Kalman filter in the INS/GPS Kalman 

filter structure (Fig. (3.6)) has the role of the low-pass filter of the complementary filter 

(Fig. (3.4)). The estimate of the filter in this structure (the LPF in the complementary 

filter structure) is then feedback to the INS system navigation output to adjust it. It closes 

the estimation loop and results in the adjusted navigation information.  

3.2.4 Kalman gain 

The two issues central to the integration Kalman filter, considering error state 

integration formulation, are the gain matrix and the measurement (innovation) sequence; 

the latter will be discussed in the next section. To understand the meaning of the gain 

matrix, let H in Eq. (B.25) be equal to the identity matrix, i.e. the elements of the state 

vector are directly measured. Further, assume that the matrix R is diagonal. In this 

particular case, each element of the gain matrix, Kk, at epoch k, is essentially the ratio 

between the statistical uncertainties (variances) in the state estimate error and the 

measurement noise, i.e. (Eq. (B.25)) 

 
2
z

2
x

kK
σ

σ
= . (3.12) 
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Eq.(3.12) states that the gain factor can be interpreted heuristically as a signal to 

noise ratio [Maybeck 1996]. If the measurement noise σz
2 is large and the state estimate 

error σx
2 is small, the gain will be small and consequently, the changes in the state 

estimates will be small; the opposite is also true.  

The gain of a state that is not directly observed in the filter, e.g. an attitude state 

when only position and velocity are observed, is a function of its degree of correlation 

with the measurement state. For a diagonal measurement matrix and a direct 

measurement design matrix with ones and zeros, such as the case of the INS/GPS 

integrated system, the indirect state gain takes the form 

 
2
z

xx
xx

z
z

K
σ

σ
= , (3.13) 

where, σxxz is the covariance between the unobserved state, x, e.g. attitude, and the 

observed state, xz, e.g. velocity, through the measurement, z. The gain, in this case, can 

also be interpreted as a signal to noise ratio. However, only the part of this ratio that is 

transferred through the correlation coefficient will contribute to the gain. In other words, 

the gain of a directly observed state can be thought of as a signal to noise ratio that is 

completely transferred with a complete correlation, i.e. a correlation of 1. 

Another insight can be gained by looking at Eq. (B.21) when, again, H is set to 

identity. In this case, the gain at epoch k is related to the measurement noise variance σz
2 

and the initial state variance σo
2 as follows [Gelb 1974, Salychev 1994]: 
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If our a priori knowledge about the initial state is poorer than the information provided by 

the update measurement, i.e. σo >> σz, each new update measurement will provide vital 

information to the filter. Sufficiently large estimation time, however, is needed for the 

gain to reach steady state, i.e. the transition stage will be quite long. On the other hand, 

when σo << σz, the transition stage will be shorter because the new information provided 

by the update measurement does not add much to our knowledge about the initial state. 

In reality, no system model is perfect. When the system process noise matrix, Q, is 

added to the stochastic model, the gain is obtained as follows:  
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= . (3.15) 

Again, if our certainty in the dynamics model is poor relative to our a priori knowledge of 

the initial state and the quality of the update measurement, i.e. qx >> σo and qx >> σz , a 

large estimation time will be needed until the gain reaches steady state. However, when 

our trust in the dynamics model is high, i.e. when the process noise is small relative to the 

measurement noise, the a priori information about the initial state, qx can be ignored in 

Eq. (3.15) and the analysis carried out on Eq. (3.14) can be applied. 

The above equations and the general formulation in Appendix B for the gain matrix 

show a major drawback of the conventional Kalman filter formulation where the 

measurement noise covariance matrix, R, and the system noise covariance matrix, Q, are 

kept constant. At steady state, the filter gain remains constant regardless of the changes in 

the system dynamics or the update measurement quality. This problem is solved by 

arranging for the variation of R and/or Q in an adaptive manner; this will be discussed in 

details later.  
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3.2.5 Kalman filter innovation sequence and the filter learning history 

The other central issue of the integration Kalman filter is the measurement 

innovation sequence. In principle, the innovation (new information) sequence at different 

instants is uncorrelated. At the current time k, the new observation does not really 

provide completely new information because some of the information is obtained by 

prediction from previous filter states. Hence, the innovation sequence represents the  

information content in the new observation and is considered as the most relevant source 

of information for the filter adaptation [Kailath 1972, 1981]. In the Kalman filter error 

state formulation, however, the prediction step is not needed and the difference between 

the INS and GPS measurements represents the innovation sequence, see the discussion at 

the end of Appendix B. In fact, both the innovation sequence and the measurement 

sequence contain the same statistical information and are equivalent as far as linear 

operations are concerned [Mehra 1970]. 

Based on Eq. (B.19), the innovation sequence can be expressed as follows 

 
kk xzk Hee −=ν . (3.16) 

The above equation shows clearly that the innovation sequence contains information 

about the system error, ex, and the measurement error, ez. Both the system and the 

measurement errors are assumed to be Gaussian and white. This property is transferred to 

the resulting innovation sequence because of the linear operation in Eq. (3.16). In other 

words, the innovation sequence is also a Gaussian white sequence provided that the filter 

is optimal. In fact, this property of the innovation sequence is used to check the 

optimality of the Kalman filter [ibid.]. On the other hand, observing the innovation 

sequence during the evolution of the estimation process is like observing the learning 

history of the filter. In other words, the innovation sequence contains the necessary 

information about the filter error propagation [ibid.]. This last property makes the 

innovation sequence a very good candidate for filter self tuning or adaptation. This will 

be discussed in detail in the next chapter. 
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3.2.6 Kalman filter bandwidth 

The Kalman filter estimate in the continuous time domain is given by Eq. (3.10) 

and is repeated here for convenience 

 ))t(x̂H)t(z(K)t(x̂F)t(x̂ −+=& , 

 or, )t(Kz)t(x̂)FKH()t(x̂ =−+& .  

The frequency-domain representation of the above system (differential equation) is given 

by its Laplace transform as follows 

 )s(Kz)s(x̂))FKH(sI( =−+ , (3.17) 

where, t is the time-domain (time) parameter, and s is the frequency-domain (Laplace) 

parameter. Therefore, the frequency-domain representation of the transfer function of the 

Kalman filter (the ratio between the output and input of the filter) is computed as follows 

 
)FKH(sI

K
)s(z
)s(x̂)s(H

−+
== . (3.18) 

Eq. (3.18) represents a transfer function for a low-pass filter. As discussed in §3.2.1 and 

§3.2.3, the Kalman filter plays the role of a low-pass filter in the INS/GPS 

complementary filter structure. Therefore, the Kalman filter bandwidth or cut-off 

frequency, ωc (the frequency at which the transfer function becomes half its maximum 

value), can be computed as follows 

 FKHc −=ω . (3.19) 

It is clear, from the above equation, that the error model dynamics, the 

measurement model design, and the filter gain determine the bandwidth of the Kalman 
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filter. Since, in the case of the INS/GPS filter structure discussed in §3.2.3, both of the 

error model dynamics matrix and the measurement model design matrix are time-

invariant, only the Kalman gain matrix has the major effect in determining the filter 

bandwidth. In other words, one can use the two terms, the Kalman filter bandwidth and 

the Kalman filter gain,  interchangeably to mean the same thing. Since the filter gain can 

be interpreted as a signal to noise ratio, the Kalman filter bandwidth can be seen to 

change with the quality of the update measurement, i.e. the better the quality of the 

update measurement, lower variance, the bigger the filter gain and the larger the 

bandwidth of the filter will be.  

3.3 A priori Information and its Role in INS/GPS Kalman Filtering 

To start off the Kalman filter, a priori information needs to be known. While 

dynamics and measurement models provide the deterministic information required by the 

filter, the filter stochastic a priori information is provided by the a priori covariance 

matrices of the parameters of the models. In addition to the system transition matrix, Φ, 

and the measurement design matrix, H, four other information quantities are required to 

start off the filter, namely, the initial state vector, xo, the initial state error covariance 

matrix, Po, the measurement noise covariance matrix, R, and, the system noise covariance 

matrix, Q.  At epoch k, the a priori information errors propagate into the Kalman filter 

and results in the following state estimation error [Salychev 1998] 
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  (3.20) 

where, Ai = I - Kk+1-iHk is always smaller than identity. Consequently, the product, 

Π(AiΦ), decreases with time and acts as an attenuation factor in the above expression. It 

shows that the Kalman filter is a stable filter with decreasing bounded errors. For an 

optimal filter state estimate, the filter, eventually, attenuates the initial state errors, exo. It 
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also smoothes the effect of the system errors,  ex, and that of the measurement errors, ez, 

through the averaging process, Σ. 

A priori information about the initial state vector, xo, is of secondary importance to 

the Kalman filter algorithm; it has no influence on the filter output at steady state and 

only determines the start of the transition stage of the filter before the filter reaches 

steady state. In fact, Kalman filter optimality is not affected by the choice of the initial 

state value [Gelb 1974]. In the case of INS/GPS error state formulation, the initial state 

vector of the navigation parameters is of no influence because it is reset to zero at the 

start of every estimation cycle after the navigation parameters have been corrected in the 

closed loop. They are usually initialized to zero. However, due to their slow variation and 

their weak observability in the filter, the accelerometer and gyro bias initial states are 

important. Their initial values are determined in lab calibration tests by observing their 

average values in a stationary situation. 

The initial state error covariance matrix, Po, characterizes the uncertainty in the 

initial state value. It plays a role in the transition stage of the filter, but has no role once 

the filter reaches steady state. A large value of Po allows for tolerance in the variation of 

the state vector at the transition stage. A very large value of Po, however, means large 

uncertainty in the initial state and is essentially telling the filter to ignore that value. 

Again, in the case of INS/GPS error state formulation, the Po value of the navigation 

parameters is of little importance, while those of the accelerometer and gyro biases are 

important. Their values are determined in lab calibration tests by observing their 

variances in a stationary situation. 

The measurement noise covariance matrix, R, is of great importance to the 

optimality and significance of the Kalman filter output. It describes how well the 

measurement model is and how good the measurements are. The shortcoming of the 

mathematical model is usually due to either non-modeling, mismodeling, or ignoring one 

of the non-white (colored or correlated) measurement errors. This type of error 

propagates in the Kalman filter algorithm through the measurement covariance matrix 
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and results in a state covariance that is more optimistic than reality. In effect, the non-

whiteness of the measurement errors, which contradicts one of the Kalman filter 

assumptions, results in a sub-optimal behavior of the filter. The other part of the 

measurement error is due to noise. Usually, one can get an estimate of the measurement 

covariance matrix by observing raw measurements in a stationary situation. Recall that in 

the case of the INS/GPS Kalman filter, the measurement is the difference between the 

navigation output of the GPS filter and the INS navigation resulting from mechanizing 

the accelerometer and gyro measurements in the computational frame. In this case, the 

GPS filter covariance matrix is used as measurement covariance matrix of the INS/GPS 

filter. 

If the accelerometers and gyros of the INS system exhibit no noise and the process 

can be described (modeled) deterministically with absolute accuracy, the system noise 

covariance matrix, Q, can be simply set to zero. A 15-state INS model is just a simplified 

version of the truth model which may contain more than one hundred states [Maybeck 

1997]. Sensors always exhibit noise; no sensor manufacturing is perfect. Consequently, 

the role of the Q matrix, in the Kalman filter, is to define the width of the uncertainty tube 

after each prediction step. In other words, it defines to what extent prediction should be 

trusted. A large value of Q essentially enlarges the uncertainty tube and results in a noisy 

estimate. A smaller Q, on the other hand, results in a smoother estimate, that may, 

however, be biased. Although the Kalman filter does not restrict a certain value of Q to 

guarantee optimality [Gelb 1974], a correct value of Q is critical for achieving practically 

sound results. The correct value of Q depends on factors such as system dynamics and 

sensor noise level. In order to numerically calculate Q, the integral of Eq. (B.4) need to 

be evaluated over the sampling period. For that to happen, the system noise spectral 

density, P, has to be known. Recall from Chapter Two that the spectral density of a 

process is the Fourier transform of its auto-correlation function. The raw output of the 

INS accelerometers and gyros are observed and the auto-correlation function is calculated 

against pre-determined time lags. The data points of the auto-correlation function are then 

fitted to a first-order Gauss-Markov model, and the model parameters, namely, the 
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process noise power σ0
2 and the process correlation length β, are determined. The power 

spectral density of the process, P, can then be calculated using [Gelb 1974] 

 2
o2P βσ= . (3.21) 

The evaluation of the integral can be done numerically. For sufficiently small 

sampling intervals, the integral can be approximated by its first-order term, i.e. 

 PTQ =   (3.22) 

or, its second-order terms 

 
2
T]PP[Q TΦΦ+= . (3.23) 

In case the sampling period is not small enough for the above approximation, it can be 

subdivided into smaller intervals, δT, and Q can be updated recursively as follows 

[Brown and Hwang, 1992]  

 QQQ T
1ii ∆+ΦΦ= − , (3.24) 

where, ∆Q and Φ are calculated according to the interval δT and the initial Qo could be 

set to zero. 

The measurement noise covariance matrix and the system noise covariance matrix 

are important to the optimality of the Kalman filtering algorithm. Their mutual 

interaction with the state covariance can be clearly observed through Eq. (B.24) which in 

the scalar case takes the form 
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which is called the propagation of information equation (as opposed to error propagation) 

[Levy 1996]. It is clear from the previous equation that the updated state is better than the 

predicted state by the amount of information added by the update measurement. The 

predicted state covariance is affected by the Q matrix, while the update measurement 

covariance is R. They both determine the quality of the estimated state. They both are 

vital to the Kalman filter algorithm and in order to get practically sound results, they both 

should be set to the values that reflect the actual situation. 

3.3.1 INS/GPS non-stationarity and its effect on filter formulation  

The conventional Kalman filter algorithm, after a transition stage, goes in a steady 

state mode where it stops paying attention to new measurements. The filter does so 

because it either overweighs its prediction, Q problem, or underestimates new 

measurements, R problem, or both. The result of such filter behavior is an unrealistic 

estimation of the gain and state covariance and, consequently, filter divergence [Gelb 

1974]. In other words, the filter precision becomes unreliable. On the other hand, non-

stationarity of the process, which is not accounted for in the filter formulation, adds 

another dimension to the filter divergence problem. When actual process changes occur, 

incorrectly estimated gain results in an incorrect state estimate. In other words, the filter 

estimate, in this case, becomes biased. 

To get meaningful (reliable) filter precision, the filter gain needs to be correctly 

estimated. One way of getting realistic estimates of the gain is to account for changes in 

the filter's current measurement. An overweight of the gain can be calculated and added 

to the regular Kalman gain based on weighting the filter residuals. The state estimate and 

its covariance matrix can then be corrected accordingly [Schmidt 1970]. Another 

approach to tackle the problem is to use a moving window to weight past measurements 

and correct the gain accordingly; this is called age weighting [Miller 1971]. One manner 

of accomplishing this is to pump up the measurement covariance matrix, R, with an 

empirically derived exponential weighting function of predefined window size [ibid.]. 

These two methods for practically non-diverging Kalman filters, though sound, are not 
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rigorous. The adaptive Kalman filtering approach, however, tackles the same problem 

and is rigorous at the same time [Mehra 1970, Maybeck 1982]. 

3.4 Adaptive Filtering 

In conventional Wiener (or least squares) filtering, a priori information about the 

statistics of the processed data is required. The difference between some desired response 

and the actual filter output is minimized, in a mean-square sense. Optimality of the filter 

output is defined by this minimization process. Wiener filtering requires the input signal 

to be stationary and results in constant filter taps or coefficients. If the a priori statistical 

information is unavailable or the input signal is non-stationary, conventional Wiener filter 

theory cannot be applied. In such situations, adaptive filtering methods provide a solution 

to the filtering optimization problem. A wide variety of recursive algorithms have been 

developed for the operation of linear adaptive filters. The choice of one algorithm over 

another is determined by factors such as the rate of convergence, misadjustment, 

tracking, robustness, computational requirements, structure, and  numerical properties 

[Haykin 1996]. On the other hand, the three types of filter structures that distinguish 

themselves in the context of finite memory adaptive filtering are the transversal filter, the 

lattice predictor, and the systolic array, see [ibid.] for an extensive discussion of adaptive 

filter theory. 

The four basic classes of adaptive filtering applications are: system identification, 

inverse modeling, prediction, and interference canceling [ibid.]. In the first two 

applications, the adaptive filter is used to provide a linear model that represents the best 

fit, in some sense, to either an unknown system or an unknown noisy system; these two 

applications are beyond the scope of this research and will not be pursued further. In the 

prediction application, the adaptive filter is to provide the best prediction, in some sense, 

of the present value of a random signal. Among others, the conventional Kalman filter 

falls in this category. In fact, the Kalman filter provides the general framework for 

deriving all of the known algorithms that constitute the recursive least-squares family of 
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adaptive filters [Sayed and Kailath, 1994]. The final class of applications is interference 

canceling where the adaptive filter is used to cancel unknown interference contained in a 

primary signal with the cancellation being optimized in some sense. 

Other than Kalman filtering, the other class of application that is of interest to this 

research in adaptive filtering is interference canceling. The concept of adaptive filtering 

for interference canceling is illustrated in Fig. (3.7) below  

 

where, x is the filter input, y is the output of the adaptive filter, and d = s + n, is the  

desired response, for which s is the useful signal and n is noise; e = d - y = s + n - y, is the  

estimation error (system output). 

In this structure, the primary signal serves as the desired response of the adaptive 

filter. It has, in addition to the noise, a weak or essentially undetectable information-

bearing (useful) signal component. A reference signal, derived from another source, is 

employed as the input to the filter. The noise of the reference signal is correlated with the 

noise of the primary signal while it should be uncorrelated with the primary signal 

information-bearing component. The error signal at the system output is feedback into the 

adaptive filter to train it and adjust its tap weights [ibid.]. Ideally, minimizing the error 

signal in some statistical sense, should result in an error signal very close to the useful 

signal in the primary signal. In other words, the job of the filter is to output a signal, y, 

that has the same interference noise characteristics, n, and cancels its effect.  
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3.4.1 Adaptive filtering applications in geomatics  

Two main application areas are distinguished in the context of navigation with 

INS/GPS systems: direct georeferencing of imaging systems from moving vehicles and 

precise estimation of the anomalous gravity field. In the first application area, where 

typically INS and GPS are used as navigational sensors to aid a mapping system, a 

model-based estimation technique is used. In this case, navigation information from both 

sensors is integrated, usually at the position level, for optimal georeferencing of the 

imaging sensor. For instance, in mobile multi-sensor systems, where position and attitude 

information is of primary interest, a model-based filtering technique is required [Schwarz 

1998]. In the second application area, however, acceleration from both INS and GPS is 

required to precisely estimate the anomalous gravity field. In such a situation, non-model 

based filtering methods become of primary interest. For instance, in an airborne 

gravimetry system, however, where acceleration is of primary interest, non-model based 

filtering techniques may outperform a model-based approach [Hammada 1996]. They 

also can be used as an aid to a model-based technique to assist reducing the measurement 

noise, see e.g. [Bruton 1997, Bruton and Schwarz, 1997].  

Some of the available adaptive filtering methods are possible candidates for 

geomatics applications, some are not. For instance, methods targeting system 

identification and inverse modeling problems are excluded because of the different nature 

of the application. Model-based and non-model-based adaptive estimation methods are 

appealing to the geomatics field. Two application areas are identified: interference 

canceling and prediction.    

Interference canceling, as described previously, cannot stand alone as a solution for 

the navigation problem. It is, however, most appealing to the problem of noise reduction 

at the navigation sensor measurement level. For instance, in [Zhang 1997] an adaptive 

noise canceling method is used to model GPS clock drift and track the changes in an 
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aided GPS augmented vehicular navigation system. In [Bruton and Schwarz, 1997] an 

adaptive noise canceler is used to reduce GPS acceleration noise for an airborne gravity 

system. 

For the prediction problem, the Kalman filter provides the general framework for 

deriving the known algorithms that constitute the recursive least-squares family of 

adaptive filters [Sayed and Kailath, 1994]. In other words, one can consider the 

conventional Kalman filter as the fundamental tool for solving the prediction/filtering 

problem in an adaptive manner. All the other adaptive least squares filtering methods are 

subsets of the Kalman filtering [ibid.]. That is probably the major reason for using the 

Kalman filter in the navigation community, see the extensive literature about Kalman 

filtering and its applications in navigation. Adaptive Kalman filtering, on the other hand, 

adds another dimension to the concept of adaptivity in the transition stage by allowing for 

adaptivity of the whole estimation process. 

3.5 Adaptive Kalman Filtering 

In the context of adaptive Kalman filtering, the uncertain parameters that need to be 

adapted may be part of the system model through the state transition matrix Φ, of the 

measurement model through the design matrix H, or of the filter statistical information 

through the covariance matrices R and/or Q. The first two cases are more likely to occur 

in problems where system design/identification or inverse modeling is of concern. In this 

research, it is assumed that the INS/GPS system model used is sufficient for the intended 

applications. Therefore, adaptive Kalman filtering throughout this research is restricted to 

adapting the filter covariance matrices R and/or Q. 

3.5.1 Approaches to adaptive Kalman filtering 

The two major approaches to adaptive Kalman filtering are multiple model 

adaptive estimation (MMAE) and innovation-based adaptive estimation (IAE). They both 

share the same concept of utilizing the new information in the innovation (or residual) 
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sequence but differ in their implementation. The innovation sequence νk at epoch k in the 

Kalman filter algorithm is the difference between the real measurement zk received by the 

filter and its predicted value zk(-), see Appendix B for formulas. At the current time k, the 

new measurement zk does not really provide completely new information because some 

of the information is obtained by prediction from previous filter states. Hence, the 

innovation sequence represents the information content in the new measurement and is 

considered as the most relevant source of information for the filter adaptation, see [Genin 

1970, Kailath 1972 and 1981] for a more detailed discussion of the innovation sequence 

and its use in linear filter theory. 

In the context of Adaptive Kalman filtering, the innovation sequence is used to 

derive the measurement weights either through multiple models, the MMAE approach, or 

the R and/or Q covariance matrices, the IAE approach. It is, however, preferable in 

estimation problems to derive the second moment information about the measurement 

from an independent source. The independent second-moment information guarantees the 

unbiasedness of the estimation scheme. In practice, an independent source of information 

is not always available and one usually opt for procedures like the two described in the 

following two sections. The cost is a high likelihood of getting a biased solution. In 

general, that is not a problem as long as one is aware of the possible consequences of a 

biased solution. 

3.5.1.1 Multiple model adaptive estimation 

In the multiple model adaptive estimation (or parallel-filter) approach , a bank of 

Kalman filters runs in parallel [Magill 1965, Maybeck 1989, Brown and Hwang, 1992, 

White 1996, Gary and Maybeck 1996, White et al.1996] or with a gating algorithm 

[Chaer et al, 1997] under different models for the statistical filter information matrices, 

i.e. the process noise matrix Q and/or the update measurement noise matrix R. The 

structure of each filter in the bank of filters is depicted in Fig. (3.8) and the final estimate 

of the bank-of-filters is explained in Fig. (3.9). 
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Fig. (3.8): The Estimate of the ith Filter in the MMAE 
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In every run, each filter of the  bank will have its own estimate kx̂ (αi). At the first 

epoch, the bank of filters receives the first measurement zo, and the P(zo|αi) distribution is 

computed for each permissible αi. At each recursive step the adaptive filter does three 

things:  

1. Firstly, each filter in the bank-of-filters computes its own estimate, which is 

hypothesized on its own model, 

2. Secondly, the system computes the a posteriori probabilities for each of the 

hypotheses,   

3. Finally, the scheme forms the adaptive optimal estimate of x as a weighted sum of 

the estimates produced by each of the individual Kalman filters as  

 ∑
=

αα=
L

1i
)kz|i)P(i(kx̂kx̂ , (3.26)  

where P(αi|zk) is the weight of the ith filter when  measurements zk up to epoch k are 

available; αi is an unknown random variable with known statistical distribution P(αi), 

which drives the adaptive process of the filter, and L is the total number of filters used.  

As measurements evolve with time, the adaptive scheme learns which of the filters 

is the correct one, and its weight factor approaches unity while the others are going to 

zero. The bank of filters accomplishes this, in effect, by looking at the sums of the 

weighted squared measurement innovations or residuals. The estimate of the filter with 

the smallest sum receives the highest weight and, in effect, prevails.  

In the MMAE approach, the fact that a bank of filters are required to run in parallel 

adds considerably to the computational complexity of the INS/GPS integration algorithm. 

Even with a gating technique, the algorithm will need to process different statistical 

models for every estimation epoch. Therefore, the MMAE approach is not suitable for 

formulating the INS/GPS adaptive integration navigation problem for the geomatics 

applications. It is, however, successfully used in tracking problems where two parallel 
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filters run simultaneously in a yes/no fashion [Girgis and Brown, 1985, White 1996, Gary 

and Maybeck 1996, White et al.1996].  

3.5.1.2 Innovation-based adaptive estimation 

In the innovation-based adaptive estimation (IAE) approach [Mehra 1970, 1971, 

Kailath 1972, Maybeck 1982, Salychev 1994], the covariance matrices Rk and Qk 

themselves are adapted as measurements evolve with time. Based on the whiteness of the 

filter innovation sequence, the filter statistical information matrices are adapted as 

follows: 

 T
kkkk HPH-ĈR̂ )(

k
−ν=  (3.27) 

and   

 T
kkk KĈKQ̂

kν=   (3.28) 

where Pk(-) and Kk are the state covariance matrix before update and the gain matrix, 

respectively. Knowing the innovation sequence, one can compute the innovation 

covariance matrix, 
k

Ĉν , at epoch k, through averaging inside a moving estimation 

window of size N as follows 

 ∑ νν=
=

ν
k

jj

T
jj

0
k N

1Ĉ , (3.29) 

where j0 = k-N+1 is the first epoch inside the estimation window. In order to account for 

such an adaptive approach in the Kalman filter algorithm, an additional block for 

computing the innovation covariance matrix and both Q and R has to be added as shown 

in Fig. (3.10). Details of this approach will be discussed in the next chapter.  
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Besides its simplicity, the IAE approach adds little computational complexity to the 

INS/GPS integration algorithm. Based on many computer runs of different INS/GPS data 

sets, the time added for the computation of the adaptive blocks in the IAE approach does 

not exceed 5% of the original processing time of the conventional Kalman filter. When 

compared to the time required to run parallel filters simultaneously in the MMAE 

approach, considerable computational time saving is achieved with the IAE. Therefore, 

IAE is chosen as the adaptive approach to formulating the INS/GPS integration problem 

in this research.   

In some real-time applications where computation time is a major concern, one 

might opt for approximating the R and/or Q models according to the expected dynamics 

of the trajectory. For instance, in trajectories which have straight lines and curves, one 

might derive simple models for R and/or Q for each case and apply the appropriate 

models according to the trajectory situation. If such a simplification does not add to the 

overall performance of the adaptive Kalman filter, it is always recommended to use the 

on-line epoch-by-epoch adaptive solution described above as it guarantees a better 

automatic solution over the simplified models. On the other hand, if on-line (real-time) 

processing of the data is not needed and post-mission processing is possible, backward 

smoothing is recommended. It will correct the problem of overweighing parts of the 

trajectory over others, e.g. when changing from a straight line segment to a curve. If 

optimal smoothing is used, the adaptive Kalman filter is not expected to considerably 

outperform the conventional Kalman filter because the information gained by the AKF 

will, generally, be substituted by backward smoothing in case of the CKF. Since this 

research is only concerned with real-time applications, backward smoothing is not 

pursued in this dissertation. 

3.5.2 Adaptive Kalman filtering vs. adaptive filtering 

Although adaptive filtering and adaptive Kalman filtering handle the navigation 

problem in a similar manner, they are different in the way they define and implement 
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adaptivity. Given the fact that recursive least squares (RLS) adaptive filter is a subset of 

the more general framework of Kalman filters, there still are some important differences 

between the two approaches. Adaptivity in the context of RLS filtering affects mostly the 

transition stage of the filter. The RLS adaptive filter looks for the optimal filter tap 

weights in the transition stage (learning stage) by minimizing the mean square error of 

the filter. Once the tap weights reach their optimal value, the filter has reached steady 

state, and the adaptive stage is finished. This is similar to what happens in conventional 

Kalman filtering. The adaptive Kalman filter, on the other hand, differs from the 

conventional adaptive filter in the sense that adaptivity never stops as long as dynamics 

or measurement statistics change. Both the conventional Kalman filter (and consequently 

RLS adaptive filters) and the adaptive Kalman filter tune the filter estimate by looking at 

the state estimation error. In addition, the adaptive Kalman filter use the innovation 

sequence to further tune the filter estimate based on real-world changes. This makes the 

filter alert to change the filter gain (tap weights) even after the filter reaches steady state. 

Estimation problems (as opposed to prediction problems) in conventional adaptive 

filters require another source of information to exist in addition to the original signal in 

order to provide the filter with the training sequence. The training sequence is a key 

element in adaptive filtering in that it is the means by which the filter adjusts its tap 

weights in the transition stage. Kalman filtering has this property as it has two sources of 

information, one being the system and the other being the measurement. The filter gain 

changes to reflect the uncertainty in each information stream until the filter reaches 

steady state. Adaptive Kalman filtering takes this property a step further by utilizing the 

two information streams through the innovation sequence and allowing the filter gain to 

change at all times. It is, however, possible to relate the adaptive Kalman filter algorithm 

to an interference canceler. In both cases, two sources of information do exist where the 

correlated component of the two signals is attenuated and the information-bearing 

component passes.  
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3.5.3 Adaptive Kalman filtering in geomatics and its limitations 

The conventional Kalman filter has been used in geomatics for decades as an 

estimation tool. The algorithm has proved successful in many application areas where 

navigation sensors like GPS and INS are used. The use of adaptive Kalman filtering in 

geomatics, however, has not been given much attention, yet. Nevertheless, some uses of 

the adaptive Kalman filtering algorithm in geomatics exist. In [Wang et al 1997] an IAE 

algorithm based on the adaptation of the measurement covariance matrix, R, is proposed 

to improve the reliability of the GPS phase ambiguity resolution. At the University of 

Calgary, a full-scale IAE for INS/GPS systems is developed and is used in estimating the 

trajectory for mobile georeferencing and airborne gravimetry systems [Mohamed and 

Schwarz, 1999]. Many possible uses of the adaptive Kalman filtering algorithm in 

geomatics remain to be explored, however.  

There is no method without some limitations. Two practical aspects are of interest 

to the applicability of adaptive Kalman filtering in geomatics applications. The first is the 

add-on computational complexity the adaptive algorithm adds to the conventional 

algorithm. The MMAE method using a bank of parallel filters is a point in case, the 

numerical work becomes so heavy that it will rarely be considered for geomatics 

applications. Even a gating algorithm like the one proposed in [Chaer et al., 1997] 

requires considerable numerical work for more than two models. Therefore, the MMAE 

algorithm can be used only for preliminary investigations but not for final developments. 

The IAE algorithm, with the addition of the two blocks for estimating R and/or Q, 

complicates the conventional Kalman filter algorithm. Also, off-line covariance 

propagation is not possible within the adaptive Kalman filter algorithm because of its 

dependency on the innovation sequence which is dependant on the external 

measurements. For high-order INS/GPS systems of practical interest, the proposed 

algorithm is computationally heavy and may not be efficient as well [Gelb 1974, White et 

al, 1996]. 

Another major limitation to the applicability of the algorithm in its standard form, 

is due to the possible existence of blunders in the measurements. Blunders change the 
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information content of the innovation sequence and distort its distribution. Tracking a 

faulty measurement will result in a divergent estimate. This problem can be solved by 

using a blunder detection and identification block before the application of the new 

update measurement. One efficient technique for doing that is a L1-norm blunder 

detection and identification methods. In this case, the L2-norm based reliable adaptive 

Kalman filter is integrated with a robust L1-norm technique for the proper detection and 

identification of blunders and hence a reliable and robust filter estimate [Mohamed 1996, 

1997]. 

A key issue to the success of adaptive filtering techniques, in general, is the ability 

to track high-frequency information in the signal. In other words, adaptive Kalman 

filtering should preserve the high-frequency information of the useful signal [Salychev 

1998]. In cases where smoothing of the filter output is required to enhance accuracy, as in 

INS/GPS airborne gravimetry, the high-frequency content gained by adaptive filtering 

will be lost by the smoothing effect. In such situations adaptive Kalman filtering offers 

little advantage over conventional methods especially at coarse resolutions. 



 

 

4. 
  DEVELOPMENT OF AN INNOVATION-BASED 

ADAPTIVE KALMAN FILTER  

In this chapter, the detailed development of an innovation-based adaptive Kalman 

filter for an integrated INS/GPS system is given. The developed adaptive Kalman filter is 

based on the maximum likelihood (ML) criterion for the proper choice of the filter 

weights and hence the filter gain. Cases discussed include tuning either the system noise 

covariance matrix Q, the update measurement noise covariance matrix R or both of them. 

Analysis of the developed filter for an integrated INS/GPS system is given.  

4.1 Maximum Likelihood Estimation 

Adaptive Kalman Filtering is one of the cases which is not a simple extension of 

conventional least-squares (LS) estimation, widely used in geomatics engineering and in 

many other engineering fields. One reason is that LS aims at estimating and modifying 

the first moment information, the mean, while in adaptive Kalman filtering the adaptation 

of the second moment information, the covariance, is also of interest. As discussed in 

§3.4, conventional Kalman filter can be classified among the adaptive techniques based 

on its property of sequentially modifying the covariance matrix of the filter states, P, 

which corresponds to an adaptation of the filter tap weights according to the Wiener 

theory; this classification will not be used in the following. By adaptive, we mean, 

imposing conditions under which the statistical information matrices R and/or Q, which 

are considered constant in the conventional Kalman filter, are estimated via the available 

new information in the filter innovation sequence.  

Both LS and ML aim at maximizing the PDF of the measurements conditioned on 

the adaptive parameter, see Eq. (4.1). Least squares only considers the variation of the 

innovation, ν, but not the variation of its covariance matrix, Cν, with respect to the 

adaptive variable. In other words, LS ignores the term ln|Cν| in Eq. (4.3). This term is 

very crucial to the adaptivity of the filter statistical matrices. For this reason, the formulas 
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are derived in the Maximum Likelihood (ML) setting which is more suitable for the 

problem formulation.  

Also, the suitability of the ML technique for the adaptive Kalman filtering problem 

stems from the fact that for the case of independently and identically distributed 

measurements, an unbiased estimate with finite covariance can always be found through 

the ML method such that no other unbiased estimate with a lower covariance exists 

[Cramér 1946]. The other attractive property of the ML estimate is its uniqueness and its 

consistency. Uniqueness, the first property, means that the ML formulation will result in 

one solution, consistency, on the other hand, means that the ML estimate converges, in a 

probabilistic sense, to the true value of the variable as the number of sample data grows 

without bound. The ML estimate, however, will in general be biased for small sample 

sizes. In general, it will provide the unique attainable estimate with minimum variance 

under the existence of sufficient statistics. On the other hand, LS not only suffers severe 

analytical difficulties when handling this problem, but also will, in general, result in a 

biased estimate for small sample sizes, as well. The sample size puts additional 

restrictions on the choice of the estimation window size that will be discussed later, see 

e.g. [Cramér 1946, Maybeck 1982] for more details. 

4.2 Derivation of the ML Adaptive Kalman Filter 

In this development, the specific case of a fixed-length memory (windowing) filter 

will be considered. In addition, the covariance matrices containing the statistics are to be 

adapted and not the filter states. Therefore, the underlying assumptions of the ML 

adaptive Kalman filtering problem are: 

1. the filter states x are independent of the adaptive parameters α, i.e., 0x/ =α∂∂  

2. the filter transition matrix Φ and the measurement design matrix H are time 

invariant and independent of α 
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3. the innovation sequence is a white and ergodic sequence within the estimation 

window 

4. the innovation/residual covariance matrix Cν/Cr (through ν/r) is the key to 

adaptation and hence is the α-dependant parameter. 

Further, it will be assumed that the data is Gaussian distributed, refer to the discussion in 

§2.1 about the central limit theory for this assumption.  

4.2.1 ML equation for the adaptive Kalman filter 

Following the derivation in [Mohamed and Schwarz, 1999], the probability density 

function of the measurements conditioned on the adaptive parameter α at the specific 

epoch k is 
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where, 

m : the number of measurements,  

|.| : the determinant operator,  

e : the natural base.  

To simplify the above equation, its logarithmic form  
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will be considered. Multiplying both sided of Eq. (4.2) by –2 and neglecting the constant 

term (which is merely a shift of the distribution), one gets 
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Note that due to the multiplication by a negative number, maximization of the PDF 

becomes minimization of its linearized form (the generalized error norm).  

For a fixed-length memory filter, the innovation sequence will only be considered 

inside a window of size N and all innovations inside the estimation window will be 

summed. The ML condition, in this case, becomes 
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It is worth mentioning here that 'k' in the above formula represents the epoch number at 

which estimation takes place, while 'j' is the moving counter inside the estimation 

window and j0 is its initial value, where j0 = k-N+1.  

In conventional least squares, only the second term of Eq. (4.4) is considered which 

corresponds to the error norm in the L2-norm space. Minimizing that norm with respect 

to the state vector will result in the optimal state estimate, see e.g. [Sorenson 1970, 

Swerling 1971, Kailath 1972, 1974] for a discussion of the least squares method. This, 

however, is different for Eq. (4.4). The covariance matrix of the innovation sequence Cν, 

not the innovation sequence itself, is dependent on the adaptive parameter ‘α’, and is the 

key to adaptation. So, in terms of Cν, the above formula represents a condition for the 

decision to choose the error weight not the state optimal estimate. In other words, while 

the LS problem aims at finding the smallest error norm according to a predefined 

measurement and system error weight, the above ML problem aims at finding the weight 

that will result in the smallest error norm. This means that the adaptive estimation of the 

weight is complementary to the state estimation. 

The above formula, then, describes the best estimate as the one that has the 

maximum likelihood based on the adaptive parameter 'α'. To do so, matrix differential 

calculus will be used to obtain the derivative of Eq. (4.4) with respect to α at the current 

time k,  



4. DEVELOPMENT OF AN INNOVATION-BASED ADAPTIVE KALMAN FILTER  77 
 

 

0/ k =α∂Ε∂ ,  

which results in 
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where 'tr' is the matrix trace operator. Note that the following two relations from matrix 

differential calculus [Maybeck 1972, Rogers 1980] have been used  to obtain the above 

formula, 
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Also, the following relation from matrix calculus will be used, 

 )BAAvv(trBAvAv TTTT = , 

where, v is a vector, and A and B are square matrices. 

Eq. (4.5) shows that the problem of adaptive Kalman filtering is reduced to the 

problem of determining Cν and its partial derivative with respect to the adaptive 

parameter α. Since there is little interest in Cν itself, but rather in the measurement noise 

covariance matrix R and the system noise covariance matrix Q, the following substitution 

will be made (consult Appendix B, Eq. (B.20)) 

 T
k)(kkk HPHRC

k
−ν += . (4.6) 

The partial derivative of Eq. (4.6) with respect to α yields 
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It is also known that 
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which after differentiation with respect to α yields  
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Assuming that the process inside the estimation window is essentially in steady 

state , the first term can be neglected and Eq.(4.9) can be rewritten as 
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Substituting Eq. (4.10) into Eq. (4.7) results in  
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Now, substitute Eq. (4.11) into Eq. (4.5) and expand it. The resulting expression, 

Eq. (4.12), is the ML equation for the adaptive Kalman filter, 

 ∑ =
α∂

∂
+

α∂
∂

νν−
=

−−
ν

−
ν

−
ν

k

jj

T
j

k

1j
j

k

j1T
jj

11

0
jjj

0]}H
Q

H
R

][CCC{[tr . (4.12) 

The number of equations in Eq. (4.12) is equal to the number of update 

measurements 'm', sufficient to estimate a new value for the covariance matrix of the 
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innovation sequence, Cν and hence adapt either R or Q or both of them based on the 

adaptive parameter 'α'. To do this, the partial derivative matrices of R and Q with respect 

to the adaptive parameter 'α' must be known. Also, the design matrix H and the 

innovation sequence 'ν' must be known. 

It is worth noting that a similar expression, in terms of the residual sequence, can 

be reached if the residual sequence not the innovation sequence is used in the first place 

in Eq. (4.1), consult Appendix B for the definitions of both the innovation and the 

residual sequences. The result would be  
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where,  

r : the filter measurement residual sequence, 

Cr : the residual sequence covariance matrix. 

4.2.2 Adapting the measurement noise covariance matrix (R-Only) 

In order to obtain an explicit expression for R, it is assumed that Q is completely 

known and independent of α. The case of αi = Rii, will be considered, where i is the 

matrix row or column index; i.e. the adaptive parameters are the variances of the update 

measurements. This is a situation of practical interest. In this specific case, the ML 

equation for the adaptive Kalman filter, Eq. (4.12), reduces to 

 ∑ =+νν−
=

−
ν

−
ν

−
ν

k

jj

1T
jj

11

0
jjj

0]}0I][CCC{[tr ,         0C 1
j

≠−
ν  

which after expansion and taking 1
j

C−
ν  as a common factor on both sides becomes 
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The above formula only vanishes when the expression in the inner brackets 

vanishes, because the covariance matrix of the innovation sequence is assumed positive 

definite. Assuming an ergodic innovation sequence inside the estimation window, the 

expression for the estimated covariance matrix of the innovation sequence is 

  ∑ νν=
=

ν
k

jj

T
jj

0
k N

1Ĉ . (4.15) 

Substituting the estimated Cνk from Eq. (4.15) into Eq. (4.6), the innovation-based 

adaptive estimate of R is  

 T
kkkk HPH-ĈR̂ )(

k
−ν=  (4.16) 

A numerically stable expression for the measurement noise covariance matrix using 

the residual sequence instead of the innovation sequence can also be derived. Using Eq. 

(4.13) and applying the same conditions as above, the estimated covariance matrix of the 

residual sequence can be computed as follows: 

 ∑=
=

k

jj

T
jjr

0
k

rr
N
1Ĉ . (4.17) 

The residual sequence, rk, can also be computed from the innovation sequence, νk, 

as follows (see Appendix B) 

 k
1
kkk CRr ν= −

ν  (4.18) 

and hence, using the law of propagation of covariance, its covariance matrix is 



4. DEVELOPMENT OF AN INNOVATION-BASED ADAPTIVE KALMAN FILTER  81 
 

 

 k
1
kkr RCRC

k
−
ν= . (4.19) 

Also, from Kalman filtering theory, 

 1
k

T
k)(k

1
k

T
k)(k RHPCHP −+−

ν− = . (4.20) 

Re-arrange terms in Eq. (4.6) to get 

 k
T
k)(kk RCHPH

k
−= ν− . (4.21) 

Pre-multiply both sides of Eq. (4.20) by H and substitute Eq. (4.21) into it, to get 

 1
k

T
k)(kk

1
kkk RHPHC)RC( −+−

νν =− . (4.22) 

Now, pre-multiply both sides of Eq. (4.22) by R and re-arrange the terms, to get 

 T
k)(kkkk

1
kk HPHRRCR +−

ν −= . (4.23) 

Equating Eq. (4.23) with Eq. (4.19), the residual-based 'R' matrix is 

 T
kkkrk HPHĈR̂ )(

k
++= . (4.24) 

4.2.3 Adapting the system noise covariance matrix (Q-Only) 

The same strategy used for R can also be used to obtain an estimate for Q. In Eq. 

(4.12), R will be considered as known and independent of 'α', i.e. its partial derivative 

with respect to it vanishes. Taking 'αi = Qii', i.e. adapting the variances of the system 

noise matrix, Eq. (4.12) reduces to  
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which projects the problem from the measurement space to the state space. The number 

of equations in Eq. (4.25) is equal to the number of states 'n' and can be used to estimate a 

new value of the projection of the innovation covariance matrix into the state space, i.e. 

HTCνH.  

Using the expression for the Kalman gain matrix Kk (see Appendix B), and pre-

multiplying both sides by the inverse of Pk(-), the following expression can be deduced,  

 k)(1
k

1T
k KPCH

k
−−−

ν = . (4.26) 

Substituting this expression into Eq. (4.25), one gets 
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which can be further re-arranged to 
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−−−−− , (4.28) 

which is similar to the expression in Eq. (4.14) but given in the state space rather 

than in the measurement space. Again, because the covariance matrix of the predicted 

states P(-) is positive definite, Eq. (4.28) only vanishes when 

 0}KKPHK{tr
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T
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T
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− . (4.29) 
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Thus, KHP(-) can be expressed by 
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From Kalman filtering theory, we have 
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T)(1k

)(k)(k)(kkk
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PPPHK
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−+ΦΦ

−= , (4.31) 

which when substituted into Eq. (4.30) results in an expression for the adaptive 

covariance matrix of the system noise Q of the form 

 T)(1k)(k
T
kkk PPKĈKQ̂

k
ΦΦ−+= +−+ν . (4.32) 

Using the substitution, 

 kkk Kx ν=∆ , (4.33) 

a similar expression of the adaptive covariance matrix of the system noise Q is obtained  
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+−+
=  (4.34) 

where,  

∆x : the state correction sequence (the difference between the state before and after 

update) and is computed by )(k)(kk x̂x̂x −+ −=∆ . 
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The adaptive covariance matrix of the system noise Q  (Eq. (4.32) or Eq. (4.34)) 

can be approximated by  

 T
kkk

k

jj

T
jjxk KĈKxx

N
1ĈQ̂

0
k ν

=
∆ ≅∑ ∆∆≅≅ , (4.35) 

in case the change in the state error covariance matrix 'P' can be neglected. Due to the 

approximations taking place in the estimation of Q, its estimate is inferior to that of R.  

4.2.4 Adapting the covariance matrices for measurement noise and system noise 

(R and Q) simultaneously 

In this case, both R and Q will be dependent on 'α' at the same time. We will 

consider the case where the variances of the system noise matrix Qii and the variances of 

the measurement noise matrix Rii are equal to the adaptive parameter 'α'. In that case, Eq. 

(4.12) reduces to 
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ν , (4.36) 

which represents a general case for adapting both of R and Q. 

Adapting the Measurement Noise Covariance Matrix (R) 

Re-arrange terms in Eq. (4.36) above, to get  
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0
jjj

0}C]HHI][C[C{tr . (4.37) 

The term (I+HHT) is positive definite because it is a sum of a quadratic term and 

the identity matrix. Hence, Eq. (4.37) only vanishes when the term Cν-ννT vanishes 
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which leads to the same condition for adapting R-only. Therefore, the estimate of the 

innovation sequence covariance matrix in Eq. (4.15) will again be used here. Further, the 

expression for R based on the innovation sequence is given by Eq. (4.16) and that based 

on the residual sequence by Eq. (4.24). 

Adapting the System Noise Covariance Matrix (Q) 

To project Eq. (4.36) onto the state space, expand it as follows 
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  (4.38) 

The estimated covariance matrix of the innovation sequence is calculated using Eq. 

(4.15). In this case, the first term in square brackets of Eq. (4.38) vanishes and the whole 

expression collapses to the case of Q-only adaptation, viz., 
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−
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−
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−
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Therefore, Eqs. (4.32), (4.34), and (4.35) can be used to adaptively estimate Q. It is 

worth noting here that although the same equations for adapting R-only and Q-only are 

used in the case of simultaneously adapting R and Q, numerical difficulties can be 

encountered in real data. Because of the approximations made, care has to be taken in the 

choice of the adaptive filter parameters such as the averaging moving window size. 

To account for such an adaptive approach in the Kalman filter algorithm, an 

additional estimation block has to be added. Firstly, the covariance matrix of the 

innovation sequence has to be estimated and then R and/or Q will be estimated afterwards 

as shown in Fig. (3.8). Numerous  results can be reached for the expressions for R and Q 
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based on the assumptions to be made for the adaptive parameters. For instance, one can 

assume the full matrix to be variable. In this case, the variances as well as the covariances 

will be estimated. On the other extreme, one can assume same variance for the matrix 

entries with no or same covariances. The choice of the adaptive parameters of the 

covariance matrix depends on the application. In this study, the cases of a diagonal matrix 

and full matrix are investigated. 

4.3 Innovation Sequence Whitening  

A necessary and sufficient condition for the optimality of a Kalman filter is that the 

innovation sequence be white [Mehra 1970, 1972]. When the measurement noise and the 

system noise are white sequences, the resulting innovation sequence is a white sequence 

because it results from a linear operation that does not change the nature of the original 

contributors. There are situations, however, where non-white errors propagate into either 

the measurement or the system noise, or both. In these situations, and to satisfy the 

requirement of the adaptive Kalman filter, the innovation sequence will need to be 

whitened through a process called whitening.  

Whitening is a transformation process that projects the problem described by the 

model 

 z = H x + e  (4.40) 

from its original space into another space where the model error is white. This is 

accomplished by factorizing the covariance matrix of the model noise, Ce, using a matrix 

factorization method. The condition for the whitening process to be successful is that the 

resulting matrix from the factorization be a square root (or normalized square root) of the 

model noise matrix [Bierman 1977]. Since the model error covariance matrix, used in 

geomatics applications in general and in INS/GPS systems in particular, is positive 

definite, a UDU (or LDL) factorization method will result in the required matrix. Other 
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transformations are also applicable in this context, for a discussion about the use of 

Givens transformations see [Bierman 1977, Blais 1985].   

4.3.1 The float whitening filter 

For the model described above, whitening starts by factorizing the covariance 

matrix as follows 

 Ce = U D UT (4.41) 

where U is a unitary upper triangular matrix, and D is a diagonal matrix. By pre-

multiplying both sides of the model equation (4.40) by U-1,  one gets 

 U-1z = U-1Hx + U-1e (4.42) 

or in compact form:  

 exHz +=  (4.43) 

where, zUz 1−=  and HUH 1−= , which are the transformed model equations. It is worth 

noting that the model parameter 'x' is unchanged after whitening which means that 

whitening does not change the problem in the parameter space. The whitening 

transformation is non-orthogonal and results in transformed (whitened) measurements 

that are uncorrelated, because  
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, (4.44) 

the resulting whitened covariance matrix is diagonal. It can, also, be proven that the 

whitened model noise variances are equal to or less than their counterparts before 

whitening. Another inference associated with whitening is that there is no loss of 

generality in assuming that the model errors are uncorrelated and normalized because it is 
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always possible to transform the current model, which might have non-white noise, and 

construct a model with white noise. 

4.3.2 Statistical test for whiteness of the innovation sequence 

The condition for optimality of the Kalman filter can be tested statistically by using 

the whiteness property of the innovation sequence [Mehra 1970]. The auto-correlation 

function of a white sequence is a Dirac delta function at zero lag and its Fourier transform 

is constant representing equal spectral densities at all frequencies. In practice, it is not 

easy to get an exact Dirac delta for the auto-correlation function or a constant spectral 

density in the frequency domain. As an accepted procedure in practice, the auto-

correlation function is approximated by a Gaussian distribution symmetrical at zero lag. 

The innovation sequence will be considered white if the derived auto-correlation fits the 

Gaussian distribution within boundary limits of 1.96σ (95% probability) or 3σ (99.6% 

probability). Based on the ergodic property of the innovation sequence, νk at epoch k, an 

estimate of its auto-correlation function at lag L is 

 
∑ νν=
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Lkk
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][Eˆ
, (4.45) 

where N is the estimation window size. Estimates of the normalized auto-correlation 

coefficients ρL, are obtained as follows 
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ΡΡ

Ρ
=ρ  (4.46) 

where, i,j : row and column indices of the auto-correlation matrix. 

Of special interest here are the diagonal elements of the auto-correlation  function, 
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which represent the auto-correlation of the same innovation element.  

For a large enough estimation window, the variance of the resulting distribution can 

be calculated from that of the individual elements by dividing over the sample size N. 

This is equivalent to calculating the variance of the mean value from that of a single 

observation. In this case, the variance of the estimated unbiased auto-correlation function 

is 

 0ii
2
ˆ

ˆ
N
1

Lii
Ρ=σ

Ρ
 (4.48)  

and that of the estimated normalized auto-correlation coefficient is  

 
N
12

ˆ Lii
=σρ  (4.49) 

where 1ˆ 0ii =ρ  is embedded in the right hand side of the above formula. Using the above 

formulae, the 95% confidence bounds at different lags L are N

ˆ
0ii96.1

Ρ
±   for the 

estimated auto-correlation function diagonal elements and N
196.1±  for the estimated 

normalized auto-correlation coefficients [Mehra 1970]. If the estimated auto-correlation 

elements at different lags L lie within the confidence bounds, the innovation sequence is 

said to be white and the Kalman filter is optimal. In case more than 5% of them lie 

outside the confidence bounds, the filter is declared sub-optimal and the innovation 

sequence is non-white and need to be whitened as discussed in §4.3.1. 
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4.3.3 Statistical test for blunders in the innovation sequence 

The previous test (whiteness statistical test) measures the existence of correlation 

between the innovations between epochs inside the estimation window. On the other 

hand, update measurement blunders, mostly due to GPS cycle slips, propagate into the 

filter and spoil the assumption of a Gaussian distribution of the innovation sequence. 

Both conventional and adaptive methods are affected alike by blunders. The actual 

covariances deviate from the estimated covariances and the filter estimate becomes 

unreliable and will not be robust. To robustify the filter estimate, three approaches are 

commonly used to assist dealing with blunders. The first approach is to first detect and 

eliminate blunders and then apply conventional estimation methods on blunder-free data 

[Baarda 1968]. The second approach is to apply a robust estimation procedure to derive a 

blunder-free robust solution [Kubik 1983]. The third approach is to deal with blunders 

within the context of a robust estimation method like the L1-norm method and then 

process blunder-free data by an L2-norm method, see e.g.  [Mohamed 1996] for a hybrid 

norm algorithm. The first approach is rather simple and appealing in many applications. 

However, it does not have the ability to detect the existence of multiple blunders. The 

second approach has the advantage that blunders are estimated to their correct sizes but 

the technique does not lead to a unique solution and  the overall efficiency of the robust 

solution is inferior to an L2-norm solution when blunder-free data are used. The third 

approach is advantageous in detecting blunders and providing robust and reliable 

solutions. However, combined norm algorithms demand high computational power and 

are usually not applicable on line. For post-mission processing of INS/GPS data, the third 

approach is recommended, while for on-line processing the first approach is the choice. 

In order to check the existence of innovation blunders at epoch 'k' , a global test 

statistic 'Tk' is set as follows [Koch 1988]: 

 

 Ho: 0][E k =ν ,  
 Ha: kk ][E ∇=ν  
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where, 

Ho, Ha : null and alternative hypotheses, respectively, 

k∇  : suspected blunder vector at epoch k, 

mk : number of innovations at the same epoch, 

χ2 : Chi-squared distribution,  

2
kλ  : non-central parameter of the Chi-squared distribution.  

In a one-sided test on the basis of 99.99% confidence for the case of 8 innovations, 

the upper limit value of Tk is 0.46, see tables in [Mikhail and Ackerman 1976]. The non-

central parameter of the innovation Chi-squared distribution is calculated as follows:  

 k
1T

k
2
k C ∇∇=λ −

ν  (4.51) 

Once the global test statistic indicates the existence of innovation blunders, a local 

test is carried out to locate the failure. The hypothesis for the local test statistic 'ti' for 

innovation number 'i' at the specified epoch 'k' is as follows [Koch 1988]: 

 Ho: 0][E i =ν , 
 Ha: ii ][E ∇=ν   
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i
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  | )1,(N~H ia δ               

where, 

∇ i : suspected blunder in innovation number 'i',  

σνi  : standard error of innovation number 'i', 

N : normal distribution, 

δi : non-central parameter of the innovation normal distribution.  
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In a one-sided test on the basis of 99.99% confidence, the limit value for ti is 3.9, 

see tables in [Mikhail and Ackerman 1976]. The non-central parameter of the innovation 

normal distribution is computed as follows: 

 
i

i
i σ

∇
=δ . (4.53) 

Blunders smaller than the minimally detectable error (MDE) disappear in the filter 

errors. The MDE for innovation number 'i' is computed as follows: 

 
i

o
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i
σ=  (4.54) 

where, 

σvi : standard error of measurement number 'i',  

wo : expected shift (bias) in the innovation mean value,  

gi : redundancy number of measurement number 'i'.  

The expected shift (bias) in the innovation mean value is calculated as the sum of 

two normal distribution values at the specified significance and weakness levels. For a 

test significance level of 5% (probability of rejecting good observation) and weakness 

level of 25% (probability of accepting bad observation), wo
2 = (1.5)2, see tables in 

[Mikhail and Ackerman 1976].  The redundancy number of measurement number 'i' is 

calculated as follows: 

 2
v

2

i

i

ig
σ

σ
= ν , (4.55) 

where the total redundancy matrix is  

 1
v

1 CCRCG −
ν

−
ν == . (4.56) 
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Redundancy numbers are smaller than one since innovation variances (σν
2) are 

generally smaller than measurement variances (σv
2). For perfect filtering (gi = 1), the 

MDE is equal to 1.5 times the measurement standard error under the aforementioned 

significance and weakness levels of the test. Hence, innovation blunders greater than 

1.5σv can be detected. Measurements with innovations greater than 3.9σv will be declared 

erroneous and rejected. It is worth noting here that the previous statistical tests can also 

be carried out on the residual sequence in exactly the same way. 

4.3.4 Whitening procedure 

The innovation sequence used to adaptively estimate measurement and/or system 

noise covariance matrices is assumed blunder-free, with Gaussian distribution  and white 

noise characteristics. The developed optimized adaptive Kalman filter has a whitening 

block. The role of the whitening block is to ensure the whiteness and Gaussianess of the 

innovation sequence. It checks for the existence of blunders and isolates faulty 

innovations using global and local test statistics as described in the previous section. It 

then checks for the whiteness of the innovation sequence between epochs inside the 

estimation window according to the test described in §4.3.2. Fig. (4.1) below illustrates 

the whitening procedure used in the developed optimized INS/GPS adaptive Kalman 

filter. 

It should be noted that the whitening block described here is not meant to be a 

quality control block for the developed INS/GPS integrated system. It is merely a 

procedure to ensure the appropriateness of the innovation sequence to do the adaptive 

filtering job, ensure filter tractability, and alleviate filter divergence. For quality control 

issues in integrated systems the interested reader is directed to literature such as 

[Teunissen 1990, McBurney 1990, Wei et al. 1990, Gao 1992]. 
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Fig. (4.1) : Whitening Procedure in KINADA 



4. DEVELOPMENT OF AN INNOVATION-BASED ADAPTIVE KALMAN FILTER  95 
 

 

4.4 Adaptive Kalman Filtering of the INS/GPS Integrated System 

The developed adaptive Kalman filter, along with the conventional Kalman filter, 

are both implemented in a software package called KINADA, a derivative of 

KINGSPAD. KINADA is a modular package written in C/C++ computer language. It 

includes modules to adaptively filter INS/GPS data. It also includes modules to whiten 

the innovation sequence before it is used in the adaptive estimation procedure. Below is a 

description of the developed adaptive Kalman filter as implemented in the KINADA 

package.  

4.4.1 Structure of the INS/GPS adaptive extended Kalman filter 

The structure of the INS/GPS conventional Kalman filter is discussed in §3.2.3. 

The structure of the innovation-based adaptive Kalman filter resembles that of the 

conventional Kalman filter; the difference, however, is in the use of the innovation 

sequence. While in the conventional Kalman filter, the innovation sequence plays a role 

in updating the state estimate through the system update step, it is used in the adaptive 

filter to update both the state estimate and the filter statistical information. It constitutes 

the major distinctive feature of the adaptive Kalman filter algorithm. Indeed, the general 

structure of the adaptive Kalman filter follows the use of the innovation sequence. 

The two building blocks of the developed adaptive algorithm are the parameter 

estimation block (first moment) and the covariance matrix estimation block (second 

moment). The first estimation block, the parameter estimation block, resembles that of 

the conventional Kalman filter. It uses the output of the second building block, the 

covariance matrices, and runs a conventional Kalman filter algorithm to propagate the 

filter state and its covariance. The covariance building block, on the other hand, updates 

the measurement noise and the system noise covariance matrices when a new 

measurement, and hence a new innovation, becomes available. Fig. (4.2) illustrates the 

general structure of the developed INS/GPS adaptive integration procedure. 
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In the conventional INS/GPS extended Kalman filter structure, the innovation, ν, is 

used once in the 'Kalman Filter' block, see Fig. (3.4). In the adaptive structure, however, 

it is also used in an adaptive manner as shown in Fig. (4.2). Notice also that, in the 

extended Kalman filter error formulation, the time update cycle disappears and the full 

update measurement represents the innovation, see Appendix B (Eq. (B.30)). 

The role of the 'Kalman Filter' in Fig. (4.2) is to suppress GPS and INS noise and 

estimate δxINS, the INS correction term. The first step, the suppression of noise, is done 

automatically by the Kalman filter through low-pass filtering of both streams of INS and 

GPS data, see §3.2.1 for a discussion about INS/GPS complementary (LPF/HPF) 

filtering. The estimation of the filter state, δxINS, is given through a weighting process 

between both streams of information, the INS data and the GPS data. The additional 

adaptive block helps mainly in the weighting step. The filter weighting and the filter state 

estimate are, now, based on the current innovation. The covariance propagation in the 

adaptive Kalman filter depends on the newly available measurement which robustify the 

estimated covariance of the filter state estimate. Filter divergence becomes less likely 

than in the conventional case. When undetected non-white and non-Gaussian errors exist 

in the measurements they show up in the innovation and consequently in the covariance 

propagation indicating an unstable condition; this does not happen in the conventional 

Kalman filter. Consequently, the weighting process in the adaptive filter is more likely to 

be correct and the change in the filter states become more tractable, i.e. high frequency 

filter state changes are more likely estimable than in the case of the conventional filter. 

The structure of the algorithm of the developed adaptive Kalman filter is shown in Fig. 

(4.3) below; specific parameters of the developed adaptive Kalman filter will be 

discussed later. 
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4.4.2 Estimation window size 

The moving window inside which the innovation sequence is assumed stationary 

and ergodic is called the estimation window. It plays an important role in the adaptive 

estimation procedure because it provides the limits to the tractability of the adaptive 

algorithm. The smaller the estimation window size, the better the tractability and 

sensitivity to dynamic changes of the filter. However, small estimation windows result in 

small sample sizes and the filter becomes more vulnerable to biasedness and divergence. 

The ML estimate, in general, will be biased for small sample sizes [Cramér 1946]. The 

larger the estimation window, the less likely is a biased estimate. However, the large 

estimation window, beyond the filter bandwidth, reduces the ability of the algorithm to 

correctly trace short-term changes of the trajectory, e.g. turns. A window of the size of 

the data length is essentially converting the adaptive filter into a conventional filter, since 

adaptation will take place only once. Therefore, a trade-off between the biasedness and 

the tractability of the estimate according to the application at hand should be taken into 

account. In addition, the proper choice of the window size depends very much on the 

trajectory dynamics.  

Divergence occurs when the number of equations required to estimate the unknown 

adaptive parameters is smaller than the number of unknowns themselves. The following 

three cases lead to destabilization of the filter and to the problem of filter divergence in 

practice :  

1. A window size smaller than the number of update measurements when adapting 

R, 

2. A window size smaller than the number of filter states when adapting Q, 

3. A window size smaller than the sum of update measurements and filter states 

when adapting both R and Q simultaneously.  
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4.4.3 The filter learning history and its gain 

In conventional Kalman filtering, the filter learning history can be observed 

through the filter innovation sequence. The filter covariance propagation can be carried 

out off line because it is independent of actual measurements. Optimality of the Kalman 

filter algorithm is based on the second moment information (covariance matrices). Also, 

the filter gain is a function of the covariance propagation of the measurement and system 

models. It can happen that the innovation learning history shows a situation that is not 

reflected in the covariance propagation, as for instance dynamics or geometry change. 

The filter covariance, in this case, will not reflect the actual accuracy and the filter is said 

to be diverged.  

In contrast, in adaptive Kalman filtering, the innovation learning history is reflected 

in the covariance propagation. Consequently, the first moment information of the filter is 

consistent with the second moment information. Changes in the measurement and/or 

system sequences are reflected in the innovation sequence and will propagate into the 

filter covariance. The result is a more realistic filter gain and better observability of the 

filter state components. To show the reflection of the innovation sequence on the filter 

gain, let us consider a scalar case. In this case,  the gain of the conventional Kalman filter 

is 

 2
v

2
x

kK
σ

σ
= . (4.57) 

The gain of the adaptive Kalman filter with R adaptation based on the innovation 

sequence is 

 2
x

2
k

2
x

kK
σ−ν

σ
= , (4.58) 

and with R adaptation based on the residual sequence is 
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while that for Q adaptation is 
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and that for R and Q simultaneous adaptation is 
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K

K
σ−ν

ν+σ
= . (4.61) 

Eqs. (4.58 - 4.61) show clearly the dependence of the gain on the actual size of the 

innovation and the filter state variance. It is clear that the gain learning history is 

connected to the innovation learning history. In other words, the filter will never lock on 

a fixed gain and stop responding to the outside world. The adaptive Kalman filter 

response to changes is more reflective than that of the conventional Kalman filter, see 

Fig. (4.4). 
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Fig. (4.4) : Kalman Filter Gain - AKF vs. CKF 
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In the adaptive scheme, the smaller the averaging window size, the higher the 

response to frequency changes in the filter gain and the higher the vulnerability of the 

filter to singularity situations. It is worth mentioning here that the same conclusion can be 

reached for the filter state estimation error and its covariance. While the steady-state 

covariance of the state is characterized by a flat pattern indicating a stabilized situation in 

the case of a conventional Kalman filter, the pattern is dynamics dependant in the case of 

adaptive Kalman filter as is the filter gain. This means that the filter performance is 

expected to be superior to that of the conventional Kalman filter in tracing trajectory 

changes but also more subject to filter instabilities and thus filter artifacts in the 

trajectory. 

4.4.4 Constant Q and/or R vs. adaptive Q and/or R 

In the INS/GPS integrated system, R represents the uncertainty in the GPS update 

measurement and Q represents the uncertainty in the INS system and its model. Constant 

values for these two parameters, as in the case of conventional Kalman filter, gives little 

chance to track changes. For instance, many geodetic GPS receivers change their tracking 

bandwidth based on the experienced dynamics in order to ensure tractability of the GPS 

signal. According to [Parkinson and Spilker 1996], the GPS receiver tracking frequency 

rate may deviate from its nominal value, which causes an increase in the measurement 

noise, R. In a strapdown INS system, gyroscopes and accelerometers are strapped down 

to the vehicle where it experiences all kind of dynamics the vehicle experiences; the 

system noise, Q, should reflect such dynamics changes in its parameters.  

In conventional Kalman filtering, the constant measurement and system covariance 

matrices result in a smoothed gain, state estimate, and state covariance. In adaptive 

Kalman filtering, however, the pattern of changes of the covariance matrices follow the 

pattern of changes in the innovation sequence which is excited by dynamics changes. In a 

scalar case, for instance, the estimated variance of the measurement noise takes the form 
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z k

ˆ σ−ν=σ , (4.62) 

and that for the system noise takes the form  

 2
k

2
k

2
k Kq̂ ν= . (4.63) 

Figs. (4.5) and (4.6) below illustrate the above equations. Both figures show clearly how 

the dynamics in the innovation sequence is transferred to the estimated measurement and 

system noise. The pattern of each of them is similar to that of the innovation sequence 

inside the averaging moving window and that of the filter gain and filter state error 

covariance. It is completely different from the smooth pattern characterizing constant R 

or Q. The multi-dimensional case is no different from the scalar case, except for the 

interaction between the different elements of the respective matrices. 
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Fig. (4.5) : Kalman Filter Estimated Measurement Noise – AKF 
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 Fig. (4.6) : Kalman Filter Estimated System Noise – AKF 
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4.4.5 Sensitivity analysis of adaptive Kalman filtering 

Eq. (3.20) shows the inherent stability of the conventional Kalman filter. The 

attenuation factor, I-KH, plays an important role in stabilizing the filter in steady state, at 

epoch k. In the scalar case where H = 1, the attenuation factor takes the form 

 γk = 1 - Kk . (4.64) 

This factor can be used to check both the stability of the filter and the positive 

definiteness of its state covariance matrix. In the scalar case, the condition for the filter 

stability is 

 γk < 1, (4.65) 

which guarantees the decay of the state error. For the positiveness of the state variance, 

however, the following condition must hold 

 γk > 0. (4.66) 

Both of the previous two conditions specify the range of values the gain factor can take as 

 0 < Kk < 1. (4.67) 

In order to show the stability and positiveness of the conventional Kalman filter for 

the scalar case, the attenuation factor is computed based on Eq. (3.14) for the gain as 

follows 

 2
o

2
v

2
o

2
v

k
k

)1k(

σ+σ

σ−+σ
=γ . (4.68) 
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Eq. (4.68) shows clearly that 

 0 < γk < 1,  

at all epochs of the conventional Kalman filter. In the transition stage, i.e. for small k, γk 

is closer to zero while it approaches one as the time epoch k approaches infinity. 

In the following, the stability and positiveness of the adaptive Kalman filter for the 

different adaptations will be studied. 

Innovation-based R-only 

In this case, the attenuation factor can be computed based on Eq. (4.58) as follows 

 2
x

2

2
x

2

k
2

σ−ν

σ−ν
=γ . (4.69) 

It is clear that the filter stability is guaranteed in this case because γk < 1 always. 

Positiveness of the state variance, however, is subject to the condition 

 15.0 2

2
x <

ν

σ
< , (4.70) 

where singularity of the filter solution can occur outside this range. If one can use ν2 to 

represent the quality of the update measurement, Eq. (4.70), then, suggests that the signal 

to noise ratio should be within 0.5 and 1 for this specific filtering procedure to yield 

optimal results. 

Residual-based R-only 

Based on Eq. (4.59), the attenuation factor, in this case, can be computed as follows 



4. DEVELOPMENT OF AN INNOVATION-BASED ADAPTIVE KALMAN FILTER  109 
 

 

 2
x

2

2

k
r

r

σ+
=γ . (4.71) 

which guarantees filter stability and state variance positiveness at all epochs because 0 < 

γk < 1 always. The R only adaptation based on the residual sequence is, then, expected to 

be numerically more robust than that based on the innovation sequence. 

Q-only 

Eq. (4.60) contains the gain factor twice, once on each side, resulting in a quadratic 

equation in Kk, which when solved results in the following attenuation factor  

 ]42[
2

1 22
o

4
v

2
v

2
2k νσ−σ−σ−ν

ν
=γ , (4.72) 

which guarantees filter stability because γk < 1 always. It is, however, required that 

 25.04
v

22
o <
σ

νσ
, (4.73) 

in order for the state variance to be positive. In an ideal filtering procedure, one can 

assume that 2
v

2 σ=ν , and the condition above reduces to 

 25.02
v

2
o <

σ

σ
. (4.74) 

The condition in Eq. (4.74) refers to the choice of the signal to noise ratio at the 

beginning of the filtering procedure and suggests that one should not start with a very low 

signal to noise ratio for the filter to achieve positive state variance at steady state when 

using Q-only adaptation. 
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R and Q simultaneously 

Here also a quadratic equation is obtained for the gain factor based on Eq. (4.61), 

from which the attenuation factor is computed as follows 

 ]6[
2

1 422
o

4
o

2
o

2
2k ν+νσ−σ−σ+ν

ν
=γ . (4.75) 

From Eq. (4.75), 

 γk > 1  (4.76) 

always, indicating an unstable filtering procedures at all epochs. The state variance 

positiveness is, however, guaranteed at all epochs under the condition 

 83.52

2
o <

ν

σ
, (4.77) 

i.e. a signal to noise ratio greater than 5.83 is needed for this filtering procedure to yield 

positive state variance. In general, the simultaneous adaptation of R and Q will result in 

an unstable filtering procedure and should, therefore, be avoided. 

It should be noted that the proof provided in this section is only true for the one 

element state vector and should not be considered as a general proof for the sensitivity of 

the adaptive Kalman filtering procedure. Numerical studies for the different adaptation 

cases will be carried out in Chapter Eight where real data and a full-scale state vector are 

used to further analyze the sensitivity of the adaptive Kalman filtering procedure.  

 

 



5. 
  ADAPTIVE KALMAN FILTER PERFORMANCE ANALYSIS 

In this chapter, a computer simulation is presented and analyzed, where the 

performance of the adaptive Kalman filter (AKF) is compared to that of the conventional 

Kalman filter (CKF). The objective of this simulation is to show the behavior of the 

conventional and the adaptive Kalman filter states in a general way.  

5.1 Trajectory and Model Description 

A system similar to the GPS/INS used in the field tests is simulated, see Appendix 

D for specifications. The simulated INS is a navigation-grade system with a position error 

growth of one nautical mile per hour. The DGPS system consists of two geodetic GPS 

receivers providing differential phase and Doppler measurements. Only short baselines 

are considered in the simulation and therefore spatially correlated GPS errors do not 

greatly affect the obtained accuracy and can generally be ignored; the effect of the 

ignored errors is taken into account by amplifying the GPS white noise level.  

The filter consists of 9 navigation states (position, velocity, attitude), 3 gyro bias 

states, and 3 accelerometer bias states. The biases are modeled as first-order Gauss-

Markov processes. The local-level frame is used for the INS navigation mechanization. 

The navigation error model simulated is similar to the one used in KINGSPAD, see 

[KINGSPAD 1994] for details of the model. The simulated measurements are the 

differences between the position and the velocity derived from both the INS system and 

the GPS system, as follows 

 z = xINS - xGPS  (5.1) 

where, 

xINS : INS measurement (position, velocity) 

xGPS : GPS measurement (position, velocity). 
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Trajectory geometry and dynamics are provided in the form of data series of the 

different navigation parameters. To show the behavior of the conventional and adaptive 

filter states for both straight lines and turns under dynamical changes, an L-shaped 

aircraft trajectory is simulated. Details of the simulation are shown in Table (5.1) and Fig. 

(5.1) below. Take-off is simulated with changes in the pitch parameter, while the 

maneuver at the turn is simulated with changes in the roll and azimuth parameters.  

The underlying statistical assumptions of the simulation are as follows: 

• GPS errors are white noise with standard deviations for position σpGPS = 0.1 m 

and for velocity σvGPS =  0.05 m/s2 

• INS noise for position is σpINS = 0.1 m and for velocity σvINS =  0.005 m/s2 

• INS initial misalignment leveling error εo = 5", and azimuth error εu = 3.5' 

• accelerometer bias is a first-order Gauss-Markov model of value bAo = 20 

mGal, correlation time βA = 4 h, , and power spectral density pA = 2 mGal/√h  

•  gyro bias is a first-order Gauss-Markov model of value bGo = 0.01o/h, 

correlation time βA = 4 h, and power spectral density pA =  0.001o/√h 
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Table (5.1) : Dynamics of Simulation Trajectory  

Segment 
Time   

[sec] 

L 

[km] 

Height 

[km] 

Vel. 

[m/s] 

Acc. 

[m/s2] 

Curv. 

[km] 

Roll 

[deg] 

pitch 

[deg] 

Az. 

[deg] 

Remark 

A-A1 0-100 3.5 1.2 0-100 1 straight 0 0 0 taxiing 

A1-B 100-300 19.0 1.2-4.4 95 0 straight 0 15 0 take-off 

B-C 300-360 5.3 4.4-4.45 95-100 2.5 3.4 15 0 0-270 turn 

C-D 360-470 11.0 4.45 100 0 straight 0 0 270 fly 
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5.2 Filter Performance Analysis 

Different aspects pertaining to the performance of the AKF and the CKF are 

discussed in the following. The purpose is to analyze the behavior of both filters during 

the estimation process. 

 

5.2.1 Kalman gain 

As discussed in §3.2.6, the Kalman filter gain determines the filter bandwidth. For 

a stationary dynamics matrix and fixed gain (at steady state), the bandwidth of the 

Kalman filter stays unchanged. This fact is depicted in Fig. (5.2), where the dotted line 

represents the conventional case with almost constant gain (bandwidth). The change in 

the adaptive Kalman filter bandwidth with dynamics can be seen in the filter gain change. 

Fig. (5.2) shows that dynamics changes like that during take off and at turns are reflected 

in the gain of the adaptive case, the solid line. The change in the filter gain is a result of 

adapting Q only while R was kept unchanged. It is clear that at periods of benign 

dynamics or constant velocity, the gain from the conventional filter and that from the 

adaptive filter are almost matched, see the period after take-off and before the turn in 

Fig.(5.2). The change in the gain affects the state estimation as will be discussed in the 

following section. 
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Fig. (5.1) : Simulation Trajectory 
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5.2.2 Filter state estimation 

Position and velocity states are directly observable components in the INS/GPS 

Kalman filter. Their precision is directly linked to the precision of the update 

measurements obtained from GPS. Attitude states, however, are less observable and more 

critical for kinematic applications such as image direct georeferencing. Leveling errors of 

the horizontal channels are better observable than azimuth misalignment [Schwarz and 

Wei, 1995b]. While leveling errors are directly linked to velocity errors through the 

vertical gravity acceleration 'g' and hence can benefit from a velocity update, see Eq. 

(A.4) in Appendix A, azimuth misalignment has no1 direct link to velocity updates and 

can hardly profit from GPS updates.  

Leveling errors and azimuth misalignment errors develop in different manners with 

time. For leveling errors, Eq. (A.13) shows that the gyro drift and the accelerometer bias 

are modulated by the Schuler frequency (through sinusoidal waves) which result in 

bounded errors. On the other hand, Eq. (A.18) shows that, in addition to being modulated 

with the Schuler frequency, the gyro drift error affects the azimuth misalignment through 

a linear time-dependant term which causes the azimuth misalignment to drift. It also 

shows that the effect of the gyro drift on the azimuth misalignment can be one order of 

magnitude higher than the effect of the accelerometer bias, e.g. 50" for gyro drift as 

opposed to 5" for accelerometer bias after a complete Schuler cycle for a navigation-

grade INS. Effects of initial velocity errors and leveling errors on azimuth misalignment 

are almost negligible. Thus, the estimation of the azimuth misalignment state and the 

gyro drift state is critical in the Kalman filter estimation process. Therefore, the 

                                                 

1 In fact, there is a weak link between the azimuth misalignment and the velocity update through the 

vehicle horizontal acceleration and indirectly through the leveling states. The vehicle horizontal 

acceleration is usually much smaller than the vertical gravity acceleration, g, and hence was ignored in the 

simplified formulation in Appendix A.  
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estimation of the azimuth misalignment and gyro drift states in both cases of the CKF and 

the AKF will be the main focus of the analysis in this simulation. 
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Fig. (5.2) : Kalman Gain of Azimuth Misalignment from Velocity Update (Simulation) - 

CKF vs. AKF 
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Fig. (5.3a) and (5.3b) depict the estimation of the Z-gyro drift state in both cases, 

the CKF and the AKF. For the adaptive case presented here, comparable results were 

obtained when adapting Q-only and R-only; results shown below are from Q-only with a 

20 epoch window size. Because both filters handle dynamical changes differently, their 

estimates are different. For instance, in the case of CKF, the jump in the gyro drift state 

estimate, Fig. (5.3a), occurring around epoch 300, is due to the maneuver (segment B-C 

in Table 5.1). Because the gyro drift state and the azimuth misalignment state cannot be 

separated in the INS/GPS Kalman filter model, the filter treats both states as one state 

until dynamical changes occur to de-couple them. The acceleration (2.5 m/s2 linear and 0o 

to 15o angular) at the maneuver, along with the velocity update, caused the CKF to de-

couple the two states resulting in a change in their estimates, see also Fig. (5.4a) below. 

Another example of the de-coupling of the filter states in the CKF case after dynamical 

changes occurred around epoch 100 at take off. In this case, the jump occurred in the 

azimuth misalignment estimate while the gyro drift estimate maintained an estimate that 

is closer to the true value. Except for some response to dynamical changes at transition 

and after take-off where pitch changes occur, the estimate of the conventional filter is 

fairly smooth, see Fig. (5.4a).  

As discussed before, the Kalman filter bandwidth is mainly affected by changes in 

the filter gain. AKF changes its gain and consequently its bandwidth with dynamical 

changes. For a weak observable component such as the gyro drift, the gain from 

measurement updates is very close to zero. Therefore, in the AKF, the change of the filter 

bandwidth, and consequently of the state estimate, is expected to be small. Fig. (5.3b) 

shows this situation for the estimate of the gyro drift state in the AKF case. Except for 

changes at the transition stage, the estimate is almost following the first-order Gauss-

Markov model of four hours correlation time without interacting with the navigation 

states. The azimuth misalignment state, on the other hand, has a relatively larger gain, 

and the dynamical changes are apparent in its estimate, see Fig. (5.4b). The estimate 

jumps that happened in the CKF case did not happen in the AKF case, see Fig. (5.3b). 
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While the conventional Kalman filter kept almost constant bandwidth, especially after 

transition to steady state, the adaptive Kalman filter kept changing its bandwidth to 

reflect changes in the dynamics. The estimate of the azimuth misalignment state of the 

adaptive filter, is noisier, especially at the take-off period, see Fig. (5.4b). The change in 

the bandwidth of the adaptive filter is due to the fact that the update gains are based on 

the innovations (corrections). In Fig. (5.4b), for instance, dynamics changes at take-off 

result in large innovations which, in turn, result in large value of the Q matrix (process 

noise) and noisier states. The states are less noisy at flight height because small 

innovations are encountered and hence Q remains small. 
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Fig. (5.3a) : Z-Gyro Drift State Estimate (Simulation) - CKF 
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Fig. (5.3b) : Z-Gyro Drift State Estimate (Simulation) – AKF 
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5.2.3 Effect of the moving averaging window size on state estimation 

The size of the moving window over which the process is considered stationary and 

ergodic has an impact on the adaptive filter performance. The smaller the window size is   

the faster the changes that can be captured by the adaptive filter. Fig. (5.5) shows the 

effect of the window size on the azimuth misalignment gain from the velocity update of 

the simulated trajectory. A window size of the same length as the update interval of one 

epoch is essentially changing the gain with every update. It results in the largest response 

at turns and keeps changing with the changes of the dynamics. On the other side, a 

relatively large window size of 100 epochs results in the slowest response and is close to 

the conventional filter response. A window size of 20 epochs, which is slightly larger 

than the number of the filter states, 15, provides an average response. The 20 epoch 

window size, in this case, is neither responding too slowly as the 100 epoch window nor 

too fast as the one epoch window. 

There are situations where the filter performance degrades when the window size is 

not chosen correctly. Fig. (5.6) shows the azimuth misalignment state estimate as 

compared to the true value for the three different window sizes. The filter used in this 

case has 15 states indicating that 15 unknowns are encountered for adapting the Q matrix 

(diagonal case).  The estimate in the case of the 100 epoch window size, which is close to 

the conventional filter, responds slowly to the dynamics changes and maintains an almost 

constant and biased estimate. On the other hand, the estimate of the one epoch window 

size has direct response to dynamics resulting in a divergent estimate at the turn. Taking 

into account the fact that 15 unknowns are required in this specific case, the solution 

resulting from a one-epoch window size cannot be accepted. The estimate of the 20 

epoch window size, which is a little larger than the number of unknowns, provides a 

trade-off solution. It neither diverges too much like the one-epoch solution nor does it 

result in a biased solution like the 100 epoch solution. 
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Fig. (5.4a) : Azimuth Misalignment State Estimate (Simulation) - CKF 
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Fig. (5.4b) : Azimuth Misalignment State Estimate (Simulation) - AKF 
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Fig. (5.5) : Effect of the Window Size on the Filter Gain at a Turn (Simulation) - AKF 
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Fig. (5.6):Effect of Window Size on the Azimuth Misalignment Estimate (Simulation)-

AKF 
 



5. ADAPTIVE KALMAN FILTER PERFORMANCE ANALYSIS 129 
 

 

 

5.2.4 Innovation sequence properties 

Because the innovation sequence is a very important element in adaptive Kalman 

filter theory, its properties will be discussed in this section. Fig. (5.7) depicts a kinematic 

velocity innovation sequence, while Fig. (5.8) depicts its auto-correlation coefficient at 

different lags. Both figures are used to indicate the whiteness property of the innovation 

sequence and hence the optimality of the adaptive Kalman filter. It is worth mentioning 

that the innovation sequence of the same parameter resulting from the conventional 

Kalman filter was also white indicating that both filters share the whiteness property. Fig. 

(5.9) depicts the distribution of the innovation sequence which, in this case, show a 

Gaussian behavior. For 95% confidence and 20 degrees of freedom, the critical χ2 

threshold is 10.9. The computed goodness of fit factor for the velocity innovation is 8.6, 

which indicates that the velocity innovation distribution, in this case, can be assumed 

Gaussian. 
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Fig. (5.7) : Velocity Whitened Innovation Sequence (Simulation) - AKF 

 

 

 

 

 

 

 

 



5. ADAPTIVE KALMAN FILTER PERFORMANCE ANALYSIS 131 
 

 

 

 

 

 

 

 

 
Fig. (5.8) : Velocity Innovation Sequence Auto-correlation (Simulation) - Whiteness of 

AKF 
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Fig. (5.9): Velocity Innovation Sequence Distribution (Simulation) - Gaussianess of AKF 



5. ADAPTIVE KALMAN FILTER PERFORMANCE ANALYSIS 133 
 

 

 

5.2.5 Innovation sequence whitening 

The purpose of this section is to give a practical example on how the whitening 

procedure is applied inside the KINADA software. As described in Chapter Four, float 

whitening is based on a 'udu' matrix factorization of the innovation correlation matrix. It 

is applied when the correlation test shows that the innovation sequence is non-white. The 

correlation test (or whiteness statistical test) described in §4.2.2 ensures that the 

innovation sequence has a maximum correlation of one at zero lag and almost zero 

correlation at all other lags. This test can be approximated by the goodness of fit test for 

the Gaussian distribution. It approximates the Dirac impulse at zero lag by a narrow 

Gaussian distribution. In the INS/GPS filter, and with position and velocity updates 

available, this test has to be applied to six different innovations.  

Figs. (5.10a) and (5.10b) illustrate the auto-correlation coefficient computed for the 

position innovation in the INS/GPS Kalman filter. Fig. (5.10a) shows the auto-correlation 

coefficient for the original innovation sequence inside a 100 epoch window, while Fig. 

(5.10b) shows the auto-correlation coefficient for the same innovation sequence after 

applying the float whitening procedure described in §4.2.1. Correlation coefficients at 

lags other than zero exist in the original innovation sequence shown in Fig. (5.10a), while 

they disappear after whitening. While theoretically they should disappear, the coefficients 

around the zero lag in Fig. (5.10b) demonstrate the practical limitations of the float 

whitening filter.  

 

 

 

 

 



5. ADAPTIVE KALMAN FILTER PERFORMANCE ANALYSIS 134 
 

 

 

 

 

 

 

 

 

 

 
Fig. (5.10a) : Innovation Auto-correlation (Simulation) - Original 
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Fig. (5.10b) : Innovation Auto-correlation (Simulation) – Whitened 
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5.2.6 Estimation of R and Q  

The changes in the estimated measurement noise covariance matrix and the 

estimated system noise covariance matrix reflect the behavior of the AKF. Fig. (5.11) 

below depicts the estimated measurement noise covariance matrix, R, when window sizes 

of 10, 20, 50, and 100 seconds are used. In this specific test, the noise standard deviation 

of the velocity measurement update is considered. The conventional Kalman filter value 

used for the velocity measurement standard deviation is 0.05 m/s. In Fig. (5.11), the value 

of the velocity measurement standard deviation in the adaptive filter fluctuates around 

0.05 m/s, the assigned standard deviation for the conventional filter. The rate of 

fluctuation increases as the window size decreases. While the 10 second window size 

estimate is rather noisy, the 100 seconds window size estimate is the smoothest and 

closest to the average value.  

 

The changes in the Q matrix, on the other hand, seem to follow geometrical and 

dynamical changes in the trajectory more than the changes in the R matrix, see Fig. (5.12) 

below. This can be explained in light of Eqs. (4.24) and (4.34). The estimate of the Q 

matrix directly include the '∆x' parameters which are not directly linked to R. The 

changes in the '∆x' parameter reflect changes occurring in the trajectory. Although the 

window size clearly has an effect on the estimate of the Q matrix, it is not as apparent as 

in the estimate of the R matrix. For instance, the 10 second and 20 second window size 

estimate are very close to one another in the Q estimate, while they are quite different in 

the case of the R estimate; the same also applies to the 50 second and 100 second 

estimates. The estimate of R is based on a white sequence, the innovation sequence, that 

defines the estimate variance envelope. 
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Fig. (5.11) : Changes in the Estimated R vs. Window Size (Simulation) – AKF 
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At take-off and at the turn, there is a widening of the uncertainty tube of the system 

noise Q to allow for fast dynamical changes. This property makes the adaptive filter 

favorable in high dynamics situations. The uncertainty in the system (or process) model 

varies along the trajectory and this is reflected by the Q matrix. While the filter 

bandwidth (or uncertainty tube) reaches a value of 40-50 arcsec for the noise of the 

azimuth misalignment state, for instance at take off and at turns, it stays at the level of a 

few arcseconds in the straight line segment with constant velocity between epochs 150 to 

250 seconds. There is a clear disadvantage of using large window sizes of 50 seconds or 

100 second in this case, because the trajectory changes are not directly reflected. 

5.2.7 Diagonal vs. full R and Q  

The purpose of this section is to compare the adaptive Kalman filter performance 

when full R or Q matrices are used as opposed to the performance when the off-diagonal 

elements of the estimated R or Q matrices are ignored and only the diagonal elements are 

considered. When a full R or Q matrices are to be estimated, the number of adaptive 

unknowns increase and the complexity of the adaptive estimation procedure increases. 
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Fig. (5.12) : Changes in the Estimated Q vs. Window Size (Simulation) - AKF 
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Fig. (5.13) illustrates the correlation coefficient obtained from the estimated full R 

matrix when using different window sizes. The correlation coefficient chosen for this 

discussion is between the GPS update measurements for latitude and longitude in the 

INS/GPS adaptive Kalman filter; the rest of the correlation coefficients between the 

position and velocity update measurements followed more or less the same pattern. The 

figure shows clearly that as the averaging window size increases, the estimated 

correlation coefficient decreases. In fact, this was to be expected because of the whiteness 

property of the innovation sequence upon which the estimated R matrix is based. The 

choice of a very large window size would mean an almost diagonal estimated R matrix. A 

conventional Kalman filter can be thought of as an adaptive filter with a very large 

averaging window, i.e. a window of the size of the whole data span. In light of this fact, 

one can justify the use of a diagonal R matrix in the case of a conventional Kalman filter. 

Moreover, the performance of the filter in estimating the states, x, and their covariance, 

P, is almost the same as for a diagonal R. So, one could come to the conclusion that the 

neglect of the off-diagonal elements of the R matrix has little practical effect on Kalman 

filter performance, although including the off-diagonal elements of the covariance matrix 

is theoretically appealing. The same conclusion also applies to the adaptive Kalman filter 

because the algorithm applied after adapting R and/or Q is the same as that of the 

conventional Kalman filter.  

The conclusion obtained from the analysis of a full R matrix vs. a diagonal R 

matrix, applies also to the case of a full Q matrix vs. a diagonal Q matrix. It was found 

that, as the averaging window size increases, the correlation between the filter states in 

the Q matrix decreases. Also, the performance of the adaptive Kalman filter when a full 

Q is used is pretty much the same as its performance when a diagonal Q is used. For 

instance, Fig. (5.14) below illustrates the azimuth misalignment state when a full Q is 

used. Fig. (5.4b) illustrates the same state for a diagonal Q. There is little difference 

between the two cases. Thus there is no real need to use a full matrix Q when a diagonal 

Q does the job. 
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Fig. (5.13) : Correlation Coefficient vs. Window Size (Simulation) - AKF Full R 
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Fig. (5.14) : Azimuth Misalignment State Estimate (Simulation) - AKF Full Q 
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5.2.8 Tuning the state covariance matrix P 

In conventional Kalman filtering, once the filter reaches steady state, the estimate 

of the state covariance matrix  reaches a constant value. It only fluctuates in the transition 

stage until it reaches the steady-state stage and locks onto it. This, however, is not the 

case with the adaptive Kalman filter. Since the process is not assumed stationary, changes 

to the state estimates and to their covariance are expected. Fig. (5.15) shows that the 

estimate of the position state variance, after transition, fluctuates around the decaying 

average that would have been accomplished by the conventional filter. There is a clear 

reflection of the dynamics during the take-off (around epoch 100) and the turn (around 

epoch 300) on the estimated variance. This change in the estimated position variance 

reflects reality because one would not trust a position estimate at take-off as one would 

do with a position estimate in benign dynamics. 

As it was discussed in §4.4.5, the R and Q simultaneous adaptation leads to an 

unstable and divergent filter estimate. Fig. (5.16) below depicts the estimated variance for 

the position state when adapting R and Q simultaneously. Although the filter kept a 

positive variance, it diverged to a value almost one order of magnitude higher than that 

resulting from R-only or Q-only adaptation, compare with the result in Fig. (5.15) above. 

It, therefore, asserts the analytical analysis of §4.4.5. It also confirms the conclusion of 

the non-suitability of the R&Q simultaneous adaptation, in general.
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Fig. (5.15) : The Estimated State Covariance P (Simulation) - AKF vs. CKF 
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Fig. (5.16) : The Estimated State Covariance P (Simulation) - AKF (R&Q) 



 

 

6. 
GPS AMBIGUITY RESOLUTION  

USING THE INTEGER WHITENING FILTER 

The high accuracy of the integrated INS/GPS system is a function of both INS and 

GPS. To obtain high GPS accuracy, the phase ambiguity has to be resolved to its correct 

value. The problem of GPS phase ambiguity resolution is discussed in this chapter. A 

simple and economical , yet efficient, solution to this problem is outlined. The solution is 

based on a factorization and transformation method to decorrelate the highly correlated 

double difference phase ambiguities and round to the nearest integer, a method called 

OTFWhite. Precision as well as geometric implications of the method are discussed. 

6.1 The Problem of GPS Phase Ambiguity Resolution On The Fly 

Highly precise GPS position estimates can only be attained when the ambiguities of 

the carrier phase observations are resolved to their correct integer values. A simple 

technique to resolve the integer carrier phase ambiguity is the use of long observation 

periods over which receiver-satellite geometry changes and an ambiguity float solution 

asymptotically approaches the correct integer one. These long periods of observation 

assure a better (more precise) float estimate and, in effect, a decorrelated ambiguity set. 

Over short observation times, however, the same effect can be obtained by applying a 

whitening filter. The role of the whitening filter is to decorrelate the ambiguities and 

improve the precision of their estimates. The whitening process also plays a role in the 

required change in the receiver-satellite geometry. Both effects are essential to the 

ambiguity resolution process. 

6.1.1 Methods of ambiguity resolution On The Fly 

Over the last decade various methods for ambiguity resolution have been proposed. 

In these methods, the ambiguity is either resolved in the measurement domain or resolved 

in the position domain. In the latter, the ambiguity resolution takes place based on a 
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precise pre-determined receiver position. In the measurement domain, however, the 

ambiguity is resolved in the ambiguity space. The two main approaches to resolving the 

ambiguity in the ambiguity space are the code-guided and the phase-only techniques. The 

code-guided technique requires receivers that have a low noise level and high multipath 

mitigation characteristics, see e.g. [Almgren 1998]. The phase-only resolution technique 

employs either a search method or a space-projection method or both. The phase-only 

resolution technique will be discussed here. 

In the search method, a float estimate of the phase ambiguity is first obtained and a 

search space is formed around it. A search algorithm is then employed to find the correct 

ambiguity set that the residual distribution is peaked at. Examples of the techniques that 

use search algorithms are: the Least-Squares-Search method [Hatch 1990], the ambiguity 

covariance methods like the FARA [Frei and Beutler 1990], and the FASF [Chen and 

Lachapelle 1994], the genetic algorithms [Li 1995], and the Integer Non-Linear 

Programming method [Wei and Schwarz 1995]. Comparative studies of most of these 

methods can be found in [Hatch and Euler 1994, Hein and Werner 1995]. 

The power of the search techniques stems from their ability to reject incorrect 

ambiguity candidates. The aim of the search algorithms, therefore, is that after the 

rejection procedure, it is left with two acceptable candidates. A test is then performed to 

accept the best candidate. The search technique is widely used and has been implemented 

in different ways. However, the available algorithms that use a search technique, are 

rather complicated and often not easily understood. The direct search which is simple and 

easily understood, on the other hand, is time consuming and inefficient. In addition, the 

search techniques lack the ability to utilize the information content of the float estimate 

because the float estimate in the search techniques is considered as a starting point not as 

a goal in itself. In other words, none of the search techniques attempts to directly or 

indirectly improve the quality of the float estimate. 

The space-projection technique, on the other hand, relies on the quality of the float 

ambiguity estimate. In this technique, the whole estimation problem is projected onto 

another space that is easier to analyze. As a consequence of this special projection, the 
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ambiguity float estimate becomes more precise, the ambiguity set decorrelates, and the 

receiver-satellite mutual positional vectors geometry changes. These three effects 

accelerate the ambiguity resolution process. The whitening filter, through an iterative 

matrix factorization procedure, is an example of a space-projection technique for 

resolving the integer ambiguity over short baselines [Mohamed and Schwarz, 1998]. 

LAMBDA (Least squares AMBiguity Decorrelation Adjustment) is an example of an 

algorithm that combines a space-projection technique with a search technique in one 

algorithm. The space projection (transformation) in the LAMBDA algorithm is carried 

out through consecutive Gaussian transformations. The search is combined with a 

conditional least squares adjustment and is based on sequential least-squares estimation, 

see [Teunissen 1994, Rizos and Han 1995, Jonge and Tiberius 1996] for details.  

6.1.2 OTF requirements 

In the process of resolving the integer ambiguity, the float ambiguity estimate is a 

real-value representation of the integer ambiguity at the time the ambiguities are 

decorrelated and have reached a steady-state condition with high precision. This implies 

that in order to resolve the integer carrier phase ambiguity, a precise float estimate of the 

ambiguity is needed. This can be achieved either by enlarging the observation period over 

which receiver-satellite geometry changes and the estimate of the float ambiguity 

becomes more precise, or by obtaining the same effect through a process like whitening 

which reduces the data noise and allows a reliable estimation over a shorter observation 

time.  

For short baselines and with space projection, a sophisticated search is not needed 

and, in effect, complicates the algorithm. Therefore, the problem of GPS ambiguity 

resolution on the fly over short baselines can be solved with simple space-projection 

technique and no search. The sought algorithm, which does not require a search, is easy 

to understand, simple to implement, applicable in real time, economic for hardware 

implementation, and, of course, is reliable for short baselines. The algorithm can be part 

of a Kalman filtering algorithm used in the solution of the kinematic modeling.  
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6.1.3 Ambiguity resolution using a Kalman filter algorithm 

In kinematic positioning, the problem of integer ambiguity resolution is embedded 

in the process of estimating a GPS-based vehicle trajectory. The estimation of the float 

solution starts by using the observation model: 

 z = B b + A a + ez  (6.1) 

or in more compact form, 

  z = H x + ez  (6.2) 

where, 

z  : ‘m’ measurement vector  

b  : ‘p’ baseline component vector 

B : ‘mxp’ geometry design matrix 

a  : ‘g’ ambiguity bias vector 

A : ‘mxg’ ambiguity design matrix 

ez  : ‘m’ measurement error vector 

H : ‘mxn’ measurement design matrix, [ B  A ]  

x  : ‘n’  (p+g) parameter (state) vector,  [ b a ]T. 

The a priori stochastic information necessary to perform an L2-norm algorithm is: 

Cez : ‘mxm’ covariance matrix of measurement errors 

Cb : ‘pxp’   covariance matrix of baseline components 

Ca : ‘gxg’ covariance matrix of ambiguities. 

The criterion for solving this problem is to minimize the norm of the errors in the 

L2-norm space, min || e ||2 , i.e. 2
1

zCab,
||AaBbz||min −−− , with pRb ∈ and gZa ∈ , where 

R represents the real-number space and Z represents the integer number space, and Cz
-1 

having the stochastic information on z. The solution of this optimization problem requires 

two steps, first, the solution of the navigation problem and estimation of a float 
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ambiguity, and, second, the estimation of the integer ambiguity and correction of the 

navigation solution. 

Step 1: Estimation of the Float Ambiguity 

The above formulation of the problem can be solved using a standard Kalman filter 

algorithm, see Fig. (B.2). In case the a priori stochastic information about the parameters 

‘a’ and ‘b’ is not available, the filter starts the update cycle with zero matrices for Pxo
-1 in 

the inverse Kalman filter setup (sometimes called Bayes filtering or information 

filtering). This special case is the most common; a more general solution, however, is 

always available through this algorithm once the a priori information has been obtained. 

The result of this step is the estimation of the baseline components along with a float 

estimate of the integer ambiguities which takes the form: 

 zR
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The precision of the float estimate depends on the errors contaminating the 

observations. As discussed in Chapter 3, with double differenced GPS phase 

observations, clock errors disappear. Also, over short baselines, the remaining 

contamination through the atmospheric and orbital errors is fairly small due to their 

spatial correlation. What remains after double differencing are residual spatially 

correlated errors, receiver noise and multipath effects. At this point, if one gets a highly 

precise float estimate, rounding to the nearest integer should in the case of a short 

baseline lead to the correct integer ambiguity set. Unfortunately, the float estimate 
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obtained by this method is not precise enough, especially for short observation periods. 

This is due to the effect of both the unmodeled and spatially correlated errors and signal 

multipath. In addition, double differencing  causes the double differenced  ambiguities to 

become highly correlated, especially at the first few observation epochs. Thus, a second 

step is required for the estimation of the integer ambiguity. 

Step 2: Solution of the Baseline based on the Integer Ambiguity 

Once a float solution ‘ $a ’ has been obtained, a second estimation step can take 

place. The criterion for solving the second problem can be set in the L2-norm space as 

2
Ca 1

â
||aâ||min −− , where gZa ∈ , and 1

âC−  the estimated ambiguity covariance matrix from 

step 1. The result of this step is the estimation of the integer ambiguity; the estimation of 

the integer ambiguity will be discussed in §6.2. 

Once the correct integer ambiguity is known, it can be backward substituted into 

the original problem and the baseline components can be solved for. It is also possible to 

use the correctly estimated (fixed) integer ambiguity set as a deterministic update 

measurement to the filter and calculate the updated baseline components as follows 

 )âa(CCb̂b 1
ââb̂ −−= − ((

, (6.5) 

and their precision as: 

 âb̂
1

ââb̂b̂b CCCCC −−=( , (6.6) 

where, b
(

 is the updated baseline solution. It is, however, more appropriate in most cases 

to consider the estimated (fixed) integer ambiguity set as a stochastic variable rather than 

a deterministic one. In this case, the ambiguity covariance matrix is not set to zero in the 

update equation of the Kalman filter, but to a value that represents the receiver-satellite 
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configuration at hand. By so doing, the baseline component estimation becomes more 

realistic. 

6.1.4 Ambiguity testing 

When resolving the ambiguity using the whitening filter technique, one of two 

approaches can be taken to decide upon the correct ambiguity set. In the first approach, 

one considers the closest integer to the float solution as the correct ambiguity at the time 

the largest ambiguity variance is smaller than a pre-specified value; a χ2 test can be used 

to decide on the smallness of the ambiguity variance in this case. In the second approach, 

in order to make the selected fixed ambiguity set more reliable, a number of ambiguity 

candidates are used. These candidates are normally chosen to be close to the float 

solution and, in general, the higher the precision of the float solution, the smaller the 

number of possible integer candidates. The closest integer to the float solution is a very 

good initial candidate and indeed, in most cases, leads to the correct integer solution. The 

last statement is true when the ambiguity variance is small enough (smaller than a pre-

specified χ2 value) and the iterative integer whitening process completely whitens the 

ambiguity; due to the restriction of having integer ambiguity transformation matrix, the 

factorization whitening process, most of the time, does not result in fully decorrelating 

the ambiguities. Because the previous two conditions are not always given, other 

candidates are required. The upper and lower integer bounds of the float solution are 

possible candidates.  

For all possible ambiguity integer candidates, the norms of the residuals are 

calculated either in the measurement space or in the ambiguity space. In either space, the 

smallest norm (best candidate) and the second smallest norm (second best) are chosen for 

testing. Because of the nature of their estimation procedure and in order to be able to 

apply statistical testing, the ambiguity residuals are assumed to have random distribution. 

Since both norms represent a sum of squares of random errors, their values and the ratio 

between them should theoretically follow a χ2 distribution and Fisher distribution, 
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respectively. The χ2 and Fisher percentiles (thresholds), for a certain test significance 

level, depend on the number of degrees of freedom of the problem, i.e. the number of 

available satellites for a given baseline. Hence, the algorithm should be designed in such 

a way that these values can be defined by the user or are variable parameters with an 

expert lookup table. Typical values for the two threshold parameters are 30 to 20 and 1.2 

to 2.5, respectively, for a satellite coverage of 9 to 5, with good to fair geometry (PDOP). 

In order to check against abrupt changes, it is good to have a validation (or verification) 
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time, a time over which the ratio of the second norm to the best norm is greater than the 
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xt of baseline estimation and ambiguity resolution. The definition of a short baseline, 

therefore, involves more than a distance in space. The most important two factors 

affecting the short baseline definition are the number of satellites used and their 

configuration, i.e. their PDOP factor. Based on these two factors, a χ2 threshold can be 

set to specify the distance after which the ambiguity resolution using the whitening filter 

becomes not reliable and hence an additional search is recommended. When using 

numerical results with dual frequency receivers, baselines of 30 to 40 km can be 

considered as short for a satellite coverage of 6 to 8, a PDOP factor between 3 to 2, and a 

χ2 of approximately 25 under a 0.1 percent test significance level.  

6.2 The Integer Whitening Filter 

Whitening is a factorization process used to project a sequence of data from one 

space to another [Bierman 1977]. It is used to obtain a decorrelated version of a data set 

by projecting it onto another space that is simpler to analyze. In the context of adaptive  
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Kalman filtering, as described in Chapter Four, the whitening filter, in its float version, is 

used to decorrelate the innovation sequence used to fine-tune (adapt) the statistical 

information of the filter according to the system dynamics. In the context of ambiguity 

resolution, however, whitening is used in its integer version to decorrelate the highly 

correlated GPS carrier phase ambiguities over short observation periods. It also results in 

pseudo-observations with lower noise. 

6.2.1 Ambiguity transformation and its requirements  

Whitening is a transformation process that projects the problem described by the 

observation model of Eq. (6.2) from its original space into another space which is simpler 

to analyze. This is accomplished by factorizing the update measurement covariance 

matrix as follows: 

 Ce = U D UT (6.7) 

where U is an upper triangular matrix and D is a diagonal matrix. By pre-multiplying 

both sides of Eq. (6.2) by U-1,  one gets 

 U-1z = U-1Hx + U-1e (6.8) 

or in compact form 

 exHz +=  (6.9) 

which is the transformed observation equation using the same state vector 'x'. The 

transformation is non-orthogonal and results in transformed (whitened) measurements 

that are uncorrelated, because 
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There are, however, conditions on the choice of the Ambiguity Transformation 

Matrix (ATM): 

• Firstly, since the ambiguity transformation process should not alter the integer 

nature of the ambiguity parameters, the 'ATM' should only contain integer 

entries,  

• Secondly, in order to assure a two-way transformation between the original 

space and the white space, the whitened and the original ambiguity covariance 

matrices should have equal volumes (determinants).  

Since the ATM, in the general case, is a float matrix, the first condition constrains 

the degree of success of the filter to decorrelate the ambiguities. On the other hand, the 

second condition usually results in a higher precision for the entries.  

6.2.2 Iterative integer whitening 

To carry out the integer whitening process, a one step whitening is not possible 

because of the integer constraint on the ATM entries. To overcome this constraint and get 

a covariance matrix of the whitened observations which is close to a diagonal, an iterative 

procedure is needed which is shown in Fig. (6.2) below.  

After passing the identity check in step number 7, the whitening (transformation) integer 

matrix is calculated as follows 

 ∏= −−− 1

k

1
i

1
i

1 ULT  (6.11) 

where Π is the product symbol and k is the number of iterations. It is worth mentioning 

here that the product in the previous equation showed up because the substitution of the 

factored matrices should yield the original matrix as follows: 

 T
k

T
k

T
1k

T
1k

T
1

T
1e

1
1

1
1

1
1k

1
1k

1
k

1
ke ULUL...ULCUL...ULULC −−−

−
−

−
−−−−−

−
−

−
−−= . (6.12) 



6. GPS AMBIGUITY RESOLUTION USING THE INTEGER WHITENING FILTER                       159 
 

 

The whitened ambiguities and their covariance matrix are calculated as: 

 aTa 1−= , (6.13) 

and  

 
T

a
1

a TCTC −−= , (6.14) 

respectively; see Appendix C for the Matlab® implementation of this algorithm.  

The degree of success of the whitening process, with the integer constraint applied, 

can be measured by the decorrelation number. The decorrelation number is the square 

root of the determinant of the whitened observation correlation matrix: 

 ||r aa ρ= , (6.15) 

where 

 1
aa

1
aa )]C(diag[C)]C(diag[ −−=ρ . (6.16) 

The closer this number is to one, the more successful the iterative integer whitening is. In 

the case of short baselines, this happens in the first few epochs of observation when using 

the whitening filter. In this case, the decorrelation number varies between 0.9 to 0.98 for 

satellite coverage between 5 to 8. 
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When comparing the whitening filter to the LAMBDA method, the similarities are 

in the factorization of the covariance matrix, while the differences are in the approach to 

integer ambiguity resolution. The LAMBDA method combines three essential elements 

to obtain a general solution to the integer ambiguity problem; they are: a Gaussian 

transformation, a conditional least squares adj                        

edure. The decision on whether or not to consider this solution as the final ambiguity set 

is based on statistical arguments (Fig. (6.1)). If the hypothesis is rejected, a search 

procedure is applied. This approach results in a very simple and very fast algorithm for 

many cases of practical importance, typically for all baselines up to 35-40 km. It is not as 

rigorous as the LAMBDA method and may occasionally result in a local minimum. 

6.3 Precision Implications 

For the discussion in this and the next section, two satellites in 2D space case will 

be considered. In this case, Ce, in general, is  a full 2x2 matrix of the form 
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The whitening of Ce, as described before and as implemented in Appendix C, results in   
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It is clear that the whitening process preserves the volume, i.e. the determinants of 

the covariance matrices before and after whitening are the same. Moreover, taking the 

trace of the covariance matrix as a precision measure, one can conclude that the whitened 

observations are more precise than the original ones if correlation exists in the original 

observations; the difference in this specific case being equal to ( 2
2

2
12 / σσ ).  
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Another way of looking at this problem is to consider the matrix 'U' as an unknown 

to be determined. In this case, 
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where the precision measure after whitening is 

 2
2

2
12

2
2

2
121 uu2dd σ−σ−σ+σ=+=Φ . (6.20) 

The minimization of Φ with respect to 'u' results in 

 
2
2

122
212 u0u22

u σ

σ
=⇒=σ−σ−=

∂
Φ∂  (6.21) 

which is the same result as obtained by the 'udu' factorization.  

It is clear that the more the original observations are correlated (larger value of 

σ12), the more precise the whitened observations become, i.e. the more efficient the 

whitening process will be. It is also clear that the whitening process is more efficient for 

large dimensions because more terms will be subtracted from the trace after whitening. 

These two observations are very important to the problem of integer ambiguity resolution 

and, in fact, they are the key to the success of this technique. 

6.4 Geometric Implications 

The whitening process, being a space projection technique, can also be interpreted 

as a transformation of the original receiver–satellite mutual positional vectors geometry 

on a non-orthogonal system of axes. For the 2D case, consider only the change in one of 
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the receiver-satellite vectors. In this case, the spatial position of  the satellite after 

whitening with respect to its original position is computed as follows: 
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which is depicted in Fig. (6.3) as a translation of the original space position of the 

satellite with respect to the receiver along the x-axis.           

 

It is clear that the translation  

 ∆x = y{tan(ψ1)-tan(ψ'1)} (6.23) 

is a function of the receiver-satellite vector direction cosines before and after whitening. 

For the case of several satellites, relative positions of satellites change as well.  

To describe the receiver-satellite vector change in a collective way, an independent 

measure of the geometry is needed. Since the baseline geometry matrix 'B' in Eq. (6.1) 

contains the direction cosines of the different receiver-satellite vectors, the DOP factor 

based on it gives a measure of the receiver-satellite geometry. This measure is invariant 

under orthogonal transformations; i.e. the sum of the diagonals of the cofactor matrix will 

be invariant under such transformations; that is one reason why the orthogonal 

transformations do not qualify as ambiguity transformations. The cofactor matrix in the 

original space is 

 CDOP = (BTB)-1. (6.24) 
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Fig. (6.3) : Relative Change in the Receiver-Satellite Vector due to Whitening 
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The pre-multiplication of both sides of Eq. (6.1) by the matrix U-1 projects the 

problem from the original space to the white space. By so doing, the geometry matrix in 

the white space is 

 BUB 1−= , (6.25) 

and the corresponding cofactor matrix is 

 11TT1T
DOP B)UU(B)BB(C

w
−−−− == . (6.26) 

For orthogonal transformations, the product U-TU-1 would become the identity and 

the cofactor matrix would again be given by Eq. (6.24); this is not the case for the 

whitening transformation, however. By carrying out the DOP calculations, the new DOP 

factor can be represented in terms of the original DOP as  

 DOPw = DOP – ∆DOP, (6.27) 

where ∆DOP characterizes the change in the DOP factors and hence the change in the 

receiver-satellite mutual positional vectors geometry after whitening. The last result 

indicates that there must be a matrix 'U', for which ∆DOP is maximum. For the purpose 

of this discussion, the case of only two satellites in 2D will again be considered. In this 

case 

  
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where Ψ1 and Ψ2 are the angles of the receiver-satellite vectors of the two satellites with 

respect to the first coordinate axis, respectively, and 'u' is an unknown parameter of the 
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matrix 'U'. Substituting 'B' and 'U' above into Eqs. (6.24) and (6.26) and computing the 

DOP as the trace (as opposed to the square root of the trace) of the cofactor matrix and 

then simplifying, one gets 

 DOP = 2 / sin2(∆Ψ), (6.29) 

and 

 DOPw = (2 + u2 - 2u cos(∆Ψ)) / sin2(∆Ψ). (6.30) 

By substituting the last two expressions into Eq. (6.27), the DOP change is 

 ∆DOP = (2u cos(∆Ψ) – u2 ) / sin2(∆Ψ) (6.31)  

where ∆Ψ = Ψ2 − Ψ1 is the angle between the two receiver-satellite vectors. The 

maximum change in the receiver-satellite geometry, due to maximizing ∆DOP, occurs 

when 

 u = cos(∆Ψ). (6.32) 

This choice of 'u' as stated above leads to maximizing (as opposed to minimizing) ∆DOP 

of Eq. (6.31) because the second derivative of that equation with respect to 'u' is negative. 

Substitute this last value into Eq. (6.32), the maximum ∆DOP is 

 ∆DOPmax = cot2(∆Ψ). (6.33) 

It is clear that for dimensions higher than two, the expression for ∆DOP will be more 

complicated and will contain a set of angles, instead of one ∆Ψ.  



 

 

7. 
  TESTS, RESULTS AND ANALYSIS :  

AMBIGUITY RESOLUTION 

Results from three short baseline tests are presented in this chapter to analyze the 

performance of the developed integer whitening filter in resolving the GPS phase 

ambiguity. A fourth variable baseline length flight test is also reported to investigate the 

longest safe baseline with whitening. 

7.1 Tests Description 

The main objective of the ambiguity resolution tests is to investigate the 

performance of the whitening filter technique to instantaneously (in one epoch) resolve 

the ambiguities on the fly (OTF) after loss of lock or cycle slips. In addition, the time 

required to resolve the first ambiguities will be estimated for the following cases: single 

frequency (L1-only), dual frequency (wide-lane), and dual/single frequency (wide-lane 

then L1). In all cases, the reference for the correct ambiguity resolution was obtained by 

an independent software. In the first test, the threshold of the Fisher test was 1.2 and the 

validation (or verification) time was set to 10 epochs. In the second and third tests, the 

validation time was also set to 10 epochs with 1.5 for the Fisher test as threshold to 

account for the fact that the satellite coverage was not as good as in the first test. Also, in 

order to check the ability of the whitening technique to recover the integer ambiguity 

after loss of lock, a number of artificial gaps were introduced in the data by using a 

specially developed software. The data is then processed and the recovered ambiguity set 

is compared to the original ones. The fourth test is the gravity flight test described in § 

8.1.4. For the purpose of ambiguity resolution testing, GPS only data is processed in 

kinematic mode for baselines ranging from few kilometers up to 135 km. The purpose of 

this last test was to investigate the longest safe baseline the OTF integer whitening 

method can resolve the ambiguity for. 
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7.1.1 Van test 

In this case, the GPS antenna was mounted on top of a moving van used originally 

to georeference digitally captured images. For the purpose of static initialization, about 

20 minutes of static data was first collected. The vehicle then moved for about 40 minutes 

in an L-shaped trajectory with an average speed of 50 km/h and frequent stops. 8 

satellites were available during the test period, with an average PDOP of 1.5. The 

distance between the vehicle and the master station was 1.6 km during the static period 

and up to 6 km in kinematic mode. For data collection, Ashtech Z-12 receivers with a 

special logging software were used. The results of this test are shown in Fig. (7.3) and 

Fig. (7.4) and Table (7.1) under VA281. The vehicle trajectory is shown in Fig. (7.1) 

below. 

7.1.2 Anorad test 

The second and third tests have been conducted in a test field at the University of 

Calgary. In both tests, the GPS antenna was mounted on top of a platform moving along 

the Anorad platform described in §8.1.1. Pillar S5 on the roof of the UofC Engineering 

building was used as a master station. The baseline between the master and remote 

stations was about 200 m. For the first test, satellite coverage changed from 8 during the 

static period to 6 during the kinematic period. In the second test, however, only 6 

satellites were available in both the static and kinematic periods. The static period, for 

each of the two cases, was about 20 minutes, and the kinematic period was about 30 

minutes for each. Also, Ashtech Z-12 receivers with a special logging software were used 

to collect the GPS data. The results of the two tests are shown in Fig. (7.3) and Fig. (7.4) 

and Table (7.1) under 19-Jun and EW11, respectively. When plotted against time, the 

platform trajectory along the track is sinusoidal. The east-west trajectory, along the track, 

is straight line as shown in Fig. (7.2) below. The platform was moving with a maximum 

speed of 0.2 m/s. 
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Fig. (7.2) : Anorad Platform Trajectory vs. Time (EW11 Test) 
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7.2 Ambiguity Resolution Test Results and Analysis 

Tests presented in the following are designed to investigate the effectiveness of the 

integer whitening method in resolving the GPS carrier phase ambiguity on the fly, 

referred to as OTFWhite method. 

7.2.1 Time to fix ambiguity – single frequency (L1 Case) 

In this case, only L1 observations are used to resolve the integer ambiguity. Time 

to fix the first ambiguity is depicted in Fig. (7.3) for the L1 case, and Fig.(7.4) for the WL 

case, for the three tests. Although the time needed to resolve the integer ambiguity by the 

whitening technique is less than the one required by the search technique, the differences 

are not as large as in the widelane case. This is due to the fact that the wavelength of the 

L1 observation is much shorter than that of the widelane. The short wavelength makes it 

difficult to get a good float estimate over a short time of observation. The other reason is 

that the redundancy in the L1 case is less than it in the dual frequency case. 

Notwithstanding, the whitening technique shows an improvement of almost 50 percent 

over the search technique; i.e., only half the initialization time required by the search 

technique is required by the whitening technique in the L1 case to resolve the L1 phase 

ambiguity.  
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Fig. (7.1) : Trajectory Profile  (VA281 Test) 
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It is worth mentioning that the validation time for the whitening method was set to 

10 epochs. The algorithm of the search method was to reset this time to 30 epochs in 

order to guarantee enough validation. This philosophy turned out not to be practically 

useful because of the continuous change of the satellite configuration. The correct 

ambiguity set could have been reached by the search method in almost the same time as 

the whitening technique, if the validation time would not have been reset to such a long 

time. The results shown in Fig. (7.3) and Fig.(7.4) and Table (7.1) below for the search 

method are without modifying the search algorithm validation philosophy. 

7.2.2 Time to fix ambiguity – dual frequency (widelane case)  

Fig. (7.4) shows the result of the three tests for the case when dual frequency 

observations are available and used. In this case, the data from L1 and L2 observations 

are used to form the widelane combination. The longer wavelength of the widelane 

observation makes the whitening process highly efficient. It is also seen that the number 

of available satellites (number of degrees of freedom or redundancy) plays an important 

role in the time required to resolve the ambiguity. When 8 satellites were available 

(VA281 and 19-Jun), the resolution time was very short, while when only 6 satellites 

were available (EW11), longer resolution time was required for the OTFWhite method. 

This shows the importance of having good satellite coverage for the OTFWhite technique 

to be ultimately successful. There was not as much gain in the resolution time for the 

search method by using the widelane observable; the most likely reason for that is the 

long validation time required by the search method.   
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  Fig. (7.3) : Time to Fix Integer Ambiguity in seconds (L1 case) 
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Fig. (7.4) : Time to Fix Integer Ambiguity in seconds (Widelane case) 
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7.2.3 Time to fix ambiguity (WL/L1 case) 

The widelane observable is much noisier than the L1 one. In this respect, 

positioning accuracy resulting from using the widelane observable is expected to be 

inferior to that obtained by the L1 observable. It is preferable to resolve the L1 ambiguity 

after the widelane ambiguity has been resolved. Also, in cases of good satellite coverage, 

the rewinding of the data and solving for the L1 ambiguity, after the widelane ambiguity 

is resolved, makes the resolution of the L1 ambiguity much faster than the original one, 

see Table  (7.1) column VA281. The rewinding of data seems not to work correctly with 

the search method resulting in longer fixing time for L1 or no fix at all. 

7.2.4 Instantaneous resolution/recovery of ambiguity 

In order to check the ability of the whitening technique to recover the integer 

ambiguity after loss of lock, a number of artificial gaps were introduced in the data of the 

VA281 test by using a specially developed software. This data is then processed and the 

recovered ambiguity set is compared to the original one. It was found that in all cases, the 

instantaneously (using only one epoch) recovered ambiguity sets are exactly the same as 

the original ones with a 100 percent success rate. At the vehicle stops, the position of the 

vehicle was known from processing static data. It was found, that the estimated position 

of the vehicle at stops after recovering the ambiguity is the same as the original ones. 

This provides a strong indication that the whitening technique is capable of 

instantaneously recovering the ambiguity after loss of lock.  

It is worth mentioning here that the instantaneous recovery of the ambiguity works 

fine after the first static ambiguity is resolved. It is also worth mentioning, that enough 

static time at the beginning is needed to make sure that the first resolved ambiguity set is 

the correct one; the processing of data usually goes smoothly when the first ambiguity set 

is correct. Fig. (7.5) shows the residual position errors due to loss of phase lock after 
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fixing the ambiguities. The position residual errors are below one half of the L1 

wavelength (10 cm) indicating that the ambiguities were resolved to their correct values 

after loss of lock.  

7.2.5 Position accuracy implications 

Table (7.2) shows, for all three tests, the difference in position as compared to the 

reference values at the end of the static periods. In all cases, the L1 results do not differ 

from the reference values. The widelane-derived position, on the other hand, results in an 

error of about 35-50 mm. This is due to the higher noise level of the widelane observation 

when compared to the L1 one. Resolving the L1 ambiguity after the widelane ambiguity 

has been resolved, however, gives almost the same position result as the original L1 

result. However, the requirement for long validation time of the used search method 

seems to make it difficult for the method to estimate a better position after the data has 

been rewound for the WL/L1 case. 
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Table (7.1) : Time to Fix Integer Ambiguity in seconds (WL/L1 Case) 
Test  

Method  
VA281 June19 EW11 

Search 522/float 821/NA 422/1216 

White 21/12 11/11 165/165 
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Fig. (7.5): Trajectory Position Residual Errors due to Loss of Phase Lock (VA281 Test) 
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Table (7.2) : Position Difference after Ambiguity Fix (All Cases) [mm] 
Test 

Method  
VA281 June19 EW11 

Search WL 40 33 52 

 L1 0 3 4 

 WL/L1 263 N/A 71 

White WL 20 34 39 

 L1 0 4 2 

 WL/L1 3 2 5 
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7.2.6 Baseline length and whitening 

The purpose of this test is to investigate the performance of the OTFWhite method 

with different baseline lengths. One of the profiles of the flight test described in §8.1.4 

was used for this purpose. The profile was sliced into chunks of 30 min. data segments, 

each starting in kinematic mode at different baseline length. Baselines of 10, 30, 40, 70, 

95, and 130 km were processed independently under different combinations of the 

validation time and Fisher discrimination ratio resulting in a total of 444 runs, see 

[Amlacher 1998] for details. In this test, four different ground master stations were 

available. The reference to the various runs was obtained by carrying out a network 

adjustment between the ground master stations. The result of the network adjustment is 

the calculation of the measurement corrections at these master stations. The reference 

trajectory is then obtained by applying corrections to the raw measurements at the mobile 

station (the aircraft) through weighting the corrections from the different master stations 

by a location covariance function via a statistical method called NetAdjust [Raquet 

1998]. The corrected raw data was run once with an independent software and the results 

of this processing was considered as a reference. Both the ambiguity values and the 

trajectory position were used to judge the correctness of the obtained solution from the 

KINWHITE 444 processing. 

There were differences between the different solutions and the reference trajectory 

resulting in different rms for the horizontal and vertical trajectory position. During the 

period when the ambiguities are not fixed, the position rms values were higher compared 

to the period after fixing. The OTFWhite method was able to correctly resolve the integer 

ambiguity at all time in kinematic mode for baselines up to 40 km. Baseline solutions 

above 40 km were not as reliable as that below the 40 km baseline. Different 

combinations between the different statistical parameters were investigated. Table (7.3) 

shows a lookup table for runs with successful resolution of the ambiguity. 
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In order to investigate the sensitivity of OTFWhite to the number of available 

satellites, four data subsets with gaps every five minutes were processed. The distance 

between the master and remote stations was between 30 - 40 km. First, the data were 

processed using all 8 visible satellites. Then the number of satellites was reduced one at a 

time and reprocessed. The ambiguities were resolved to their correct values for the cases 

where  the number of satellites were 6 or more. For the cases below 6 satellites, the 

ambiguities were incorrectly resolved, see [Amlacher 1998] for details. 
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Table (7.3) : Lookup Table for OTFWhite 

Distance [km] t0 [sec] t [sec] F 

0 - 30 20 10 1.2 

30 – 70 20 10 1.5 

70 + 50 20 1.75 

 

where, 

t0 : time required for the first ambiguity validation 

t : time required for successive ambiguity validation 

F : Fisher ratio; discrimination test 



 

 

8. 
  TESTS, RESULTS AND ANALYSIS :  

ADAPTIVE KALMAN FILTER 

In this chapter, results from four real-data kinematic tests are presented and 

analyzed where the performance of the adaptive Kalman filter (AKF) is compared to that 

of the conventional Kalman filter (CKF). The objectives of the tests are to show the 

applicability of the developed AKF with real data, test it in a well-controlled operational 

mode, and analyze its performance with the two most demanding kinematic applications, 

image direct georeferencing and airborne gravimetry. 

8.1 Tests Description 

The tests described in this chapter have been designed to analyze the performance 

of both the conventional Kalman filter (CKF) and the adaptive Kalman filter (AKF) for 

the integrated INS/GPS system from different perspectives. The first is a test in a 

controlled environment where reference position and velocity can be obtained with high 

accuracy and the attitude information can be kept almost constant. It is the most benign 

test environment, almost free of vibrations and sudden dynamical changes. The second 

test is part of a flight test, similar to the one simulated and analyzed in Chapter 5. It is 

used to compare the simulation environment to actual flight scenario, and thus validate 

the assumptions made in the simulation. The third and fourth are airborne tests, one with 

a precise attitude reference, the other with an accurate gravity reference. Both of them 

belong to the most demanding applications of the integrated INS/GPS, direct image 

georeferencing and airborne gravimetry and are bound to show clearly the differences 

between the adaptive and the conventional filters. 

8.1.1 Anorad test in a controlled environment 

The purpose of the test in this section is to investigate the performance of the 

developed adaptive Kalman filter in operational mode with superior reference values for 
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position and velocity, but a limited dynamical range. Performance in position, velocity, 

and attitude will be compared for the two filters. For that purpose, a test along a well-

controlled trajectory was carried out where the INS/DGPS was mounted on top of a 

kinematic measurement base, called Anorad AG12-84, see Appendix D for its technical 

specifications and Fig. (8.1) for the test setup. While maintaining constant attitude by 

moving on a level base in constant direction, position and velocity of the platform change 

according to the computer controlled motion along the 2m track. In this case, the 

kinematic trajectory is generated by mounting the INS/GPS system on top of the platform 

which goes back and forth along its track according to a preloaded program to the servo 

control unit.  

The calibration of the Anorad system which is done by comparing the actual 

trajectory implemented by the system to the nominal trajectory, has shown that a 

positional accuracy of the platform of better than 0.1 mm rms can be achieved. Results 

can, therefore, be compared to a tenth of a millimeter; this accuracy is more than an order 

of magnitude better than that expected from the integrated INS/GPS. According to the 

manufacturer's specifications, the flatness and stability of the base is about 10 µm along 

the 2 meter track which results in an attitude angle stability of better than 0.1 arcsecond; 

this stability is sufficient for the test. 

The trajectory, generated and used in this study, consists of three static and 

kinematic periods as depicted in Fig. (8.2). Only one of the kinematic periods of 

sufficient length has been analyzed in the following. The three static data sets were 

collected at the center and at both ends of the track for the purpose of resolving the GPS 

phase ambiguity and orienting the Anorad data, first to the WGS-84 reference system, 

and then to a local TM coordinate system. 
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Fig. (8.1) : INS/GPS on Anorad Platform (Anorad Test Setup) 
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Fig. (8.2): Anorad Test Trajectory 
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In the test, one complete cycle from a specific point on the track and back takes 35 

seconds. A complete cycle along with dynamics of the test are shown in Fig. (8.3). A 

complete cycle consists of a sinusoidal wave of 1000 incremental distances. To generate 

this trajectory, the platform is accelerated and decelerated in a sinusoidal fashion 

according to the profile shown in the third subplot of Fig. (8.3) with values ranging from 

zero to a maximum of 0.03 m/s2. The resulting velocity profile is a co-sinusoidal wave 

and is shown in the second subplot of Fig. (8.3); its value ranges from zero to a maximum 

of 0.2 m/s. The first subplot shows the resulting position profile with respect to time. 

Results from the main kinematic portion of the test will be presented. 

8.1.2 Flight test 

The purpose of the test in this section is to analyze the performance of both the 

CKF and the AKF on real data, for a trajectory similar to the one simulated in Chapter 

Five. (8.4) shows the trajectory of this test. The segments of this trajectory are similar to 

the trajectory simulated and described in §5.1. The aircraft starts taxing between A and 

A1, then takes off between A1 and B. A horizontal maneuver with a change in the roll 

takes place between B and C, then, between C and D a flight with almost constant height. 

Another horizontal maneuver takes place at point D. The dynamics of the trajectory is 

very similar to that described in Table (5.1). Also, the underlying statistical assumptions 

of the used models are the same as those used in the simulation and described in §5.1. 
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Fig. (8.3) :  Trajectory Dynamics over One Cycle (Anorad Test) 
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Fig. (8.4) : SEP96 Flight Test Trajectory 
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8.1.3 Flight test with precise attitude reference 

The test described in this section was carried out in Calgary in early July 1994. The 

purpose of the test was to assess the in-flight orientation (attitude) accuracy of a 

DGPS/INS. The system consisted of an Ashtech-Z12 GPS receiver at the master station 

and a Trimble 4000SSE GPS receiver along with a LTN90-100 strapdown INS in the 

aircraft. The average flight velocity was 360 km/h at an altitude of 1000 m. The attitude 

reference was provided by a precise photogrammetric camera (Zeiss LMK) and 17 

ground control points along with tens of ground tie points. The attitude accuracy of the 

photogrammetric reference at the camera perspective center resulting from the bundle 

adjustment is 3-6 arcsec [Skaloud et al. 1994] for azimuth, pitch and roll. Results from 

seven flight lines flown over a period of  about an hour and a half are presented. The test 

trajectory is shown in Fig. (8.5) below. 

8.1.4 Flight test with gravity reference 

The purpose of this test was to measure airborne gravity by differencing data from 

DGPS and a strapdown INS. The system was flown over the Rocky Mountain near 

Calgary on September 9-11, 1996, see [Glenie and Schwarz 1997] for details of the test. 

The area flown has dense ground gravity measurements that were upward continued to 

the flight height to obtain a reference [Argeseanu 1995]. The reference gravity 

measurements on the ground were regularly distributed with an average spacing of about 

8 km and 3 km in the south-east corner of the area flown. The accuracy of the upward 

continued reference is 1.5-2 mGal [ibid.]. 

To investigate the performance of the adaptive Kalman filter against the 

conventional Kalman filter, data from the second day of the flight test was used. Trimble 

4000SSI data at the master and aircraft were used along with the Honeywell LRF-III 

strapdown INS data. The average flight velocity was 360 km/h at an altitude of 4350 m. 
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Approximately 6 hours of data have been used in the following investigation. The 

trajectory is shown in Fig. (8.6) below. 

8.2 Test Results and Analysis 

8.2.1 Anorad test 

The results presented in this section are those resulting from comparing the 

INS/GPS KINADA software output with the Anorad logged data. The two data streams 

were first transformed to a common frame, a local TM coordinate system using the three 

static points common to the two coordinate systems. Position and velocity errors are 

computed as follows 

 GPS/INS
i

Anorad
ii XXe −=  (8.1) 

where, Xi : position or velocity parameter of element 'i'. 

The measure of accuracy used in this case is the root-mean square error and is 

calculated as follows 

 ∑=
=

n

1i

2
ii e

n
1rmse . (8.2) 

where, n : number of observations.
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Fig. (8.5) : Attitude Test Trajectory 
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Fig. (8.6) : Gravity Test Trajectory 
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The attitude accuracy obtained from GPS at both ends of the Anorad base was not 

good enough as a reference for the INS/GPS results; a static GPS position accuracy of 3 

mm over the 2 m base gives an attitude accuracy of 5 arcmin. Also, because attitude was 

assumed constant during the test, attitude results are calculated by removing the mean 

value as follows: 

 )X(meanXe GPS/INS
i

GPS/INS
ii −= , (8.3) 

and the rmse is calculated in the same way as in Eq. (8.2) above. 

Data from the Anorad base are logged at 10 Hz rate. The first task when analyzing 

the  INS/GPS data with the Anorad logged data was to synchronize the two data streams. 

First, it was important to check the finest synchronization resolution the Anorad base 

itself can provide. This was done by correlating the Anorad logged data with a nominal 

sinusoid trajectory. It was found that the base-generated sinusoid has a synchronization 

error of 70 milliseconds, see Fig. (8.7). This error results in a periodic residual 

synchronization error with a maximum value of 0.01 m in the position difference 

sequences. The synchronization error was removed from the results and what remains 

afterwards represents the actual errors plus a residual synchronization effect. 
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Fig. (8.7) : Synchronization Error between Base Logged Data and Nominal Trajectory 

(Anorad Test) 
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The residual synchronization error was treated as a random error with uniform 

distribution in the region of interest. If T is the synchronization resolution possible, the 

synchronization error, es, should be smaller than one half of T, i.e. |es| < T/2. The uniform 

probability density is then 1/T and the resulting rmse can be calculated as 

 
12
Tdeermse

2/T

2/T
s

2
sT

1
s =∫=

−
. (8.4) 

Hence, at a 10 Hz data rate, the expected synchronization rmse is 30 ms which 

corresponds to a position error of 0.005 m.  

Position and Velocity Error Results 

To ensure the validity of the GPS update measurements to the INS/GPS master 

Kalman filter, GPS only data was processed. The spectrum of the GPS-only position 

results, Fig. (8.8), show a systematic amplitude at the base periodic motion of 35 seconds. 

It also shows a systematic error of a smaller amplitude of 1 mm at 150 seconds which 

falls in the spectral range expected for the GPS signal multi-path, see the discussion in 

§3.1.1. 
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Fig. (8.8) : Amplitude Spectrum of Kinematic GPS Position Error Signal (Anorad Test) 
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Figs (8.9a) and (8.9b) show the position error of the INS/GPS output as compared 

to the Anorad output, after being synchronized, in the cases of conventional and adaptive 

Kalman filters, respectively. Although the error amplitude is not the same, there is a clear 

effect of the motion systematic period of 35 seconds in both cases. As discussed before, a 

residual synchronization error of 30 ms is expected at a 10 Hz data rate. However, there 

is a clear difference between the conventional and adaptive Kalman filter responses to 

this residual synchronization error. While the conventional filter tends to have a smooth 

estimate of the position state, the adaptive emphasizes high-frequency changes. The 

effect of tracing the high-frequency changes is very clear at both ends (turns) of the 

Anorad trajectory, where the error signal peaks. Position error rms values are 0.016 m 

and 0.005 m, for the conventional and adaptive cases, respectively, showing that the 

systematic error has a more pronounced effect in the CKF case.  

The spectra of the previous two cases show a spike at a frequency corresponding to 

the Anorad motion frequency of 35 seconds, see Figs. (8.10a) and (8.10b) below.  

In the low-frequency band, both figures show the effect of the GPS multi-path 

signal around 150 seconds (0.0067 Hz) and the motion effect at 35 second (0.0286 Hz). 

In the high-frequency band, the spectrum of the adaptive case, Fig. (8.10b), although 

almost at the same amplitude level, is flatter than that of the conventional filter. It shows 

that the adaptive filter response to the systematic effect is less apparent than that of the 

conventional filter. In the medium frequency band, between 0.05 to 0.15 Hz, there is a 

clear transition in the spectrum of the conventional filter that does not show up in the 

adaptive filter. A possible reason for such a phenomenon is the fact that the adaptive filter 

keeps changing its bandwidth. So, the adaptive filter makes faster transitions of its 

tracking bandwidth than the conventional filter. 
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Fig. (8.9a) : INS/GPS Position Error (Anorad Test)  - CKF 
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Fig. (8.9b) : INS/GPS Position Error (Anorad Test) – AKF 
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Fig. (8.10a) : INS/GPS Position Error Spectrum (Anorad Test) – CKF 
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Fig. (8.10b) : INS/GPS Position Error Spectrum (Anorad Test) – AKF 
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After modeling the motion systematic effect and removing the frequencies at and 

below it, the noise of the position error is shown in Figs. (8.11a) and (8.11b), for the 

conventional and adaptive cases, respectively. The noise standard deviation in both cases 

is the same, 0.002 m. This shows that although the low-frequency effects are emphasized 

in the conventional filter,  its noise level is close to the noise level of the adaptive filter. 

In other words, both filters performed the same in terms of noise in this test. The reason 

both noise levels are the same is that the position noise level in this case corresponds to 

the noise level expected from the position derived from DGPS phase measurements 

which is common to both AKF and CKF. 

Velocity error behavior is more or less the same like position error behavior except 

that the systematic motion effect is less pronounced in the velocity error spectrum. The 

obvious reason for that is the fact that velocity is a differential of position in which the 

low-frequency signal content is less emphasized and the high-frequency component is 

pronounced. The conclusions drawn from the position error analysis apply to the velocity 

error, too. In this test, the INS/GPS average velocity error standard deviation was 0.005 

m/s in both AKF and CKF cases. 

Leveling and Azimuth Error Results 

Figs. (8.12a) and (8.12b) below illustrate the roll error in the conventional and 

adaptive Kalman filters, respectively; plots for the pitch error are very similar and will 

not be discussed separately. Due to the nature of the Anorad motion, the roll state in the 

Kalman filter was modulated by the motion sinusoid resulting in an equivalent to the 

motion-shape error pattern. Even after subtracting the mean value of the roll state, the 

shape of the error pattern did not change. The resulting roll rmse is 8.3 arcmin for both 

cases, conventional and adaptive. It is clear that this error is mainly due to the periodic 

motion. 
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Fig. (8.11a) : INS/GPS Position Error Noise (Anorad Test) – CKF 
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Fig. (8.11b) : INS/GPS Position Error Noise (Anorad Test) – AKF 
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Fig. (8.12a) : INS/GPS Roll Error (Anorad Test) – CKF 
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Fig. (8.12b) : INS/GPS Roll Error (Anorad Test) – AKF 
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After modeling the systematic effect of the periodic motion and removing the 

frequencies at and below it, the roll noise was reduced to 10.2 arcsec, see Figs. (8.13a) 

and (8.13b).  The accuracy of estimating the leveling error was the same for both filters. 

The low rotational dynamics of this test is the main reason for this result. The roll 

estimate in this test has a noise level close to that expected from the attitude sensor (the 

gyro), see specifications in Appendix D.  

The azimuth misalignment state was not as easy to estimate as the leveling error 

states in this test. One reason for this is the fact that during the test the base goes back and 

forth under low dynamics and without maneuvers. Maneuvers and dynamics changes 

help decouple the filter states and consequently get better navigation state estimates. Fig. 

(8.14) shows the azimuth error in the conventional and adaptive cases. The reason both 

figures show erroneous starting azimuth is due the fact that the azimuth error is calculated 

by subtracting the azimuth values from their average value during the whole period. 

The conventional Kalman filter shows an almost linear drift of 60' over the 600 

seconds, while the adaptive Kalman filter shows a non-linear drift of 6' over the same 

period. It is worth mentioning that a typical drift of 6" over 600 seconds (0.01o/h) under 

normal operational procedures is expected from the LTN90-100 system. A possible 

reason for that is, that the special procedure of going back and forth under benign 

dynamics and, most importantly, without maneuvers made the decoupling of the gyro 

drift state and the azimuth state unsuccessful. In other words, what is seen as azimuth 

error is, in fact, the sum of the azimuth error and the gyro drift error, see the discussion in 

§5.2.2. A possible reason for the lower drift happening in the adaptive Kalman filter case 

is the fact that the filter changes its bandwidth to help decouple the azimuth and gyro drift 

states, and hence estimate the azimuth. Using polynomials to model the long-term drift of 

the azimuth error and take it out, the short-term noise in the error are 51.2" and 5.2", for 

the conventional and adaptive cases, respectively, which indicate a better azimuth 

estimate in AKF case.   
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Fig. (8.13a) : INS/GPS Roll Error Noise (Anorad Test) – CKF 
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Fig. (8.13b) : INS/GPS Roll Error Noise (Anorad Test) – AKF 
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Table (8.1) summarizes the results obtained from the Anorad test and the 

computations and analyses done. The GPS row represents processing GPS data only. The 

conventional Kalman filter case uses covariance matrices of constant measurement noise 

and system noise. For the adaptive Kalman filter, four different cases were taken into 

account. In the R-only case, adaptation of the measurement covariance matrix R is done 

based on the residual sequence; adaptation based on the innovation sequence led to 

singularity of the estimated R matrix which made the software to crash and is, therefore, 

not reported. The Q-only adaptation is done using the full formula, Eq. (4.34). The R&Q 

is a simultaneous adaptation of R and Q using adaptation of Q by the formula in Eq. 

(4.34), and adaptation of R using the residual sequence. The R&QQ is a simultaneous 

adaptation of R and Q using the simplified formula for Q, Eq. (4.35). 

In Table (8.1), the RMS is computed as described in Eq. (8.2) above, without 

removing the systematic effect, which represents the long-term development of the error. 

A1 and A2 are the amplitudes of the error signal before and after modeling and removing 

the motion systematic effect, respectively. The RMS2 is computed using Eq. (8.2) after 

removing the motion systematic effect. The mean and noise are computed for the error 

free from the motion systematic effect, which represent the short-term behavior of the 

error. Since the systematic effect is due to the reference data in this case, the last column, 

containing the noise values, should be compared. The good GPS position and velocity 

rms values, 7 mm and 1 cm/s, respectively, are due to the fact that the carrier phase 

ambiguity was resolved to its correct integer over a very short baseline, 200 m. Also, the 

low dynamics made a smooth tracking of the Anorad trajectory by GPS possible. 
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Fig. (8.14) : INS/GPS Azimuth Error (Anorad Test) - AKF vs. CKF 
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As indicated in Table (8.1), for position and velocity, both cases of R-only and Q-

only performed almost the same. This was to be expected because both position and 

velocity are directly observable components of the Kalman filter. A relative change in R 

or Q should result in the same change in the gain and consequently in the same effect of 

the position and velocity updates. The same also applies to the leveling states where the 

choice of R-adaptation or Q-adaptation seem not to be critical in this test for them. The 

azimuth, however, was critical in this test because of the absence of maneuvers. The Q-

only case outperformed the conventional and the R-only cases because of the sensitivity 

of the azimuth state to the dynamics changes and consequently to the Q matrix. Judging 

by the results of the position, velocity, and attitude errors, the R&Q simultaneous 

adaptation always performs worse. This result is not surprising and, indeed, was 

expected. Recall from the discussion in §4.4.5 and §5.2.8, the R&Q simultaneous 

adaptation leads to a destabilized filtering procedure. The results from the simplified Q 

formula in the R&QQ case and those from the R-only case are very close which indicate 

that the Q simplified model in this test results in an almost constant or very slowly 

changing Q-matrix. 
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Table (8.1) : Summary Results (Anorad Test) 

Kinematic Accuracy RMS A1 A2 RMS2 Mean Noise 
GPS 0.0070 0.0060 0.0024 0.0047 0.0000 0.0040 
Conventional 0.0160 0.0213 0.0045 0.0050 0.0000 0.0022 
Adaptive (R-Only) 0.0064 0.0075 0.0050 0.0048 0.0000 0.0024 
Adaptive (Q-Only) 0.0052 0.0058 0.0047 0.0046 0.0000 0.0022 
Adaptive (R&Q) 0.0157 0.0029 0.0032 0.0154 0.0000 0.0140 

Position  
[m] 

Adaptive (R&QQ) 0.0064 0.0075 0.0050 0.0048 0.0000 0.0024 
GPS 0.0098 0.0041 0.0024 0.0095 0.0000 0.0089 
Conventional 0.0060 0.0080 0.0014 0.0019 0.0000 0.0009 
Adaptive (R-Only) 0.0026 0.0029 0.0006 0.0015 0.0000 0.0013 
Adaptive (Q-Only) 0.0035 0.0016 0.0015 0.0033 0.0000 0.0021 
Adaptive (R&Q) 0.0072 0.0014 0.0017 0.0072 0.0000 0.0067 

Velocity  
[m/s] 

Adaptive (R&QQ) 0.0026 0.0029 0.0006 0.0015 0.0001 0.0013 
Conventional 6.3447 8.8626 0.7553 0.6861 0.0000 10.1 
Adaptive (R-Only) 6.2690 8.7562 0.7488 0.7363 0.0000 10.1 
Adaptive (Q-Only) 6.3626 8.8872 0.7463 0.7364 0.0000 10.2 
Adaptive (R&Q) 6.3314 8.8383 0.7378 0.7916 0.0000 14.8 

Roll/Pitch  
[arcmin] 
 
    Noise in 
[arcsec] 

Adaptive (R&QQ) 6.2712 8.7592 0.7491 0.7377 0.0000 10.1 
Conventional 18.5074 27.2717 N/A N/A 0.0000 51.1  
Adaptive (R-Only) 13.0606 19.4280 N/A N/A 0.0000 49.2 
Adaptive (Q-Only) 4.1386 6.0192 N/A N/A 0.0000 5.2 
Adaptive (R&Q) 31.6692 18.3934 N/A N/A 0.0000 114.0 

Azimuth  
[arcmin] 
     
    Noise in 
 [arcsec] 

Adaptive (R&QQ) 4.8245 6.4788 N/A N/A 0.0000 18.8 

Noise: after HPF;  A1:from amplitude spectrum;  A2&RMS2:after modeling motion systematic error @ 35s 
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8.2.2 Flight test 

The focus of this section will be to show the difference between the CKF and the 

AKF filters in estimating the azimuth misalignment and the Z gyro drift states. The 

difference between the azimuth estimate of each of the two filters characterizes the 

behavior of each of them with respect to the dynamics changes. As was discussed in 

Chapter 5, dynamics affects the estimates of each of the CKF and the AKF differently. 

While the CKF maintains a relatively smooth estimate of the azimuth misalignment state 

after maneuvers, the AKF changes its bandwidth with dynamics changes resulting in a 

relatively noisy estimate of the same state, see Figs. (5.3a) and (5.3b). The same is also 

clear from Fig. (8.15) where the difference of the estimates of the two filters is illustrated. 

At the time of take-off, a large difference between the estimates of the two filters is most 

likely due to the change of the AKF estimate due to the change in its bandwidth. At 

maneuvers, because the AKF traces changes faster than the CKF, there is a clear drift in 

the difference between the estimates of the two filters. This drift is most likely due to the 

drift in the CKF estimate. The bias between the two estimates on straight lines is almost 

constant with little variation (noise); the noise can be contributed to the AKF estimate 

noise. The bias, however, can be explained in light of the estimate of the Z gyro drift 

illustrated in Fig. (8.16). It is clear from the figure that the AKF maintains a fixed 

estimate of the Z gyro drift, while the CKF estimate does change after each turn. The 

difference between the estimates of the Z gyro drift states in the two filters is responsible 

for the bias of the estimate of the two states.     

Fig. (8.17) shows the gain for both cases the AKF and the CKF, for real data. It is 

clear that dynamics have very little effect on the gain of the CKF, see the dotted line. The 

effect of dynamics is more pronounced in the case of the AKF, the solid line in the figure. 

The change in the gain can be interpreted as a change in the filter bandwidth as discussed 

in §3.2.6. It can be seen that the changes in the dynamics, that is reflected in the changes 

in the filter gain, is also reflected in the changes in the estimates of the two filters; 

compare the pattern of changes in Figs. (8.15) and (8.17). 
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Fig. (8.15) : Azimuth State Estimate Difference (SEP96 Flight Test) - (AKF-CKF) 
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Fig. (8.16) : Z Gyro Drift Estimate (SEP96 Flight Test) - CKF vs. AKF 
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The results of this section almost match the results in the simulation test. They are 

the outcome of processing real data indicating that the analysis carried out in the 

simulation study is valid. 

8.2.3 Attitude reference test 

The results presented in this section focus on the precise short-term attitude 

determination capability of the integrated INS/GPS system comparing again the adaptive 

Kalman filter to the conventional Kalman filter. The accuracy of the attitude parameters 

is calculated by comparing the INS/GPS attitude parameters to those obtained by an 

aerial triangulation bundle adjustment. The bundle adjustment procedure uses GPS 

camera coordinates in conjunction with ground control points, see [Skaloud et al. 1994] 

for details. The result of the photogrammetric bundle adjustment is the position of the 

camera perspective center and the orientation of its axes in a local-level frame, l
cR . Both 

of the INS/GPS and the camera are fixed to the body of the aircraft and their relative 

position and orientation are assumed unchanging during flight. The transformation 

between the camera coordinate frame and the INS body frame, c
bR , is usually obtained 

by field calibration of the system [ibid.]. However, in this test, the first image was used as 

reference to the rest of the images, i.e. the body-to-camera transformation matrix was 

calibrated by using the first image. The relative change (error) between the INS-derived 

attitude information, l
bR , and that of the photogrammetrically derived one is calculated 

as follows 
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Fig. (8.17) : Kalman Gain of Azimuth Misalignment from Velocity Update (SEP96 Flight 
Test) - CKF vs. AKF 
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Because ∆R has only small angles, it can be approximated as follows 
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where, εr, εp, εu : errors in roll, pitch, and yaw, respectively.  

Errors of the camera perspective center position between the INS/GPS derived 

values and those obtained from the bundle adjustment are simply the algebraic difference 

between the two after removing the linear offset between the GPS antenna and the IMU 

center. The results presented here are obtained from a specially designed software. 

Position and orientation were obtained from the INS/GPS output at 64 Hz and matched 

with results from the bundle adjustment along the flight lines. Fig. (8.18) shows the errors 

while Table (8.2) shows the statistics of the results of processing seven flight lines. 

The rms of the roll, pitch, and yaw errors are 0.05, 0.05, 0.006 deg, for the 

conventional filter and 0.05, 0.002, 0.004 deg for the adaptive filter, respectively. It 

should be noted that these statistics do not include the initial misalignment. Hence, they 

represent the evolution of the errors with time after alignment. For a navigation-grade 

INS, such as LTN90-100, the expected short-term attitude accuracy should be in the gyro 

output resolution range of few arcseconds, e.g. 0.001 deg (4").  

The pitch and azimuth errors, in the adaptive Kalman filter output, is very close to 

what is expected from this INS. The roll, however, is much poorer and the reason is that 

due to operational constraints, the INS and the camera were not mounted on the same 

platform. The mounting of the camera, however, allowed, accidentally, for some 

movements causing roll errors. There is an improvement of about 35% in the estimate of 

the azimuth component and a 20 times improvement in the pitch estimate in case of 

adaptive Kalman filter. The estimation of the pitch in the conventional Kalman filter is a 

problem for this test. Investigations in [Skaloud 1999] showed that the horizontal gyros 
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had higher noise level than the vertical gyro, for this specific test. Nevertheless, The 

differences between the output of the two filters are due to the different behavior of each 

of the two filters, as discussed in Chapter Five.  

The comparison in Table (8.2) indicates that the results from the R-only, Q-only 

and R/Q are very close to one another, except for the case in which the height component 

diverged in the R/Q adaptation. Comparable results show that relative weighting between 

the R and the Q covariance matrices is the key to the adaptation. The divergence of the 

height in the R&Q adaptation shows potential negative effects of using the R&Q 

adaptation. This result supports the discussion in §4.4.5 and §5.2.8. The height results of 

the R&Q case of this test may be an extreme situation but shows very clearly the negative 

effect of using the simultaneous R&Q adaptation. In general, results of this test show, 

clearly, the applicability of the AKF in the application of image direct georeferencing. 

They also indicated potential improvement of the attitude estimates when applying AKF 

over the currently used CKF. The large bias in the position results is attributed to the bad 

geometry and satellite coverage from GPS which result in an incorrect resolved 

ambiguity set. 
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Fig.(8.18a):Attitude Errors at Perspective Center for all Flight Lines (Attitude Test)-CKF 
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Attitude Errors - AKF 
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Fig. (8.18b):Attitude Errors at Perspective Center for all Flight Lines (Attitude Test)-AKF 
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Table (8.2):Errors at Perspective Center for all Flight Lines (Attitude Test)-CKF vs. AKF 
Case δE - m δN - m δh - m δs - m εp - deg εr - deg εu - deg 

STDEV      1.2265   0.2757  1.0313 0.6959   0.0342   0.0331  0.0062   
MEAN     0.4640  1.0520   1.0408   2.0590   0.0491   -0.0254   0.0004   
RMS  1.3125  1.0944  1.4702   2.1865   0.0601  0.0418  0.0062   

Conventional 

MAX -3.4801 -1.0520 3.2962 2.2968 -0.0949 -0.1526 0.0158 
STDEV      0.0180  0.0101  0.1451   0.1298   0.0006   0.0332   0.0041 
MEAN     0.2943  -0.4899  1.1579   1.2930   0.0010   0.0414   -0.0018   
RMS  0.2948  0.4900   1.1670   1.2995   0.0012   0.0531   0.0045   

Adaptive  
R-only 

MAX 0.3355  0.5118   1.4680   1.5755   0.0025   0.0994   0.0122   
STDEV      0.0180  0.0101  0.0869   0.0741   0.0006   0.0332   0.0041  
MEAN     0.2943  -0.4898  0.9867   1.1413   0.0010   0.0414   -0.0018   
RMS  0.2948  0.4899   0.9906   1.1438   0.0011   0.0531   0.0045   

Adaptive  
Q-only 

MAX 0.3355  0.5118   1.1270   1.2639   0.0024   0.0994   0.0122   
STDEV      0.0553  0.0791  3651.98 3651.73 0.0296   0.0338   0.0041  
MEAN     0.2379  -0.3966  2930.08 2930.39 0.1155   0.0393   -0.0097   
RMS  0.2443  0.4044   4682.13 4682.13 0.1192   0.0518   0.0105   

Adaptive  
R/Q 

MAX 0.3321  0.5292   -11037   11037.8  0.2243   0.0975   0.0193   
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8.2.4 Gravity reference test 

In this case, gravity disturbance in the vertical direction, δg, is calculated from two 

streams of acceleration information one coming from the INS, the other from GPS 

[Schwarz and Wei 1994, Schwarz and Li 1996], as follows 

 ucuu Eafg γ−+−=δ  (8.7) 

where,  

fu : upward component of the specific force obtained from INS, 

au : upward component of the vehicle acceleration obtained from GPS by differentiating 

vehicle upward velocity once or by differentiating vehicle upward position twice, 

γu : upward component of the normal gravity vector at aircraft height, 

Ec : Eötvös correction due to Coriolis acceleration and centrifugal accelerations in the 

horizontal directions, which is computed as follows 

  
hR

v
hR

v
cosv2E

2

2
N

1

2
E

eEc +
+

+
+ϕω=  (8.8) 

where, 

ωe : Earth's rotation rate (15o/h), 

vE, vN : east and west components of the vehicle velocity obtained from GPS,  

φ, h : vehicle latitude and ellipsoidal height obtained from GPS, 

R1, R2 : prime-vertical and meridian radii of curvature (WGS84 ellipsoid). 

The processing of the INS and GPS data is done in three main steps. Firstly, both 

the INS and the GPS data streams are blended in a Kalman filter to allow for the 

estimation of the navigation parameters as well as the gyro and accelerometer biases. 

This step is accomplished through the software package KINADA for the conventional 
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and adaptive Kalman filters. Secondly, vehicle kinematic acceleration is determined by 

differentiating the GPS position twice or differentiating the GPS velocity once. Finally, 

INS specific force and GPS acceleration are differenced according to Eq. (8.7) above to 

determine the gravity disturbance in the vertical direction, using specially designed 

software developed at the University of Calgary. To reduce the effect of measurement 

noise, and that resulting from the differentiation step, the resultant gravity anomaly is 

low-pass filtered. Four specific cut-off frequencies, corresponding to the frequency band 

of interest, are considered which result in filters of 30, 60, 90, and 120 seconds cut-off 

frequencies. Results from the four filters in the straight part (14 straight lines) as well as 

results at turns (10 turns), are computed using specially designed software and will be 

shown. The reason why results from straight lines are separated from the results at turns 

is that during turns results are consistently poorer than those along straight lines. Also, 

the adaptive Kalman filter is expected to perform better than the conventional Kalman 

filter at turns due to its property of tracking fast changes (high-frequency components) at 

the turns. Results from the INS/GPS processing is then compared to the upward-

continued gravity disturbance which was available as a reference.  

Figs. (8.19a) and (8.19b) show the difference between the upward-continued 

gravity disturbance derived from the ground reference data and that derived from the 

airborne gravity system for 14 straight lines and 10 turns, respectively. The relatively 

worse results of the 30 sec filter can be explained by the error induced by the phugoid 

motion at 45 sec (fc = 0.022 Hz). Phugoid motion is the natural oscillation of the aircraft 

at a certain frequency. This oscillation, when coupled with the INS misalignment errors 

εl, induces an error, Flεl, of period [Boedecker and Neumayer 1995] 

 Tph = √2 πv/g (8.9) 

where, v : vehicle horizontal velocity. 

According to Eq. (8.9), with an average gravity acceleration of g = 9.81 m/s2, and 

an average horizontal velocity of 100 m/s for this test, the period of the phugoid motion is 
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about 45 seconds. The maximum error induced by the phugoid motion is 2Flεl, which 

corresponds to 1 mGal per arcsec of misalignment error for each 0.1g aircraft horizontal 

acceleration. For a navigation-grade INS, at a leveling error of 10" under 0.1g 

acceleration, the induced acceleration error due to the phugoid motion is up to 10 mGal. 

So, a cut-off frequency of 30 seconds cannot eliminate the effect of this error as it is clear 

in Fig. (8.19a). The figure shows that filters with cut-off frequencies below the phugoid 

frequency were well at or below the 5 mGal rms, while the 30 second filter (smaller than 

the 45 second phugoid period) was 25 mGal rms in average. Hence, for resolutions below 

3 km, special attention should be given to the estimation of the INS/GPS filter attitude 

components. 

Fig. (8.19a) also shows that the results from the 90s and the 120s filters, 

corresponding to 9 km and 12 km resolutions, are very close to one another. It indicates 

that no possible further improvement may be achieved by low-pass filtering above 120s 

cut-off. It also indicates the possibility of the existence of an optimal filtering cut-off 

frequency (or bandwidth) at which the INS/GPS gravity system can provide gravity 

information, which in our case would be in between 90 and 120 seconds. 

The results at turns, shown in Fig. (8.19b), are worse by a factor of 3-5 when 

compared to those along straight lines. One possible reason for the worse results at turns 

is the low sensitivity of the conventional Kalman filter to turns. When the filter starts 

operating, it is in static mode. It is tuned to steady state during the first few epochs of the 

first straight flight line. So, the filter is tuned to straight lines and locked onto the straight 

line gain. It then stops responding to further changes, as for instance those happening at 

turns. It is intuitive, that filter gains along straight lines are not optimal for turns and new 

filter gains should be estimated, see the discussion on the filter gain in §5.2.2. 

 

 

 

 



8. TESTS, RESULTS AND ANALYSIS : ADAPTIVE KALMAN FILTER                       225 
 

 

 

 

 

 

 

 

 

Gravity Disturbance Difference - Conventional Kalman Filter 
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Fig. (8.19a): Gravity Disturbance Difference RMS at Straight Lines (Gravity Test) - CKF 
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Although there is an improvement of about 5% when using the adaptive Kalman 

filter; the pattern of the rms errors is almost the same, see Fig. (8.20a). Two facts can be 

stated here. Firstly, the adaptive filter and the conventional filter performed well in 

straight lines because the filters had been fine tuned with straight line data. Secondly,  

most of the benefit gained with the adaptive filter, for the same cut-off frequency, in 

tracing high-frequency components of the gravity field was eliminated by the low-pass 

filtering used to reduce the measurement noise effect. 

There is a noticeable improvement in the AKF results vs. the CKF results at turns. 

It is about 16% for the 90 sec filter as shown in Fig. (8.20b). Adaptive Kalman filter 

results at turns are consistently better. The most likely reason for the better performance 

of the adaptive filter is its better tracking of the angular changes at turns. The combined 

results from straight lines and turns show an improvement of about 16% at the 90 sec 

filter, when the AKF was used. Figs. (8.21a) and (8.21b) show the difference between the 

two filters at one of the turns for the 90 sec cut-off frequency. For this specific case, the 

rms computed for the adaptive Kalman filter is smaller than that of the conventional 

Kalman filter by about 40%. There is a clear systematic effect on both cases which is 

more pronounced in the CKF case than the AKF case resulting in amplifying the rms 

value in the first case.  

Table (8.3) shows summary results from the conventional Kalman filter and the 

adaptive Kalman filter for the different cut-off frequencies and a linear bias removed. 

There is no clear difference between the performance of the two filters. The 90 second 

cut-off filter shows a comparable result to the 120 second filter. The two filters 

performed well along straight lines and degraded at turns. On average, the performance 

of the adaptive Kalman filter at turns is better than that of the conventional Kalman filter 

although even these results are not completely consistent.  
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Gravity Disturbance Difference - Conventional Kalman Filter
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Fig. (8.19b) : Gravity Disturbance Difference RMS at Turns (Gravity Test) - CKF 
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Gravity Disturbance Difference - Adaptive Kalman Filter
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Fig. (8.20a):Gravity Disturbance Difference RMS along Straight Lines (Gravity Test)-AKF 
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Gravity Disturbance Difference - adaptive Kalman Filter
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Fig. (8.20b) : Gravity Disturbance Difference RMS at Turns (Gravity Test) – AKF 
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Fig. (8.21a) : Gravity Disturbance Difference at a Turn (Gravity Test) - CKF (90s filter) 
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Fig. (8.21b) : Gravity Disturbance Difference at a Turn (Gravity Test) - AKF (90s filter) 
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Table (8.3) : Gravity Disturbance Difference (Gravity Test) - CKF vs. AKF 

Conventional Adaptive 
Straight 120s 90s 60s 30s 120s 90s 60s 30s 
1 4.1 5.1 8.9 35.8 4.2 5.0 9.0 36.2 
2 2.9 2.7 2.8 22.2 3.0 2.8 3.0 23.0 
3 4.3 3.8 4.5 25.9 4.5 4.3 7.0 30.6 
4 4.7 4.8 7.7 29.2 3.6 3.3 4.6 24.3 
5 3.8 3.8 6.1 22.2 3.7 3.4 5.8 21.1 
6 4.0 3.6 5.8 23.6 4.2 3.8 6.0 24.5 
7 3.9 3.8 5.3 30.1 3.9 3.9 5.8 32.2 
8 3.4 3.3 5.4 20.4 3.3 3.5 6.2 21.9 
9 2.5 2.8 5.5 25.4 2.6 2.8 5.6 25.8 
10 2.6 2.8 5.0 19.5 2.5 2.3 3.6 17.0 
11 5.0 4.9 7.8 29.7 5.0 3.7 5.4 23.3 
12 3.9 3.8 8.0 25.1 4.0 3.9 7.7 25.4 
13 2.4 4.4 8.1 25.0 2.5 4.9 8.2 25.3 
14 3.8 4.7 7.1 23.1 3.8 4.5 5.9 19.0 
Mean 3.8 4.0 6.5 25.9 3.7 3.8 6.2 25.5 
Turn         
1 5.0 14.3 33.5 75.9 5.2 14.9 34.6 78.3 
2 11.6 23.0 34.2 62.7 10.4 16.2 20.9 39.2 
3 6.1 14.6 30.7 69.5 6.6 15.2 30.0 68.3 
4 17.9 23.9 31.1 56.0 14.9 19.8 23.2 43.4 
5 8.1 18.7 35.4 86.3 7.3 17.9 37.7 88.9 
6 16.5 24.0 28.9 46.4 14.3 19.8 23.0 37.7 
7 7.5 17.1 33.0 93.0 7.9 15.7 32.7 92.5 
8 10.8 22.2 30.4 48.8 11.2 17.3 22.8 35.6 
9 10.8 15.9 26.2 76.9 9.7 15.4 27.0 78.3 
10 14.6 21.2 27.5 42.3 13.3 17.9 21.9 36.5 
Mean 11.7 19.8 31.2 67.8 10.6 17.1 28.0 63.9 
Straight and Turns 
Mean 8.1 13.2 20.8 48.0 7.4 11.4 18.7 45.6 

 



 

 

9. 
  SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This chapter contains a summary of the research work presented in this dissertation, 

the conclusions drawn from the theoretical developments and test results, and 

recommendations for future research and developments in this field.  

9.1 Summary 

The objective of this research was to optimize the estimation procedures for 

kinematic applications when using an integrated INS/GPS system. The optimization was 

done with respect to the integration algorithm and the GPS carrier phase ambiguity 

resolution algorithm.  

The conventional Kalman filter algorithm with which INS and GPS are integrated 

is replaced by an adaptive Kalman filter algorithm. The approach taken in this research is 

to adapt the a priori statistical information of the filter, namely, the measurement noise 

covariance matrix, R, and the system noise covariance matrix, Q. While these matrices 

are kept constant in the conventional Kalman filter (CKF) algorithm, they take different 

values in the adaptive Kalman filter (AKF) algorithm based on the filter innovation 

sequence. The innovation sequence, being a result of the interaction between the filter 

states and the measurement update, is an efficient representation of the changes 

happening to the carrier vehicle. The detailed derivation and development of an 

innovation-based adaptive Kalman filter using the maximum likelihood estimation 

criterion is described in this dissertation. Testing and analysis of the proposed adaptive 

Kalman filter showed its appropriateness for INS/GPS kinematic applications, especially 

the two most demanding ones, image direct georeferencing and airborne gravimetry. 

The optimization of the GPS carrier phase ambiguity resolution algorithm is done 

by using a space projection technique called the whitening filter. The whitening filter 

uses a matrix factorization to project the ambiguity estimation problem onto another 

space which is simpler to analyze. Whitening causes the double differenced ambiguities 
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to decorrelate and their estimate to become more precise. It also causes the mutual 

receiver-satellite positional vectors to change. These effects are important to efficiently 

resolve the ambiguity. The whitening technique used in this research proved efficient for 

short baselines up to 35-40 kilometers. It also proved efficient as an on the fly technique 

with instantaneous resolution of the ambiguity after loss of phase lock. The development 

of the integer whitening filter and its use in the GPS carrier phase ambiguity resolution 

problem is covered in this dissertation. 

9.2 Conclusions 

The following conclusions can be drawn with respect to the adaptive Kalman filter, 

developed in this research, and the new whitening algorithm for GPS phase ambiguity 

resolution. 

Adaptive Kalman Filter 

1. The replacement of the widely used conventional Kalman filter by the adaptive 

Kalman filter for INS/GPS kinematic applications should be considered for the 

following reasons:  

- the filter a priori statistical information is of secondary importance to the AKF 

algorithm as they are estimated within the estimation algorithm itself, while they 

are very important to the CKF 

- test results showed that filter bandwidth keeps changing as the trajectory 

dynamics change in the case of AKF, while it reaches a constant bandwidth, at 

steady state, in the case of CKF and stops responding to the outside world; this 

property of the AKF results in a better tractability of the filter state estimates, 

- test results showed that AKF outperformed CKF in various situations 

- numerical complexity added by the AKF to the CKF algorithm is marginal and is 

acceptable when the gain of the filter performance is considered; on average, an 
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extra 5% of the time required by the CKF is needed by the AKF for processing 

the same set of data. 

2. Systematic errors affect CKF and AKF differently; while they have a pronounced 

effect in the case of CKF, they seem not to be as critical with AKF. 

3. Estimation problems that may arise in the case of CKF due to wrong a priori 

statistical information and/or unsuccessful calibration of system errors, have less 

effect in the case of AKF as the filter allows for continuous changes in the estimation 

procedure. 

4. The separation of the coupled states in the case of CKF is done through dynamics 

change (e.g. maneuvers), while it is done through changes in the filter bandwidth in 

the AKF case. 

5. Adapting R-only or Q-only in the AKF case seems to result in the same filter 

performance in cases where benign dynamics or straight lines trajectories are 

encountered. 

6. Adapting Q-only works better than adapting R-only when relatively high dynamics or 

sudden geometry changes are encountered, because Q has a direct effect on the filter 

states through the correction vector. 

7. It is safe to always use Q-only adaptation. There is no advantage of using Q and R 

adaptation simultaneously. 

8. Results from simultaneous adaptation of R and Q are numerically unstable when 

using the full formula for Q, while is very close to results arising from adapting R-

only when using the simplified formula for Q. 

9. In a normal flight environment where attitude information is available, AKF 

outperformed CKF by 20%, especially in the azimuth misalignment state estimation, 

while maintaining a better filter state tracking. 

10. In airborne gravimetry, AKF can provide slightly better performance with rms 

improvements of 10%-15% in turns and less than 5% along straight profiles. 
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11. Float whitening, although theoretically very important, is not critical for kinematic 

applications with short baselines, as the innovation sequence is almost always white 

and does not need whitening. 

12. The choice of the averaging moving window is critical for the AKF; a window size 

smaller than the estimated variances (in R or Q) leads to divergent filter estimates. A 

window size considerably larger than the number of the estimated variances 

essentially converts the AKF into a CKF. For the system and measurement models 

used in this research and for the applications discussed, a window size of 20 epochs 

was found suitable as it provides reasonable results. 

 

OTF Integer Whitening Filter 

1. The problem of GPS carrier phase ambiguity resolution for short baselines can be 

solved without a search algorithm by using a space projection technique and rounding 

to the nearest floor or ceiling estimate. 

2. The OTF integer whitening filter is an efficient technique for solving the ambiguity 

resolution problem in a simple and economical way. 

3. Epoch-by-epoch resolution of ambiguity on the fly using the integer whitening filter 

is possible over short baselines, thus making it possible to use the integer whitening 

filter in real-time kinematic (RTK) applications. 

4. A reliable OTF resolution can be achieved with the integer whitening filter for 

baselines up to 40 km; for longer baselines this technique is not reliable, although 

baselines of up to 130 km have been correctly resolved. 

9.3 Recommendations 

The adaptive Kalman filter developed and presented in this dissertation should be 

considered as a first step in the direction of finding a place for adaptive Kalman filter 
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methods in geomatics applications. In particular, the following recommendations are 

made for further investigation of the AKF in integrated  INS/GPS systems:  

1. specializing and adopting the developed adaptive Kalman filter algorithm to specific 

kinematic applications, like land-based and airborne direct georeferencing, integrated 

multi-sensor systems, where conventional Kalman is the widely used integration 

scheme, and further analysis of the performance of the adaptive Kalman filter in an 

integration scenario, based on the different situations that might occur in the 

trajectory, 

2. investigating the use of the adaptive Kalman filter in solving specific problems, e.g. 

alignment procedure on the fly, 

3. investigating the performance of the AKF against the CKF in case of post-mission 

processing of data by using forward filtering and backward smoothing, 

4. designing optimal procedures for the choice of R-only, Q-only, for different 

applications and different integration scenarios. 

The simplification and ease of the integer whitening filter technique inspired a new 

way of looking at the ambiguity resolution problem for kinematic applications over short 

baselines. The work presented in this dissertation should inspire further developments in 

the same direction. In particular, the following investigations would help to clarify some 

remaining questions on the OTF integer whitening filter technique:  

1. automate the selection of the ambiguity best candidate through the statistical testing 

criteria using the obtained lookup tables, 

2. carry out investigations to find the relationship between the local minimum and the 

global minimum in the GPS ambiguity resolution problem and hence define the 

region for further improvements of the OTF whitening technique,   

3. address RTK specific problems, such as time latency, and find their effects on the 

performance of the OTF whitening technique. 
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APPENDIX A.  

SIMPLIFIED INERTIAL NAVIGATION ERROR MODEL 

In a local-level frame, physical in case of platform systems and mathematical in 

case of strapdown systems, the inertial navigation system has two stable horizontal 

channels and an unstable vertical channel. For a strapdown system, the state-space 

representation of motion of a vehicle in the gravitational field of the earth, expressed in a 

local-level frame*, is of the form [Britting 1971, Wong 1982, Schwarz and Wei, 1995, 

Salychev 1998] 
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where, 
superscripts b, l, e : represent body (measurement), local-level (navigation), and earth-

fixed frames 

p, v, l
bR   : vehicle position, velocity, and attitude  

fb, g  : specific force (measured) and gravity acceleration 

Ωb
ib, Ωl

ie, Ωb
il, Ωl

el : body (measured), Earth's rotation, local-level-to-inertial, and local-

level-to-earth frame rotation rates. 

To simplify the above system of equations, the following is assumed: 

1. the Coriolis and Earth's rotation effects, ll
el

l
ie v)2( Ω+Ω , are neglected 

2. the attitude matrix, Rl
b, will contain small rotations only 

3. the second-order terms will also be neglected 

4. the up specific force, fu, will be assumed constant and equal to the Earth's mean 

gravity g 

5. a spherical Earth's model with mean radius R is used. 

                                                 
* For simplicity, when the superscript is omitted, it is assumed to be 'l', the local-level frame. 
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The state-space representation of the velocity is then given by 
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which after neglecting the second-order terms and substituting g = fu, yields 
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where, 
E, N, u : East, North, up axes of the local-level frame, 

ΞN, ΞE, Ξu : attitude components in the local-level frame; roll and pitch for the two 

horizontal channels and azimuth for the vertical channel 

γ : normal gravity. 

And, the state-space representation of the attitude is 
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which after neglecting the second-order terms yields 
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, (A.3) 

where, 
θE, θN, θu, : measured body rates represented in the local-level frame 

r : tangential distance to the Earth's spin axis from vehicle  position; r = R cot(latitude). 
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A.1 Error Model of a Horizontal Channel 

Linearizing Eq.(A.2) and Eq. (A.3) for one of the horizontal channels, say the east 

channel, the state-space representation of the error model is  
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δ=δ

&

&

&

 (A.4) 

where, 

δpE, δvE, εΝ=δΞ : position, velocity, and attitude navigation errors 

bA=δf, bG=δθ : accelerometer bias and gyro drift bias. 

Fig. (A.1) illustrates the above system of differential equations in a block diagram, 

the so-called Schuler loop for a horizontal inertial navigation channel. 

 

In the above system of equations, differentiating the velocity error equation and 

substituting the attitude error into it, one gets the following non-homogeneous linear 

second-order differential equation 

 G
22 Rbvv ν=δν+δ &&   (A.5) 

where, h/250Hz
5000

1s/mrad24.1s/rad
806

1 o
R
g ≈≈≈≈=ν , corresponding to a time 

period of 84 minutes, is called Schuler frequency. The frequency-domain representation 

of Eq. (A.5)  

 0s 22 =ν+ ,  
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Fig. (A.1) : Schuler Loop of the East Channel  
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where s is the Laplace operator, is the equation for simple harmonic motion with natural 

frequency, ν, for a Schuler pendulum of length, R, the Earth's radius. The solution of the 

above differential equation yields [Purcell 1972], 

 )tcos(C)tsin(CRbv 21G ν+ν+=δ  (A.6) 

where, C1 and C2 are constants of integration.  

At time t = 0, the initial velocity error is δv = δv0. Substituting this expression into 

Eq. (A.6), one gets  C2 = δv0 – RbG and when substituted back into the same equation, it 

becomes   

 )tcos(Rb)tcos(v)tsin(CRbv G01G ν−νδ+ν+=δ . (A.7) 

Differentiate Eq. (A.7), to get 

 )tsin(Rb)tsin(v)tcos(Cv G01 νν+ννδ−νν=δ& . (A.8) 

From Eq. (A.8) and Eq. (A.4), it can be shown that 

 2
AG

R

bb
0R

1
1R

1 )tsin()tsin(v)tcos(C
νννν −ν+νδ−ν=ε . (A.9) 

Now, at t = 0, the initial leveling error (misleveling) is ε = ε0. Substituting this 

value into Eq. (A.9), one gets 0
b

1 RC A νε+= ν . Substituting the expression for C1 into 

Eq. (A.7), one gets the velocity error equation 

 RGb)tcos(RGb)tsin(R0)tsin(1
Ab)tcos(0vv +ν−ννε+ν

ν
+νδ=δ .  

  (A.10) 
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Substituting this (A.10) in the position error Eq. (A.4) and integrating, one gets 

 3
)tsin(

G0
)tcos(

A
v C)t(Rb)tcos(Rb)tsin(p 2

0 +−+νε−−ν=δ ν
ν

ν

ν
ν

δ . (A.11) 

At t = 0, the initial position error is δp = δp0. Substituting this value into Eq. 

(A.11), one gets R
b

pC 02
A

03 ε+
ν

+δ= . Re-substitute the expression for C3 into Eq. 

(A.11) to get the equation for the position error 
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GG00

2A2A00
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δ+δ=δ
. (A.12) 

Now, to get an expression for the attitude error (leveling error in a horizontal 

channel), substitute the expression for C1 into Eq. (A.9) and rearrange terms 

 
)tsin(1b
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δ−νε=ε
. (A.13) 

Using the previous equations, typical plots of the position, velocity and leveling 

long-term errors in a horizontal channel of a navigation-grade INS are given in Figs. 

(A.2) to (A.4) below. 
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Fig. (A.2) : INS Position Error (Horizontal Channel) 
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Fig. (A.3) : INS Velocity Error (Horizontal Channel) 
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Fig. (A.4) : INS Leveling Error (Horizontal Channel) 
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A.2 Error Model of the Vertical Channel 

Linearizing Eqs. (A.2) and (A.3) for the vertical (up) channel, the error model is  
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&

&

 (A.14) 

where, u denotes the vertical (up) channel. 

It is clear from Eq. (A.14) that the attitude error of the vertical channel does not 

affect the velocity and position errors of the same channel. It is also not affected by the 

errors in the same channels. Consequently, the velocity error can be determined directly 

by integrating the second equation. In this case, the up velocity error takes the form of a 

freely navigating object in 3D, i.e. 

 tbvv A0uu +δ=δ , (A.15) 

where, δvu0 is the initial velocity error at time t = 0. Substituting Eq. (A.15) into the 

position error in Eq. (A.14) and integrating, the up position error equation is  

 2
A2

1
0u0uu tbtvpp +δ+δ=δ . (A.16) 

The vertical attitude error is, however, a function of the horizontal velocity error. 

Substitute Eq. (A.10) into the attitude error (azimuth error in this case) of Eq. (A.14), the 

state-space representation of the azimuth error becomes 

 GuG0A0u b
r

))tcos(1(Rb
r

)tsin(R
r

)tsin(b
r

)tcos(v +ν−−ννε−
ν
ν−νδ−=ε& . 

  (A.17) 
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Integrating the above equation from t = 0, where εu = εu0 is the initial azimuth error 

(misalignment), to the current time t, the azimuth error is  
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. (A.18) 

Using these equations, typical plots of the position, velocity and azimuth errors in the 

vertical channel can be obtained, see Figs. (A.5) to (A.7), below. 

For the previous plots, the following specifications have been used to simulate a 

medium class navigation-grade INS performance [Savage 1978, Schwarz and Wei, 1994, 

Greenspan 1995, Merhav 1996]: 

- constant gyro drift of 0.01o/h; based on εu=bG/ωecos(φ), this bias 

introduces a 1.06 mrad (~3.6 arcmin) of initial azimuth misalignment 

- constant accelerometer bias of 10 mGal; based on εE=bA/g, this bias 

introduces a 10 µrad (~2")  of initial leveling error 

- initial leveling error of 10" 

- initial azimuth error of 5' 

- constant stationary vehicle latitude of 51o  

- zero initial position and velocity errors 

- R = 6371 km  

- ν = 1/806 rad/sec (~ 1/5000 Hz). 
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Fig. (A.5) : INS Position Error (Vertical Channel) 
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Fig. (A.6) : INS Velocity Error (Vertical Channel) 
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Fig. (A.7) : INS Azimuth Error (Vertical Channel) 
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The simplified error model discussed above, though provides an insight of the INS 

long-term error behavior, has limitations. The following are situations where the 

simplified inertial navigation error model is not recommended and one has to opt for a 

more complete model: 

- high dynamics where the Coriolis has a pronounced effect 

- fast trajectory changes, e.g. sharp turns; it invalidates the assumption 

of small rotations of the Rl
b matrix 

- rough topography, e.g. mountainous areas; the assumption of constant 

vertical acceleration that is equal to the Earth's mean gravity will be 

violated 

- tactical-grade inertial navigation systems where the sensor error 

characteristics are not as defined as in the case of the navigation-grade 

systems. 



 

 

APPENDIX B.  

 DISCRETE KALMAN FILTER ALGORITHM 

The purpose of this Appendix is to provide a hands-on reference to the formulae in 

the discrete Kalman filtering algorithm. The details of the derivation can be found in 

[Gelb 1974, Bierman 1977, Maybeck 1982, Brown and Hwang, 1992].  

B.1 Measurement and Process Models 

The Measurement Model is the connection between the measurements, z, and the 

filter states, x. It describes the geometric or physical relationship between the two 

through a design (geometric) matrix, H, as follows 

 zk = H xk + ezk, (B.1) 

where ezk = vk is the measurement white noise and its covariance matrix takes the form   

 Rk = Cek = E[vkvk
T]. (B.2) 

The Dynamics Model, on the other hand, describes the evolution of the process 

with time. It relates the filter states to their predecessors through the dynamics matrix, in 

continuous time, as follows 

 wFxx +=&  (B.3a) 

and in discrete time through the process transition matrix Φ as follows 

 xk+1 = Φ xk + exk, (B.3b) 

where exk = wk is the (system) process white noise with spectral density P, and its 

covariance matrix is  
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 ∫ ττΦτΦ===
T

0

TT
kkwkk d),T(P),T(]ww[ECQ . (B.4) 

where T is the sampling period. The transition matrix is computed from the process 

dynamics matrix 'F' as follows  

 Φ = eFT = I + F Τ, (B.5) 

where I is the identity matrix.  

Eq. (B.5) is an approximation which is acceptable as long as the sampling interval 

is chosen small enough so that the higher-order terms can be ignored; for other methods 

of determining Φ from F, see e.g. [Gelb 1974, Maybeck 1982, 1997, Schwarz 1987, 

Brown and Hwang, 1992]. Fig. (B.1) below illustrates the Kalman filter process and 

measurement models.  
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B.2 Kalman Filtering Algorithm 

For the filter to start off, there must be known a priori information or initial 

conditions, xo, with error covariance matrix  

 Po = Cxo = E[exoexo
T]. (B.6) 

The role of the Kalman filter is, then, to make use of two streams of information, namely, 

the measurements and the process propagated state information through the process 

model and come up with the best estimate of the state at the current time, i.e. 

 k2)(k1)(k zKx̂Kx̂ += −+  , (B.7) 

where (+) and (-) represent the state before and after applying the measurement update, 

and K1 and K2 are weighting (or gain) factors. Now, substitute the expressions for the 

state and measurement to get, 

 )eHx(Kex(Kex
kz2))(kx1)(kx +++=+ −+ , (B.8a) 

which after rearranging becomes, 

 kz2)(kx121)(kx eKeKx]IHKK[e ++−+= −+  (B.8b) 

where exk(+) and exk(-)  are the state errors after and before update, assumed white.  

For the above estimator to yield an unbiased estimate, i.e. 

 0e[E )](kx =+ , (B.9) 

the following condition must hold,   

HKIK 21 −=  
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since both the measurement noise and the process noise are assumed zero mean. 

Denoting K2 by Kk, the filter estimate is 

 kk)(kk)(k zKx̂)HKI(x̂ +−= −+  (B.10)  

and its error is 

 kzk)(kxk)(kx eKe)HKI(e +−= −+  (B.11) 

and the state error covariance is 

 )](T
xk)(xk)(k ee[EP +++ =   (B.12) 

Under the condition that the measurement and process errors are independent, i.e. 

0]ee[E]ee[E )(T
xkzk

T
zk)(xk == −− , the general form of the state error covariance matrix is 

 T
kkk

T
k)(kk)(k KRK)HKI(P)HKI(P +−−= −+ , (B.13) 

where Pk(-) is the state error covariance matrix before update and Kk is an arbitrary filter 

gain. 

Within the class of linear unbiased estimators, the best sought estimate is the one 

that minimizes the length of the estimation error vector in the L2-norm space. In other 

words, the best estimate, in this context, is the estimate with the minimum variance or 

mean-square estimation error, i.e.  

 0
K
P[tr

k

)](k =
∂

∂ +
, (B.14) 

where tr is the matrix trace operator. Using from differential calculus  
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 AB2
A

]ABA[tr T
=

∂
∂ , 

and carrying out the differentiation of Eq. (B.14), the filter optimal gain is  

 1
k

T
k)(kk

T
k)(kk ]RHPH[HPK −−− +=  (B.15) 

and the corresponding filter state error covariance matrix is 

 )(kkk)(k P)HKI(P −+ −= . (B.16) 

The Kalman filter algorithm can then be thought of as consisting of two main steps, 

namely, time update or prediction and measurement update or filtering. In the time 

update step, the filter state vector along with its error covariance matrix are projected one 

epoch in the future as follows  

 )(1k)(k x̂x̂ +−− Φ=  (B.17) 

 1k
T

1k)(k QPP −−− +ΦΦ= . (B.18) 

In the update step, however, the measurement information is blended with the 

prediction information to get an updated estimate of the state. The innovation vector and 

its covariance matrix are computed first as follows 

 )(kkk)(kk)(zkk x̂Hzzze −−− −=−==ν  (B.19) 

 T
k)(kkkk)(k HPHRCR −ν− +==  (B.20)  

and their counterparts after the measurement update are called the residual sequence and 

its respective covariance matrix which are computed as follows: 



B. DISCRETE KALMAN FILTER ALGORITHM                                 204 
 

 

 )(kkk)(kk)(zkk x̂Hzzzer +++ −=−==  (B.19a) 

 
T
k)(kkkrk)(k HPHRCR ++ −== . (B.20a)  

The gain matrix  

 1T
k)(kk k

CHPK −
ν−=  (B.21) 

and the state error and its covariance matrix 

 kk)(k)(k Kx̂x̂ ν= +−+  (B.22) 

 )(kkk)(k P)HKI(P −+ −=  (B.23)  

are then computed; this is known as the covariance Kalman filter formulation. 

Alternatively, the computation of the gain and the state error covariance matrix can be 

performed according to the information filter formulation as follows [Gelb 1974, 

Maybeck 1982]: 

 k
1

k
T
k)(1

k)(1
k HRHPP −−−+− +=  (B.24) 

and 

 1
k

T
k)(kk RHPK −+= . (B.25) 

It is useful to observe that the gain matrix Kk is the ratio between the covariance 

matrices of the state and the measurements projected onto the state space via the 

geometry matrix H. The gain can also be interpreted in another way. To see that, expand 

Eq. (B.19) and substitute z from Eq. (B.1) and x(-) = x + ex(-), to get 
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 )(kxkzk eHe
k

−−=ν . (B.26) 

Now, substitute this expression into the expression for computing the cross-covariance 

between the innovation and the states, to get 

 
T
k)(k

T
k)](T

x)(x]T
z)(x

]T
k)(xx

HP

Hee[Eee[E
e[ER

kkkk

kk

−

−−−−=

−ν

−=

ν=
,  (B.27) 

note that the measurement error and the state errors are assumed uncorrelated. Now 

substitute Eq. (B.27) into Eq. (B.21), the gain is

 )(1
kxk RRK

k
−−

ν−= . (B.28) 

Kk can be seen as a factor that cross-correlates the innovations to the states after 

weighting them with the inverse of their covariance. This last expression is useful in 

comparing the Kalman filter algorithm to algorithms like least-squares collocation and  

stochastic least-squares Wiener filtering. Fig. (B.2) below illustrates the conventional 

Kalman filter algorithm with its two main steps, namely, prediction and update, in a 

block diagram and algorithmic fashion. There also exists square-root formulations of the 

covariance and information Kalman filters, see e.g. [Bierman 1977, Maybeck 1982] for 

details. 

It is worth noting that in the Kalman filter algorithm, there are two models and 

three different error sources. The two models are the measurement model represented by 

Eq. (B.1) and the dynamics model represented by Eq. (B.3). The error sources are those 

associated with the model, the measurement and system parameters before update and the 

measurement and system parameters after update, respectively. This results in a total of 

six different error variables. The relations between these error variables play an important 

role in our development and are therefore given here: 
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where ezk and exk are the measurement noise and the process noise (in models), νk = ezk(-) 

and rk = ezk(+) are the measurement errors before and after update (estimated innovation 

and residual), and exk(-) and exk(+) are the process state errors before and after update. 

In an INS/GPS closed-loop error state Kalman filter formulation, the INS is 

corrected after each measurement update, and thus the predicted error states and 

measurement differences at the next update time vanish. In other words, )(kx̂ −   will 

always be zero, and thus the above formulation simplifies to the one in Fig. (B.3), 

Fig. (B.3) : Closed-loop Err
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notice that according to this formulation of the INS/GPS integration, the transition 

matrix, Φ, is not required for the propagation of the system states (first moment 

information), but rather needed for the propagation of the system covariance (second 

moment information). In other words, the deterministic model used to describe the INS 

error propagation is not used in this formulation to predict the error states 

deterministically but rather used to get an estimate of their values through the update step 

based on the covariance stochastic information through the filter gain. 



 

 

APPENDIX C.  

MATLAB® IMPLEMENTATION OF THE INTEGER WHITENING FILTER 

This Appendix contains a step-by-step Matlab script of the whitening filter as well 

as the udu and ldl factorization routines required to resolve the GPS phase ambiguity as 

implemented in the KINWHITE software.  

C.1 Integer Whitening Function 
function [T,Q] = white(A) 
 
n = size(A,1);  
Tp    = eye(n); 
Q = A; 
   
do  
U   = udu(Q); 
U1 = inv(round(U)); 
Qu = U1*Q*U1'; 
L   = ldl(Qu); 
L1 = inv(round(L)); 
 
% Whitened Matrix - Q     
Q = L1*Qu*L1'; 
 
% Whitening (Transformation) Matrix - T 
T= L1*U1*Tp; 
Tp = T;   
 
while (L1 ~= eye(n))  
 
return; 

C.2 Lower-Diagonal-Lower (LDL) Factorization Function 

 
function [L,D] = ldl(A) 
 
n = size(A,1); 
L = eye(n);  
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for j = 1:n-1 
d(j) = A(j,j);     
L(j+1:n,j) = A(j+1:n,j)/d(j); 
for k = j+1:n 
A(k:n,k) = A(k:n,k) - A(k,j)*L(k:n,j); 
end        
end 
 
d(n) = A(n,n); 
D = diag(d); 
 
return; 

C.3 Upper-Diagonal-Upper (UDU) Factorization Function 

 
function [U,D] = udu(A) 
 
n = size(A,1); 
U = eye(n);  
 
for j = n:-1:2 
d(j) = A(j,j);  
U(1:j-1,j)   = A(1:j-1,j) / d(j);   
for k = 1:j-1   
A(1:k,k) = A(1:k,k) - A(k,j) * U(1:k,j); 
end   
end 
 
d(1) = A(1,1);    
D = diag(d); 
 
return; 



 

 

APPENDIX D.  

 TEST EQUIPMENT TECHNICAL SPECIFICATIONS 

This Appendix contains technical specifications for some of the equipment used in 

the field tests. The purpose of this Appendix is to provide hands-on reference for these 

specifications. 

D.1 Ashtech-Z12 GPS Receiver 

Receiver   
geodetic-grade GPS receiver with 1 Hz output rate 

Channels 
12 
C/A code and P code signals 
full length carrier on L1 and L2 using Z-tracking  

Measurement Precision (> 25o) in cm 
  10 sec 5 min 
C/A-code   
 carrier phase  0.015 (25 Hz) 0.02 (1 Hz) 
 pseudo-range 20.00  3.60  
P-code A/S off  
 L1 carrier phase  0.10  0.02  
 L2 carrier phase  0.10 0.02  
 L1 pseudo-range  5.00 0.90  
 L2 pseudo-range  7.00  1.30  
P-code A/S on  (z-tracking) 
 L1 carrier phase  0.10 0.02  
 L2 carrier phase  0.10  0.02  
 L1 pseudo-range  20.00 5.00  
 L2 pseudo-range  20.00  5.00  
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D.2 Trimble-4000SSE GPS Receiver 

Receiver   
geodetic-grade GPS receiver with 1 Hz output rate 

Channels 
9 
C/A code and P code signals 
full length carrier on L1 and L2 using cross correlation  

Accuracy 
Horizontal : 5 mm + 1 ppm 
Vertical : 10 mm + 1 ppm 
Azimuth: 1 arcsec + 5/b; b: baseline length in km 

D.3 LTN90-100 Inertial Navigation System 

System   
navigation-grade INS with 64 Hz output rate 
1 nm/h position error in free inertial mode 
Gyro 
drift : 0.01 deg/h 
scale factor: 5 ppm 
misalignment : 2 arcsec 
random walk : 0.002 hdeg/ (1σ)  
Accelerometer 
bias : 50 mGal 
scale factor : 50 ppm 
misalignment : 5 arcsec 
random walk : 5 mGal (1σ)  
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D.4 LRF-III Inertial Navigation System 

System   
navigation-grade INS with 50 Hz output rate 
1 nm/h position error in free inertial mode 
Gyro 
drift : 0.003 deg/h 
scale factor : 1 ppm 
misalignment : 2 arcsec 
random walk : 0.001 hdeg/  (1σ)  
Accelerometer 
bias : 25 mGal 
scale factor : 50 ppm 
misalignment : 5 arcsec 
random walk : 5 mGal (1σ)  

D.5 Anorad AG12-84 Platform 

Controller Length : 2 meters 
Position resolution : 1 count (16000000 counts/m) 
Position Range : ± 999999999 counts 
Position accuracy : Within 1 count 
Velocity Range : ± 16000000 counts/sec 
Acceleration Range : 1000 to 127000000 counts/sec2 
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