a. (lyi

Quiz #3 / Time Allowed: 40 minutes Only a "cheat sheet" is allowed.

October 13, 2015

ΔΙ

Q. 1 (5 points)

Identify the types of motion prevalent in the following:

1 - Translation, 2 - Linear Deformation, 3 - Angular deformation, 4 - Rotation

Check <u>all</u> the appropriate boxes (There are <u>no part marks</u> for each one.)

	1	2	3	4
1. Blowing wind	/		1	V
2. Gas flow at high rates through a uniform-diameter, straight pipe	/	/	/	V
3. Water flowing at a slow rate in a straight uniform-diameter tube	~		~	
4. Water draining from a full kitchen sink suddenly unplugged	/			
5. Air flow during inhalation (as you breathe)	V		V	/
6. A drop of water falling through the air	V			
7. Waves crashing on the seashore	V		V	~
8. Mushroom cloud from detonating an explosion from blasting rock	~	~	1	1
9. Flow out of the exhaust pipe of a running vehicle	~	/	1	1
10. Water in a beaker placed at the centre of a slowly rotating turn-table	V.			

Q. 2 (5 pts)

A batch reactor is a cylindrical tank with a diameter of D m. It is filled to a volume \forall . The level of the liquid above the bottom of the tank is maintained constant. At time t=0, a solution containing substance A at a concentration C_{Ai} kg/m³ flows at a rate Q m³/s into the reactor from the top of the tank. There was no substance A initially in the tank that is always well stirred. Substance A reacts in the tank and it is removed at a rate proportional to its concentration C_A within the tank at any time (a first –order reaction). Per unit volume, the rate of disappearance of A is k_1C_A . A solution flows out of the tank at the same volume rate as the feed from time t=0.

Derive an expression for the mass of A in the tank as a function of time, t.

Show all important steps.

by put + Gen = Output + Accum.

Q
$$C_{Mi}$$
 - $k_{i}C_{A}V$ = Q C_{A} + $d(VC_{A})$; $V=const.$
 $d C_{A} = -(k_{i} + \frac{Q}{V})C_{A} + \frac{Q}{V}C_{A}$; $V=const.$

Group constants, i.e.

 $d C_{A} = -d C_{A} + \beta$ where $t=0$, $C_{A}=0$

Let $Y=\beta-dC_{A}$, $dY=-ddC_{A}$
 $-\frac{1}{V}dY=Y$ ov $Y=\beta$
 $\beta-dC_{A}$
 $\beta-dC_{A}$
 $\beta-dC_{A}$
 $\gamma=-d$

Integrate
$$t=0$$
, $C_A=0$ sv $Y=\beta$

$$\beta-\alpha C_A$$

$$\int \frac{dY}{Y} = -\alpha \int dt$$

$$\beta = -\alpha t$$

$$b(\frac{\beta-\alpha c_A}{\beta}) = -\alpha t \quad \text{or} \quad 1-\frac{\alpha}{\beta} c_A = 2$$

$$c_A = \frac{\beta}{\alpha} (1-e^{-\alpha t})$$

$$d_A = \frac{\beta}{\alpha} (1-e^{-\alpha t})$$

Mass of A,
$$A = C_A \forall = \beta \forall (1 - e^{-\alpha t})$$

7-tel A
$$A = \left(\frac{QCAiY}{RiY+Q}\right)\left(1-e^{-\left(k_i+\frac{Q}{Y}\right)t}\right)$$
 kg