University of Calgary Department of Chemical & Petroleum Engineering

4

S).

ENCH 501: Transport Phenomena

Final Examination, Fall 2009

Time: 8.00 - 11.00 am

Friday, December 11, 2009

Instructions:

Attempt All Questions.

Use of Electronic Calculators allowed. Open Notes, Open Book Examination.

Problem #1 (30 points)

Commercial hot water extraction of bitumen from tar sands involves combining tar sands, water and alkali, and then heating and mixing the slurry until the oil floats to the surface and the sand sinks in the suspension. The process is carried out in large, slightly inclined cylinders that are rotated slowly. Before and after the industrial equipment were designed and constructed, some pilot studies were carried out in tanks.

In one tank, tar sands and dilute alkali solutions are stirred together in a cylindrical steel barrel that is 1.5 m tall and 1 m inside diameter until a paste, to a depth of 1.2 m in the container, has achieved a uniform consistency. Because the suspension at an initial temperature of 20°C is concentrated, it will be assumed that the components do not separate into the phases. That is, settling is hindered and convection currents are absent in the barrel. At time t = 0, the temperature at the bottom of the tank was quickly raised to and maintained at 200°C by a heater. Assume that the side of the barrel is insulated.

It is suggested that when any part of the slurry has been heated to a minimum temperature of 50°C and maintained at or above this temperature for 1 hour, it would be easy to separate the bitumen droplets from the sand and clay particles to which they are stuck.

Use the **integral method** to obtain results for the following:

- a) After the heater has been on for a while, it is tumed off and the slurry is stirred thoroughly (over a short time period) until the slurry temperature is uniform. Then the bottom and top surfaces of the barrel are immediately covered by insulation. What is the minimum time required (from t = 0) for the operation to effectively separate the bitumen from the solid particles in the barrel?
- b) Before stirring the suspension, what fraction of the slurry would have attained or exceeded a temperature of 50°C?

Data: Properties of tar sands slurry - k = 0.286 W/m K; C_0 = 2.386 kJ/kg K; ρ = 1,264 kg/m³

Problem #2 (30 points)

Anhydrous ammonia is used as a fertilizer and, when it is mixed with water or other substances, ii finds application in many cleaning products. During a routine delivery of ammonia by a supplier, a farmer discovered that his regular storage tank for anhydrous ammonia leaks. He, therefore, had the ammonia liquid poured into an empty, vertical, cylindrical tank he has in a cold shed maintained at 220K. He reasons that since ammonia boils at -33.4°C, and this is warmer than the temperature in

the shed, he would not lose much of the ammonia through evaporation. To his astonishment, the level of the ammonia liquid dropped substantially the next time he checked. He needs an explanation.

The farmer relates to you that the tank diameter is 1.2 m and it is 1.8 m tall. The ammonia was poured to a level of 0.3 m below the top rim of the tank and the top was covered by a wire gauze. There was air flow over the top of the tank and the air is vented so that there is no ammonia smell in the room. The ambient pressure is 0.96 atm.

- a) After how long would the liquid level have dropped by 0.5 m below the initial level? Assume there are no convection currents in the tank. State all your assumptions and show your derivations.
- b) If the initial liquid level had been 0.8 m below the rim of the tank, how much ammonia would the farmer have lost in the time elapsed for part (a)?

Data

Molar mass of ammonia = 17.032 g/mol; density of liquid ammonia at 220K = 705.7 kg/m³; diffusivity of ammonia vapor in air = 1.45 (10^{-5}) m²/s; vapor pressure of ammonia at 210 K = 0.176 atm, and at 230K = 0.598 atm. The universal gas constant is 0.08205 (m³ atm)/(kmol K).

Problem #3 (20 points)

Condensers are essential components of distillation columns and many appliances such as refrigerators and air conditioners. These usually involve pipes within which a vapor condenses and releases heat to another medium such as cooling water or air. A scale-up of a pilot unit requires that a dimensional analysis be conducted.

The following variables have been identified as important - the average heat transfer coefficient (h, W/m² K), the temperature difference between the vapor and the pipe wall (ΔT , K), the length of the pipe (L, m), the latent heat of vaporization (ΔH_v , kJ/kg), the density of the liquid (ρ_L , kg/m³), the viscosity of the liquid (μ_L , mPa s), the thermal conductivity of the condensate (k, W/mK), and the acceleration of gravity (g, m/s²).

Determine the dimensionless groups. Show your steps.

Problem #4 (20 points)

Some crude oils contain substantial fractions of wax, paraffins hydrocarbons in the C18 to C36 range. At certain temperatures, the wax starts to precipitate and settle out of the liquid. The solids accumulate on the wall and ultimately plug the pipeline. This is of concern for an operation.

A 16-in i.d. pipeline transports 6,500 barrels/day of a waxy crude. The pipe is buried to a depth of 2 m. The crude enters the pipeline at a temperature of 50°C. The wax appearance temperature is 9°C. The soil surface temperature is given as -10°C and the effective thermal conductivity of the soil is 1.3 W/mK.

Estimate the distance from the inlet at which solid wax particles are expected to start to appear in suspension. Show your derivations.

Data: Properties of the crude oil - ρ = 845 kg/m³; C_p = 2.45 kJ/kg K; 1 barrel of oil = 42 US gallons; 1 US gallon = 3.78 litres.

The minimum processing time is given by heating!

the medium until the average temperature is 50° C. This average temperature is obtained

at the time of stirring. Then, I have is allowed

for the suspension particles to disengage.

The total amount of energy that must be

supplied, $Q = mC_p(50-20)$ where $m = p \neq p \neq p = p(\pi R^2 H)$; R = 0.5 m $R = (126 H)(\pi (0.5)^2 1.2) 2386(30)$ $R = (126 H)(\pi (0.5)^2 1.2) 2386(30)$

This quantity is obtained by adding heat into the medium. The fotel amount of heat added an be determined in one of two ways —

Integrate the rate of input over time or Integrate the temperature profile in the domain over space at the derived time t.

The integral over space requires trial-and-error. The set-up for the problem is in the Notes, p102-6 The integral energy equation assuming a semi-infinite - R dT = d [spcpldz] - pcplo dt The conditions are マ= 5(b) 7 = To $7 = 5(t) \frac{d7}{d2} = 0$ assume = = + 62 + c22 Copply conditions to obtain the temperature profile $\frac{7-7}{-1} = \left(1-\frac{7}{2}\right)^2$ Substitute this profile into the integral equation and simplify to get 5 d5 = 6xdt; with t=0 5=0 9 = -k = -k = 2 + 27 = -5 7 = -k = 2 + 27 = -5= + 2k(1s-12)

$$A = \pi R^{2} = \pi(0.5)^{2}$$

$$Q = 2k(\frac{1}{5} - \frac{1}{5})(\frac{1}{5}(0.5)^{2}) \int_{0}^{1} \frac{dt}{t^{\frac{1}{2}}}; x = \frac{t}{p^{2}}p^{2}$$

$$= 2(0.284)(250-20)(\frac{1}{7})(0.5)^{2}$$

$$= (0.284)(120-20)(\frac{1}{7})(0.5)^{2}$$

$$= (0.284)(120-20)(\frac{1}{7})(0.5)^{2}$$

$$= 1.5161(10.5) t^{\frac{1}{2}} = 8.5273(10.5) 5$$

$$t = 3.1685(10.5) s \text{ or } 87.576 \text{ hvs}$$

$$= \frac{t}{p^{2}} = 0.2840$$

$$= \frac{t}{p^{2}} = 0.2840$$

$$= \frac{t}{p^{2}} = 0.2840$$

$$= \frac{t}{p^{2}} = 0.453(10.8)$$

$$= \frac{t}{p^{2}} = 0.45$$

From the temperature profile $\frac{7-7}{7s-7} = \left(1-\frac{2}{8}\right)^{2}$ $7 = 50^{\circ}C$ $7 = 20^{\circ}C$ 9 = 1000

 $\frac{50-20}{200-20} = \left(1 - \frac{2}{0.6}\right)^2 = \frac{30}{180} = \frac{1}{6}$

7 = 0.355 m

from 2=0 to 2=0.355 m will be

between 200 and 50°C before stirring.

This is 0.355 or 0.2959 of the total height.

That is almost 30% of the volume will be at = 50°C.

	solve to get the concentration profile as!
	1- JA = 1-JA2 = 2-2, 1- JA1
	The flux of A, and trace the everporation rate, is given by
	NA : (- < 2AB dy - CRAB B B Eq. (e.114)
	Now to relate to the vote of loss of liquid,
-(C DAR W BR - PL de Eq. 116 Ez-2 /BI MA at Woter.
	Re-arrange $ \frac{(\overline{z}_1 - \overline{z}_2)}{at} = \overline{\Gamma} = M_{AC} D_{AB} \left(1 - y_{A2}\right) = \omega_{AB} $ $ \frac{(\overline{z}_1 - \overline{z}_2)}{at} = \overline{\Gamma} = M_{AC} D_{AB} \left(1 - y_{A1}\right) = \omega_{AB} $
	Subject to the condition: $t = 0$ $Z_1 = Z_1$
	$(z_1 - z_2)^2 - (z_0 - z_2)^2 = 2^2 t$
	To evolute 7, find
	$C = \frac{P}{RT}$ $T = 220K$ $= \frac{0.96}{(0.08205)(220)}$ $= \frac{5.3183(10^{-2})}{m^3}$

T,K Pup, ctm 210 0.176 JAI = Pup at 220 K, given Clausius - Clapeyron eq. USR h (P/P) = AHV (- - - -) $lm\left(\frac{0.176}{0.598}\right) = \Delta H \left(\frac{1}{230} - \frac{1}{210}\right)$ $h\left(\frac{P}{0.598}\right) = \frac{-1.9763(10-4)}{4.1408(10-4)} \left(-1.2231\right)$ Vapor pressure of Amnonia Pp = 0.598 (0.5578) = 0.33356 am at 220K JA = 0.33356 = 0.34746 (0.33467 0.96 = 0.34746 expt. = 17.032 (5.3183) (10-2) (1745) (10-5) h (1-0.34746 kg kyst m² og² kyst ogs 3 kg 1 = 7.945 (10-9) m²/s Z = 1.8m; Z10 = 1.5m; Z(t)=1.0m $(1-1.8)^2 - (1.5-1.8)^2 = 27t$ 6. t = 3.46|2767 (107) s 400.61 days.

(6)
$$z_2 = 1.8 \text{ m}$$
; $z_1 = 1.0 \text{ m}$; $z_1 = 2 \text{ ft} = 0.55$

$$z_1 = 1.8 \pm 1.0968 + (use - ve)$$

$$= 0.70013 \text{ m}$$

$$\vdots \text{ Nume of travid to st}$$

$$= 1.0 (7.0 - z_1) \text{ m}^2$$

$$= 1.0 (1.0 - 0.7013) = 0.329 \text{ m}^3$$
The new = $SI \times dennty$

$$= 0.329 \times 755.7$$

$$= 232.15 tes$$

	#3
	Let h = f (ST, L, DH, P, M, k, g)
	units W/m2K K m KJ kg Pas W m
	mits W/mik K m kJ kg Pas W m kg m3 mk 52
	$\frac{1}{5}$ $\frac{1}{1}$ $\frac{1}$
	$\frac{\log \cdot m}{s} = \frac{\log m}{s}$ $\frac{\log m}{s}$ $\frac{\log m}{s}$
	5 5 ² m ² K
	Dimensions M T L $\frac{L^2}{L^2}$ M M ML L $\frac{L}{L^3T}$ $\frac{L^2}{L^2}$
	Dimensions M T L $\frac{L^2}{L^2}$ M M ML L $\frac{L}{T^3T}$ $\frac{L^2}{T^2}$
	There are 4 dimensions - M, L, t and T
	With 8 variables, there are 4 dimensionless gps.
-0-	By mispecton
	R Z GL
	:. Remove 2 variables - say DHV and R
	$3 \cdot h = f_2(\Delta T, L, f_L, \mu_L, g)$
	Let II = DI°LPEggL
	and Ty = DTa' Lb' c' go' /2
	4 - P. 9 12
	For 712
	$M^{\circ}L^{\circ}t^{\circ}T^{\circ} = T^{\circ}L^{\circ}(M)^{\circ}(L)^{\circ}M$
	$\frac{1}{3} \left(\frac{1}{2} \right) \frac{1}{1}$
(

mess
$$0 = c + 1$$

Legth $0 = b - 3c + d - 1$
 $0 = -3c + d - 1$
 $0 =$

#4 /T(+) X=2.2032 m 200 50°C 40.64 cm. Z=L ? The flow rate = 6,500 barrels day = 6,500 (42)(3.7854) = 0,0119 6 m3/s For the differential element, d2, heat 1050 to the top of the soil is given by dQ = k (ds)(1-Ta) From the shape factor table 271 (22) ds = (35h-1 (2x) But the heat loss is also given by dq = -mcpdT : - m° Cp dT = kB (I-Ta) dZ, where B = 271 (222) Re-arrange and integrate $-\int_{\overline{1}-\overline{1}x}^{9} d\overline{1} = \frac{k\beta}{m^{2}C} d\overline{2}$