University of Calgary
UofC Navigation

Labeled calculi and finite-valued logics

Source 

Studia Logica 61 (1998) 7–33
(with Matthias Baaz, Christian G. Fermüller, and Gernot Salzer)

Abstract

A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite­valued logic if the labels are interpreted as sets of truth values (sets­as­signs). Furthermore, it is shown that any finite­valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the number of truth values, and it is shown that this bound is tight.

Review

Radim Belohlávek (Mathematical Reviews 99m:03043)

Download from SpringerLink

doi:10.1023/A:1005022012721

Download preprint

Download PostScript