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Abstract 

The development of sensor technologies and the increase in user requirements have resulted in 

many different approaches for efficient building model generation. Three-dimensional building 

models are important in various applications, such as disaster management and urban planning. 

Despite this importance, generation of these models lacks economical and reliable techniques 

which take advantage of the available multi-sensory data from single and multiple platforms. 

Therefore, this research develops a framework for fully-automated building model generation by 

integrating data-driven and model-driven methods as well as exploiting the advantages of images 

and LiDAR datasets.  

The building model generation starts by employing LiDAR data for building detection and 

approximate boundary determination. The generated building boundaries are then integrated into 

a model-based image processing strategy, because LiDAR derived planes show irregular 

boundaries due to the nature of LiDAR point acquisition. The focus of the research is generating 

models for the buildings with right-angled-corners, which can be described with a collection of 

rectangles (e.g., L-shape, T-shape, U-shape, gable roofs, and more complex building shapes 

which are combinations of the aforementioned shapes), under the assumption that the majority of 

the buildings in urban areas belong to this category. Therefore, by applying the Minimum 

Bounding Rectangle (MBR) algorithm recursively, the LiDAR boundaries are decomposed into 

sets of rectangles for further processing. At the same time the quality of the MBRs are examined 

to verify that the buildings, from which the boundaries are generated, are buildings with right-

angled-corners. These rectangles are preliminary model primitives. The parameters that define 
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the model primitives are adjusted using detected edges in the imagery through the least-squares 

adjustment procedure, i.e., model-based image fitting. The level of detail in the final Digital 

Building Model is based on the number of recursions during the MBR processing, which in turn 

are determined by the LiDAR point density. The model-based image fitting refines the search 

space and resolves the matching ambiguities in multiple images, which results in higher quality 

boundaries. This research thus develops an approach which not only automates the building 

model generation, but also improves the accuracy of the building model itself. 
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 Introduction Chapter One:

 

1.1 Motivation 

Accurate and up-to-date 3D geo-spatial information, including building models, is quite valuable 

for several applications. A few examples where accurate digital building models are useful 

include the following: evaluation of the aftermath of natural disasters, search and rescue, urban 

planning, environmental studies, telecommunication network planning, 3D surveillance, and 

simulation for urban terrorism. Considering that the United Nations reported that more than 70% 

of the global population by 2030 will dwell in urban areas, up-to-date and accurate 3D city 

models are required to properly plan for and accommodate this urban growth (UN-Habitat, 

2012). A survey pertaining to 3D city models, conducted by the European Organization for 

Experimental Photogrammetric Research (OEEPE), currently the European Organization on 

Spatial Data Research (EuroSDR), also confirmed the importance of 3D city modeling, 

especially building models. Ninety-five percent of the people who participated in the survey 

stated they consider buildings as the most important objects of interest within a city model 

(Fuchs et al., 1998). Rapid urbanization causes social and environmental problems in developing 

countries; and access to accurate and current 3D Digital Building Models (DBM), which can be 

derived in a timely manner and at a reasonable cost, is essential in the planning process. In 

addition, with more accessible location-based and personal navigation services now available to 

the general public, the need for automated, realistic, and efficiently-generated 3D models has 

become more urgent than ever (Brenner, 2005).  
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Many research efforts have addressed this criticality for automatic and efficient building model 

generation. In particular, the development of sensor technologies and the increase in user 

requirements have resulted in many different approaches for efficient building model generation 

(Rottensteiner et al., 2005; Sohn et al., 2008; Kim and Habib, 2009; Huang et al., 2011). These 

approaches can be categorized according to the data source used (single vs. multi-source 

approaches), the data processing strategy (data-driven, model-driven, or hybrid), and the amount 

of human interaction (manual, semiautomatic, or fully automated) (Vosselman and Maas, 2010). 

In terms of the data source, aerial imagery has been, and still is, one of the most common sources 

to obtain 3D building models based on traditional photogrammetric approaches. While aerial 

imagery provides reliable results, the low degree of automation during the matching process is its 

main limitation, especially when occlusions are present (Brenner, 2005). Partial or complete 

occlusions are common problems for images over urban areas. Thus, most of the current 

techniques have mainly relied on semi-automatic systems (i.e., recognition and interpretation 

tasks are performed by an operator) while the modeling and precise measurement tasks are 

supported through automation. Meanwhile, Light Detection and Ranging (LiDAR) data have 

emerged as an important source of data for 3D building model generation due to the availability 

of dense 3D point clouds. While the LiDAR system has the significant advantage of direct 

acquisition of the 3D coordinates of points (thus, eliminating the need for the matching 

procedure), the positional nature of LiDAR data collection makes it difficult to derive semantic 

information from the captured surfaces. Moreover, the quality of the derived boundaries is 

affected by the point density, which makes LiDAR data insufficient as a stand-alone source.  
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Due to the limitations of using a single data source, integration of multi-source data has been 

recommended since it preserves the advantages of the involved datasets (Chen et al., 2004; 

Rottensteiner et al., 2005; Kim and Habib, 2009; Demir and Baltsavias, 2012). The integration of 

LiDAR data and aerial imagery, which are the most common sources for building model 

generation, provides more accurate solutions by combining the accurate height measurements of 

laser scanners and the planimetric accuracy of aerial images (Awrangjeb et al., 2010). However, 

despite the progress that has been made in the area of integrating LiDAR data and imagery, there 

is still a great deal of work to be done; for example, automated processing of the available 

datasets is still at an early research stage. 

In terms of processing strategies for building reconstruction, the most used are data-driven and 

model-driven approaches (Faig and Widmer, 2000; Vosselman and Maas, 2010). These 

approaches differ on how much relevant information regarding buildings is incorporated during 

each process. Data-driven approaches, which are also called bottom-up processes, do not make 

assumptions regarding the building shapes. Theoretically, one can model any shape of building 

using data-driven approaches; but, practically, these approaches do not address the question of 

how to impose constraints and set the rules during the generation process (Brenner, 2005). Due 

to the complexity of the implementation of the data-driven approaches, model-based approaches 

(i.e., top-down processes), have been the focus of many researchers. Model-based approaches 

use the opposite strategy of their data-driven counterparts by assuming and predefining 

parametric models for the sought-after buildings in advance and update them using the 

information derived from existing data. The predefined parametric models are referred to as 

model primitives and they are associated with translation, scale, and rotation parameters. 
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Complex building models can be constructed by combining small sets of model primitives 

depending on the desired level of detail (Suveg and Vosselman, 2004; Xie et al., 2009). While 

robust computation is possible, establishing the representative models requires human interaction 

(Tseng and Wang, 2003). More specifically, selection of a model primitive and its approximate 

alignment with the existing data are performed by an operator. Therefore, the mixture of data-

driven and model-driven methods (i.e., hybrid approach), which follows the process of 

hypothesize-and-test, is suggested (Faig and Widmer, 2000; Vosselman and Maas, 2010). Faig 

and Widmer (2000) briefly described a hybrid approach for building extraction using aerial 

images. It combines the flexibility of the bottom-up approach and the robustness of the top-down 

approach.  

An increasing number of 3D building models have been generated using different methodologies 

during the last decades. All models are associated with a specific level of detail. The required 

levels of detail for the resulting models are different, from simple building blocks to detailed 

façade, depending on their applications. For example, simple block models without unnecessary 

details can be produced for navigational purposes, especially on mobile devices. However, in 

large-scale applications that require cultural heritage building documentation, a high level of 

detail is required. In addition, in some applications, especially in terms of visualization, there is 

no single representation which suits all needs. Consequently, a range of level of detail is 

necessary; and producing multiple representations of a building with different levels of detail 

therefore has been an active research topic. While some researchers have aimed to produce 

models that are as detailed and realistic as possible, other researchers have tried to simplify and 
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generalize the existing models to coarse representation (i.e., DBM generalization) (Kolbe et al., 

2005; Arefi et al., 2008; Guercke et al., 2011). 

The Special Interest Group 3D (SIG 3D) presented the standard definition regarding the levels of 

detail (LoD). Five different LoD are supported, ranging from simple block models to detailed 

models with interiors. Kolbe et al. (2005) explained the characteristics and accuracies of each 

level as follows: LoD0 is a 2.5D Digital Terrain Model (DTM); LoD1 is a simple block model; 

LoD2 includes roof structures and textures; LoD3 is an architectural model; and, lastly, LoD4 

includes highly accurate interior structures. Interested readers can refer to Kolbe et al. (2005) and 

Gröger et al. (2012) for more detailed information about each level.  

Since many models can be produced using different approaches from different data, the quality 

required of the building model needs to be specified to decide if the generated model can be used 

for certain applications. For instance, many commercial applications are good for navigation 

purposes, but their level of accuracy is not high enough for design and engineering applications. 

It should be noted that the aforementioned LoD categories cannot represent the geometric 

accuracy of the final model so a standard method of evaluating geometric accuracy is crucial. In 

the current research literature, evaluation results are often missing from the building models. 

Furthermore, many studies utilized only one or two evaluation indices, such as completeness and 

correctness, without considering the stochastic properties of the generated DBMs (Vu et al., 

2009; Demir and Baltsavias, 2012). Most of the work so far lacks a standard method of assessing 

the accuracy of a model and cannot determine the reliability of the results. While assessing the 

quality of an end product is important, at the same time, if the performance of the processing 
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steps and assumptions made can be evaluated at each stage, the amount and the time of human 

intervention can be minimized. A clear indication of the performance of the approach used will 

increase the productivity of 3D building model generation. 

1.2 Research objectives 

As discussed in the previous section, it is obvious that 3D building models are important 

components, but they still lack economical and reliable techniques for their generation while 

taking advantage of the available multi-sensory data from single and multiple platforms. The 

objective of this research work is to establish a framework for fully-automatic building model 

generation by integrating data-driven and model-driven methods while combining the advantages 

of images and LiDAR datasets. First, LiDAR data are employed for building detection and 

approximate boundary determination. Then, the building boundaries generated from LiDAR are 

integrated into a model-based image processing strategy. The focus of the reconstruction is on 

complex structures, which are comprised of a collection of rectangles (e.g., L-shape, T-shape, U-

shape, gable roofs, and more complex building shapes which are combinations of the 

aforementioned shapes) under the assumption that the majority of the buildings in urban areas 

belong to this category. Combinations of rectangles can produce LoD1 and LoD2 with a high 

level of automation. Figure 1.1 shows the proposed framework for the automatic building model 

generation starting from the quality assurance/quality control (QA/QC) of the involved dataset. 

The buildings are detected from LiDAR data automatically, and the building detection 

performance is evaluated. The building boundaries are decomposed into sets of model primitives 

and the quality of the primitives is analysed to decide whether or not the proposed approach can 
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reconstruct the buildings in question. Finally, the derived primitives are refined through model-

based image fitting, which produces the stochastic properties of the estimated parameters. 
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Figure 1.1: Flowchart of the proposed methodology 
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The objectives of this research work can be summarized as follows: 

 Propose a hybrid methodology (i.e., combination of data-driven and model-driven 

approaches) for automatic building model generation.  

 Achieve a high level of automation:  

- Reduce the number of model primitives while being able to model complex buildings 

automatically. 

- Derive the initial model parameters automatically, thus eliminating the need for human 

intervention as opposed to what was observed in previous studies.  

- Determine whether or not buildings can be reconstructed automatically using the 

proposed approach.  

 Obtain the model with a high level of accuracy:  

- Increase the accuracy of the final model by combining LiDAR data and imagery. 

o Pursue better horizontal boundary accuracy from photogrammetric images.  

o Maintain the good vertical accuracy from the LiDAR point cloud. 

- Analyze the quality of each processing strategy (i.e., building detection rate from LiDAR 

data, evaluation of the decomposed models, and geometric accuracy of the final result). 

 Generate different levels of details: 

- Aim to produce buildings with details equivalent to LoD2.  

- Generalize the model to LoD1 depending on the application. 

 Utilize any number of images and overcome the limitation of partial occlusions in the 

imagery, which is the most common problem for image-based approaches.  
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1.3 Thesis outline 

This thesis proposes a fully-automatic building model generation method by integrating data-

driven and model-driven methods according to the flowchart in Figure 1.1. Each chapter can be 

summarized as follows: 

- Chapter 2 explains a typical process of building extraction and presents several criteria to 

classify building reconstruction approaches. The literature on existing DBM generation 

methods is reviewed and different quality evaluation methodologies are also addressed.  

- Chapter 3 discusses automatic detection of possible buildings from airborne LiDAR data. 

The LiDAR-generated building boundaries are good indications of where the buildings 

are located in the dataset, but the irregular boundaries need to be improved.  

- Chapter 4 presents the methodology of automatic LiDAR building boundary 

decomposition into basic model primitives. The derived model primitives are evaluated to 

decide whether the buildings are regular in shape or not.  

- Chapter 5 introduces the building reconstruction methodology based on model-based 

image fitting to improve the positional accuracy of building boundaries. The definition of 

model parameters, edge detection procedures, and how to apply the model-based image 

fitting sequentially are presented.   

- Chapter 6 presents experimental results to demonstrate and evaluate the performance of 

the proposed methodologies using airborne LiDAR and photogrammetric data.  

- Chapter 7 provides the conclusion for the presented research and recommendations for 

future work.   
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 Literature review  Chapter Two:

 

2.1 Introduction 

The earliest research effort to automatically reconstruct 3D building models can be traced back 

to not quite two decades ago (Gruen et al., 1995; Haala, 1995). Numerous works have been 

published about reconstruction methods using various approaches. As mentioned in Chapter 1, 

the existing building reconstruction approaches can be classified according to the data sources 

they use (single vs. multi-source approaches); the processing strategy (data-driven, model-

driven, or hybrid); and the amount of user interaction (manual, semiautomatic, or fully-

automated) (Vosselman and Maas, 2010). In this chapter, the existing literature is discussed in 

detail, as categorized above, and each approach’s advantages and limitations are defined.  

2.2 Existing DBM generation methods in terms of data source: Single vs. multi-source 

approaches 

Previous studies, depending on their data sources for building extraction, can be categorized as 

follows: 1) approaches using only imagery (monocular, stereo, or multiple images); 2) 

approaches using only LiDAR data; and 3) approaches that integrate multiple sensors.  

Reconstructed surfaces using photogrammetric measurements contain rich semantic information 

and dense positional information along break lines. Therefore, diverse research studies using 

images to generate DBMs have been implemented. The early stage of the previous work started 

with monocular imagery (Huertas and Nevatia, 1988; McGlone and Shufelt, 1994). To acquire 
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3D building information from a single image, walls and shadows are utilized together with the 

direction of the sun and the camera geometry (Lin and Nevatia, 1998). The main problem of this 

approach is that the result is dependent on the quality of the detected edges, and the use of 

shadow information does not produce reliable results. Therefore, stereo/multiple images have 

been one of the most popular data types for three dimensional reconstructions. 3D features (i.e., 

lines and planes), which are derived after the matching of conjugate features, are merged and 

grown to generate building information (Roux and McKeown, 1994; Fischer et al., 1998; 

Baillard et al., 1999; Kim and Nevatia, 2004). Many of the researchers focused on the 

improvement of the matching quality and solutions for the occlusion problems. Nonetheless, the 

automation of the matching problem remains a difficult and unreliable task due to many 

obstacles, such as relief displacement, different illumination conditions, and the shadow effect 

when dealing with large scale imagery over urban areas. 

LiDAR has become an important source of data for the generation of 3D city models due to the 

direct acquisition of a reliable and dense 3D point cloud in contrast to the problematic matching 

process when using images. While LiDAR has the great advantage of direct acquisition of the 3D 

coordinates of points, the positional nature of LiDAR data collection makes it difficult to derive 

semantic information from the captured surfaces. The measured points from the LiDAR system 

do not provide enough information to extract the accurate boundaries of building patches. The 

probability that the LiDAR points lie on the exact edges of a physical shape is very low due to 

the discrete and semi-random/irregular nature of such points. Hence, LiDAR data have been 

known to be an insufficient data source to accurately extract building boundaries. The geometric 

assumptions of building shapes, such as parallelism, symmetry, flat roof, and straightness of 
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boundaries, have been used to acquire building information, while alleviating the irregular nature 

of LiDAR points (Weidner and Förstner, 1995; Maas and Vosselman, 1999). However, the 

research based on these assumptions seriously simplifies the real world without considering the 

various shapes of man-made structures. 

Due to the limitations of using single source data, several researchers have attempted to integrate 

different data sources. Suveg and Vosselman (2004) generated a 3D model from aerial images by 

incorporating a 2D GIS ground plan (from a GIS map) as a building hypothesis. The ground plan 

was used to decompose complex buildings into multiple rectangular parts. The integration of GIS 

data with LiDAR data was explored by Haala et al.(1998) and Vosselman and Dijkman (2001). 

Although GIS data can provide additional information that can reduce the search space in the 

reconstruction, the data could be outdated, lacking information, generalized, or mis-aligned with 

other data. Throughout many research studies using images and LiDAR data, it is often stated 

that the photogrammetric and LiDAR technologies have complementary characteristics. The 

integration of LiDAR data and aerial imagery for DBM generation has gained significant 

attention by the research community (Rottensteiner and Jansa, 2002; Chen et al., 2004; Ma, 

2004; Brenner, 2005; Lee et al., 2008; Awrangjeb et al., 2010; Habib et al., 2011; Hermosilla et 

al., 2011). Ma (2004) utilized LiDAR data to extract features and to reconstruct initial building 

models. The initial building models were projected back to aerial images and refined using the 

edge pixels extracted from the images. Chen et al. (2004) detected building regions by 

integrating a region-based segmentation and a knowledge-based classification from both LiDAR 

data and color aerial images. They considered the characteristics of elevation and roughness from 

LiDAR data and the spectral and texture information from aerial images. To reconstruct the 
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building models, the split-merge-shape method was applied using planar patches from LiDAR 

data and extracted edges from images. However, this method cannot detect fine levels of details 

and does not show how to deal with erroneous lines. Awrangjeb et al. (2010) proposed an 

automatic building detection method using LiDAR data and color orthoimagery. First, the initial 

building models were determined using the line segments of building masks generated from the 

LiDAR data and the Normalized Difference Vegetation Index (NDVI) values from the imagery. 

The complete building models were obtained using the LiDAR masks and YIQ color 

information. This research showed a high success rate in smooth terrain areas in the absence of 

buildings of rapidly varying heights. However, it yielded relatively poor geometric positional 

accuracy and was thereby insufficient for mapping purposes. 

Much of the previous work has focused on reconstruction of simple buildings, and DBM 

generation of complex buildings is still a challenging issue. One of the popular integration 

approaches is to use LiDAR data as a primary source for building detection and employ the 

imagery as an additional source. Habib et al. (2011) incorporated stereo aerial images after 

deriving initial boundaries from LiDAR data. In this case, the quality of the results was 

dependent on the initial LiDAR boundary result and only two images could be utilized.  

Therefore, how to integrate the two data sources in a way that their weaknesses can be 

compensated effectively is an active issue of current research.  
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2.3 Existing DBM generation methods in terms of reconstruction strategy: Data-driven, 

model-driven, and hybrid approach 

The reconstruction of buildings can be carried out using three different approaches: The data-

driven method (bottom-up), the model-driven method (top-down), or the hybrid method (Mayer, 

1999; Vosselman and Maas, 2010). The differences between the aforementioned three 

approaches are manifested in how much relevant information about the buildings is implemented 

during each process.  

Data-driven approaches do not make assumptions regarding building shapes, in most cases using 

generic models. They have the advantage of being able to model any shape of building, but at the 

same time the limited knowledge of the models makes its implementation complex. Therefore, it 

leaves the question of how constraints and sets of rules should be imposed on rectangularity, 

parallelism, etc. (Brenner, 2005). Henricsson and Baltsavias (1997) presented an example of the 

data-driven approach using aerial imagery. First, they detected the region of interest manually 

from aerial imagery and derived the 3D lines by matching the extracted 2D lines. Their final 

polyhedral model was reconstructed by using the co-planarity constraint and color information. 

This method produces good results but cannot reconstruct buildings in densely built-up areas and 

is not fully-automated. One of the common data-driven approaches utilizes segmentation of 

planar rooftops on LiDAR data. Sampath and Shan (2010) reconstructed polyhedral building 

roofs using LiDAR data based on segmentation. After the boundaries were established, 

regularization was attained with multiple topological constraints (i.e., parallel and perpendicular 

line pairs). Kim and Habib (2009) generated complex polyhedral building models by integrating 
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photogrammetric and LiDAR data based on the data-driven approach. LiDAR data were utilized 

to generate the building hypotheses and initial boundaries while stereo aerial images were used 

to extract straight lines based on the initial LiDAR boundary information. Like other data-driven 

methods, the extracted lines were subjected to a matching process with additional constraints for 

building shapes.  

The model-based approach uses parametric building models which are used as a hypothesis and 

verifies the model using information derived from the existing data. The majority of buildings in 

rural areas can be approximated by parameterized standard roof shapes. Therefore, the model-

based approach predefines different basic building models in a database, from which the best fit 

model to the data is selected (Suveg and Vosselman, 2004; Xie et al., 2009). The reconstruction 

of complex buildings is reduced into the construction of the basic primitives and then they are 

combined afterwards. Therefore, they are decomposed into the basic roof shapes (Kada and 

McKinley, 2009). Model-based methods are commonly implemented in a semi-automatic 

manner and use information from images. While the model-image fitting is solved automatically, 

the selection of a target model and an initial alignment of the model to the image are carried out 

manually by an operator. Various existing model-based approaches can be reviewed based on the 

categories of employed models and reconstruction strategies. Vosselman and Veldhuis (1999) 

presented a semi-automatic model-based method using Constructive Solid Geometry (CSG) 

models. The selection of a model and the approximate alignment were carried out by a human 

operator and precise alignment of the model with the image was done by automatic fitting using 

grey value gradients. Tseng and Wang (2003) established a practical approach for model-based 

building extraction using aerial images. They tackled the two key issues of model-based building 
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reconstruction: how to establish a set of representative models and how to develop an algorithm 

to adjust the model using imagery. The models were selected and positioned interactively by a 

human operator and the least-squares model-image fitting algorithm proposed by Lowe (1991) 

was used to adjust the model pose and shape parameters. The model results demonstrated decent 

horizontal accuracy, but the vertical accuracy is low because of the small base-height ratio of the 

utilized stereo images. Also, the fitting process exhibited poor results if the bottom edges of the 

building were unclear or occluded.  

The mixture of data-driven and model-driven methods which follow the process of hypothesize-

and-test is called the hybrid approach (Faig and Widmer, 2000; Vosselman and Maas, 2010). 

Faig and Widmer (2000) briefly described a hybrid approach for building extraction using aerial 

images, which combined the flexibility of the bottom-up approach and the robustness of the top-

down approach. The hybrid approach could be one of the solutions to automate building model 

generation, thereby reducing the numerous interpretation problems of data-driven methods and 

the dependence on operators in model-based methods.  

2.4 Existing DBM generation methods in terms of degree of automation: Semi-automatic or 

fully-automatic 

Fully-automated building model generation is certainly one of the ultimate goals in the 

photogrammetric and computer vision community. Many fully-automated approaches have been 

proposed in the past decade (Karner et al., 2006; Lafarge et al., 2008; Zebedin et al., 2008), but 

all of them are more or less practical only for some special cases. Lafarge et al. (2008) presented 

an automatic building extraction method from Digital Elevation Models (DEMs) acquired from 
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satellite images based on an object approach. This approach yielded satisfactory results 

considering that satellite images were employed and a high level of automation was used.  

However, the roof shapes were constrained to only symmetric two-planes (i.e., gable roof) 

because they used the median axis of the connected polygon set as the rooftops, which does not 

allow for the representation of some details. Zebedin et al. (2008) proposed an automatic 

building reconstruction method by fusing feature- and area-based information from aerial 

images. The 3D line features detected by matching multiple images were used to generate 

segments of buildings, which were combined with a set of geometric primitives obtained from 

the height data and a building mask. In order to take advantage of the available information and 

to generate a detailed building model, a global optimization algorithm based on Graph Cuts was 

used during the fusion process. This approach is able to reconstruct roof shape with planes and 

domes and different levels of details. Yet, it left the investigation of gable roofs as a future work.  

Developing a fully-automated process for the generic model is still a challenging task for many 

reasons. The task of building extraction depends on the data type, scale used, the complexity of 

the object, and the required level of detail. The applied building detection algorithms to date tend 

to fail whenever a new situation is encountered. Semi-automated approaches therefore are 

currently attracting more attention with the need for precise, reliable, and complete 3D data. 

The semi-automated approach generally lets humans decide which building model should be 

used and the computer performs the model-image fitting automatically (Suveg and Vosselman, 

2000; Tseng and Wang, 2003). Humans can perform high level tasks much more reliably than 

computers, and computers do low-level tasks faster than humans; and this cooperation could 
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make semi-automated building extraction practically valuable. Human operations such as 

detecting the error and editing of the building models often slows down the whole building 

model generation process. However, if it is possible to show the performance of the utilized 

approach (i.e., success rate), the amount and the time of human intervention can be minimized. 

Kaartinen and Hyyppä (2006) evaluated the quality, accuracy, and feasibility of various building 

extraction techniques utilizing reference points and raster ground plans. Reference points are 

used to analyze the accuracy of the location, length, and roof inclination of the modeled 

buildings. Raster data can be used to compute the total relative building area and total relative 

shape dissimilarity (Henricsson and Baltsavias, 1997). Gruber et al. (2008) evaluated the 

geometric accuracy of 3D building models using an error matrix and a statistical analysis of the 

height differences. Awranjeb et al. (2010) developed a performance evaluation system using 15 

evaluation indices in three categories (i.e., object-based evaluation, pixel-based evaluation, and 

geometric evaluation). However, evaluation results are often missing from the published work of 

building detection; and many studies only used one or two evaluation indices, such as 

completeness and correctness, without considering the stochastic properties of the generated 

DBMs (Demir and Baltsavias, 2012; Vu et al., 2009). Elberink and Vosselman (2011) focused on 

the internal quality of 3D building models when independent reference data are missing. They 

assessed the quality of the input data, which affected the final accuracy, and analyzed the 

correctness of the assumptions made during the processing. 

Most of the work thus far lacks a standard method for assessing the accuracy and reliability of 

the results. An appropriate performance evaluation system during the processing could increase 

the productivity of 3D model generation by clearly indicating the performance of the used 
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approach. Table 2.1 summarizes the different building modeling approaches according to the 

above mentioned three categories.  

Table 2.1: Summary of different building modeling approaches according to data source, 

reconstruction strategy, and level of automation 

 Data source Authors 
Reconstruction 

strategy 
Level of Automation 

1 Aerial images 
(Gruen and Wang, 

1998) 
Data-driven Semi-automatic 

2 Aerial images (Baillard et al., 1999) Data-driven 
Automatic for polyhedral model 

with constraints 

3 
Aerial images/  

GIS map 
(Suveg and Vosselman, 

2000) 
Model-driven 

Semi-automatic (manual partitioning 

into building parts) 

4 LiDAR (Brenner et al., 2001) Data-driven 
Automatic (required: DSM and set 

of rules) 

5 Aerial images 
(Tseng and Wang, 

2003) 
Model-driven 

Manual selection of building and 

alignment (interactive); 

Automatic model-image fitting 

6 
Aerial images/ 

cadastral map 
(Flamanc et al., 2003) Hybrid Semi-automatic 

7 
DEM from 

satellite images 
(Lafarge et al., 2008) Model-driven Automatic with constraints 

8 Aerial images (Zebedin et al., 2008) Data-driven 

Automatic with height, building 

mask, 3D line input (acquired from 

image matching) 

9 
LiDAR/aerial 

images 
(Kim and Habib, 2009) Data-driven Automatic for polyhedral model 

10 Aerial images 
(Hammoudi and 

Dornaika, 2011) 
Model-driven Automatic for polyhedral model 
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 Building detection using LiDAR data  Chapter Three:

 

3.1 Introduction 

As mentioned in Chapter 1, LiDAR systems have been extensively utilized in generating 

building models due to their rapid acquisition of dense point clouds. The original LiDAR point 

cloud does not convey semantic information about the nature of the surfaces (i.e., one cannot tell 

which points belong to buildings, vegetation, roads, etc.). Therefore, the data needs to undergo a 

processing stage to extract useful information, buildings in this case. To automatically extract 

buildings from LiDAR data, buildings need to be separated from other objects such as ground 

and vegetation, and this task is referred to as building detection process (Vosselman and Maas, 

2010). Given the fact that buildings are above ground and are mainly comprised of planar 

rooftops, this preliminary information can be incorporated to automatically discern buildings 

from other objects. Therefore, in the present research, LiDAR data segmentation and 

ground/non-ground classification procedures are performed to differentiate buildings from 

ground and non-planar objects.  

Segmentation is a process of grouping the points that share similar properties according to some 

criteria (i.e., points that belong to the same plane in this case) (Vosselman et al., 2004). After the 

points that belong to planar objects are separated and aggregated from LiDAR data, the terrain 

and off-terrain points will be classified. Based on the results, building hypotheses will be 

generated and initial building boundaries for the detected buildings will be obtained, which will 
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be further enhanced during the model-based image fitting process. Figure 3.1 illustrates the 

flowchart of the proposed LiDAR building detection procedure.  

LiDAR data

Planar region segmentation

Ground / Non-ground 

classification

Building hypotheses generation

Planar / rough points

Terrain / off-terrain 

points

Building boundary

 

Figure 3.1: Flowchart of the building detection process 

Section 3.2 will explain the planar region segmentation process, and Section 3.3 will illustrate 

the ground/non-ground classification. Lastly, Section 3.4 will discuss how to evaluate the 

building detection results.  
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3.2 Planar segmentation  

The purpose of planar region segmentation is to group neighboring points that belong to the 

same plane. The most common segmentation techniques can be categorized into two approaches: 

1) region growing in the spatial domain and 2) clustering in the parameter (attribute) space. 

Region growing methods group adjacent points into segments based on the homogeneity of the 

surface defined by the grouped points. Several researchers utilized region growing methods to 

detect planar surfaces from LiDAR data. Region growing methods start from detecting a seed 

region and expand the seed region according to the closeness of the candidate points to the 

defined plane by the seed region (Lee and Schenk, 2001; Chen et al., 2004). The two main 

limitations of this approach are that the segmentation performance depends on the seed region 

selected and that the similarities of the attributes are compared only locally (Besl and Jain, 

1988). While region growing is implemented in the spatial domain, the second approach, the 

clustering method, segments the points in the parameter space. These methods are dependent on 

the quality of the computed attributes; therefore, the segmentation attributes that best represent 

each surface should be identified. Filin and Pfeifer (2006) adopted clustering techniques using 

the slopes of the normal vector to the best fitting plane defined by a point and its neighboring 

points. Kim and Habib (2009) utilized the normal distances to the fitted planes from two pre-

defined origins. However, the clustering technique requires substantial computation with the 

increase in the number of attributes and also does not consider the spatial-domain connectivity of 

the points.  
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Since each approach has its own advantages and limitations, many researchers have proposed 

different segmentation methodologies in an effort to overcome the aforementioned limitations 

(Besl and Jain, 1988; Vosselman and Dijkman, 2001; Filin and Pfeifer, 2006; Kim and Habib, 

2009). However, most of the suggested approaches assume a uniform point distribution within 

the LiDAR data, which is not the case in reality. Depending on the type of acquisition platform 

(i.e., ground-based, airborne, or unmanned vehicle), the number of overlapping strips, and the 

properties of the surface, variations in the point density can be present within the dataset 

(Vosselman and Maas, 2010). Lari et al. (2011) proposed a new parameter-domain segmentation 

approach, which considers varying point densities in the dataset. In this research, the main focus 

will be buildings with planar rooftops which constitute the majority of buildings in a given 

environment. Therefore, the segmentation methodology proposed by Lari et al. (2011) will be 

employed to detect the planar objects that are potential buildings. The following paragraphs will 

discuss the proposed segmentation procedures in detail. 

3.2.1 Neighborhood definition and local point density estimation  

The proposed methodology starts with organising the LiDAR point cloud using a kd-tree to 

speed up the rest of the process (Friedman et al., 1977). Then, to calculate the local point density 

(LPD) for each point in the LiDAR data, a neighborhood definition follows. How the 

neighborhood of a point is defined affects not only the estimation of point density, but also its 

attributes. Therefore, an appropriate neighborhood definition that considers the proximity of 

points and the physical shape of objects is crucial. In this research, the adaptive cylinder 

neighborhood introduced by Filin and Pfeifer (2005, 2006) is adopted to define neighboring 

points. The adaptive cylinder is defined according to the orientation of the local planar surface, 
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which can be determined through an iterative plane fitting of the neighboring points. More 

specifically, an initial fitted plane is derived through the least-squares adjustment (LSA) using 

the n-nearest points within a spherical neighborhood to the point of interest. The inverse of the 

normal distance between each point in the spherical neighborhood and the initial plane is used as 

a weight for the next iteration of the plane fitting, as illustrated in Figure 3.2. This procedure is 

repeated until the plane parameters do not change or a predefined number of iterations is 

reached. If the iterative plane fitting procedure does not converge within a pre-specified number 

of iterations, the point of interest is classified as part of a rough neighborhood. Once the final 

plane is derived through the iterative plane fitting, a cylinder can be defined by setting a buffer 

around the plane depending on the noise level in the LiDAR data. The points within the adaptive 

cylinder are considered as neighboring points of the point in question. If the majority of the 

points including the point in question/point of interest (i.e., more points than a pre-defined 

threshold) within the spherical neighborhood are inside the adaptive cylinder, the point of 

interest is deemed to be a part of a planar neighborhood.  
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(a) (b) 

Figure 3.2: The initial fitted plane using neighboring points within the spherical 

neighborhood centered at the point of interest (a) and the final fitted plane derived through 

an iterative plane fitting procedure for the adaptive cylinder neighborhood establishment  

Once the planarity of the established neighborhood is checked using the adaptive cylinder, the 

local point density can be calculated according to Equation (3.1). Only planar points are 

considered for the LPD estimation.  

    
 

 rn
 
 (3.1) 

where,   is the number of neighboring points within the established adaptive cylinder and    is 

the distance from the point of interest to the n-nearest neighboring point (i.e., the radius of the 

spherical neighborhood used for the iterative plane fitting) 

The radius rn will be different depending on the average point spacing of the LiDAR dataset to 

include n-number of points, which will affect the calculation of LPD even if k is the same. 

Figure 3.3 shows that the radius of the spherical neighborhood containing n-nearest neighboring 

points is smaller when the average point spacing is smaller, which leads to higher local point 
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density when compared to Figure 3.2(b). Figure 3.4 shows an example of the LiDAR point cloud 

colored according to height (a) with its local point density map for the points belonging to planar 

surfaces (b). 12 neighboring points are used to define the planar surface in this example.  

 

Figure 3.3: Adaptive cylinder neighborhood of dense point cloud 

 

  

(a) (b) 

Figure 3.4: Original LiDAR point cloud colored according to height (a) and estimated local 

point density map (b)  

3.2.2 Grouping and clustering 

Once points are characterized if they belong to planar or non-planar objects and the local point 

density for each point is calculated, the planar points are grouped according to their 3D distance 

considering the local point density through a region growing process. Then, the clustering 

buffer 

6.8 pts./m2 

0.01 pts./m2 
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procedure will be carried out on the individual groups that have been classified as being part of 

the same planar surfaces. This will speed up the segmentation process compared to carrying out 

the segmentation process on the entire data all at once. The segmentation attributes are derived 

using the parameters of the best fitting plane for each point’s neighborhood. The coordinates of 

the origin’s projection onto the best fitting plane for each point’s neighborhood (  ,   ,   ) are 

used as attributes. The accumulated peaks in the attribute space based on these attributes 

represent the points with similar attributes (i.e., same origin’s projection onto the best fitting 

plane) in the spatial domain. Therefore, these attributes are organized in a kd-tree structure to 

find a peak during the clustering approach without a need for a tessellation of an accumulator 

array, whose cell size affects the quality of the segmentation outcome. In this approach, the 

approximate extent of the clusters in the parameter domain is estimated considering acceptable 

spatial and angular deviations among points that would be deemed as part of a single planar 

region. Then, peak detection will be performed in two steps, coarse and fine detection, using the 

established kd-tree structure. First, an octree space partitioning (Samet, 1984) is utilized for the 

coarse peak detection. The space partitioning is repeated in the octant with the highest attribute 

count until the size of the octant reaches the approximate extent of the clusters. Then, using the 

points within the last octant, the precise peak location is detected through the second step. This 

step is incorporated to speed up the peak detection process. The precise peak location is 

determined as the one which includes the largest number of neighboring attributes within the 

established cluster extent. All the points in the detected peak are then removed from the 

parameter domain, and the same procedure is repeated until the number of remaining points is 

less than a predefined number which corresponds to the smallest region to detect. One should 
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note that a reliable estimate of the plane parameters representing the plane surface through the 

points within the extracted peak can be derived through a least-squares adjustment. These plane 

parameters (i.e.,       in                ), which are derived in this procedure, will be used 

in a model-based image fitting algorithm in Chapter 5. Figure 3.5(a) shows an example of 

airborne imagery over a building and Figure 3.5(b) shows the planar region segmentation results. 

Different colors represent different planar segments. 

 
 

(a) (b) 

Figure 3.5: Imagery over an area of interest (a) and planar region segmentation result (b) 

3.2.3 Region boundary generation 

As a result of the previous procedures, planar points that belong to the same plane are 

segmented. The main problem with parameter-domain segmentation procedures is that coplanar 

points that are spatially disconnected are segmented as one cluster. Figure 3.6 shows an example 

of this ambiguity problem. Figure 3.6(a) is a closer look at the planar region segmentation result 

presented in Figure 3.5(b), and one can observe that the spatially-disconnected coplanar surfaces 
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are segmented as one cluster (three P1s are segmented as one and two P2s are segmented as one). 

Figure 3.6(b) shows the aerial image of the same region for reference.  

  

(a) (b) 

Figure 3.6: The ambiguity problem of parameter-domain segmentation: planar region 

segmentation (a) and aerial image over the same planar surface (b) 

In order to resolve such ambiguity, a neighborhood analysis is conducted through the boundary 

detection of the clustered points. To obtain the boundary of the segmented points, the modified 

convex hull method is applied (Sampath and Shan, 2007). This boundary tracing method starts 

by finding the most left point as a first point of the boundary. Then, it establishes a planar search 

space as a function of the local point density and selects all the points within the search space. 

The second point is chosen as the point that has the smallest clockwise angle between the 

positive y-axis and the vector from the first point to the target point. The remaining points along 

the boundary are determined by the ones which have the smallest clockwise angle with respect to 

the vector from the previous point to the current point. This process is repeated until the last 

point meets the first point which indicates the boundary tracing has been completed successfully. 

Figure 3.7 illustrates the aforementioned boundary tracing steps of the modified convex hull 

P1 

P1 

P1 
P2 

P2 
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algorithm. As one can see in the last row, spatially-disconnected coplanar points can be separated 

during the boundary tracing process. When the distances between the points are larger than the 

threshold, which is predefined as a function of LPD, they are not considered as neighboring 

points. The neighborhood analysis through the boundary tracing resolves the ambiguity issues of 

parameter domain segmentation. Figure 3.8 presents an example of the generated building 

boundaries and segmentation results after the neighborhood analysis. Compared to the results 

presented in Figure 3.5(b), the spatially-disconnected coplanar regions are separated.  
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Figure 3.7: Steps of the modified convex hull algorithm (adapted from Sampath and Shan, 

2007) 

space > threshold 
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(a) (b) 

Figure 3.8: An example of the traced boundaries (a) and accordingly segmented regions (b) 

3.2.4 Quality Control 

To evaluate the quality of the outcome from the proposed segmentation process, Lari and Habib 

(2013) hypothesized different possible segmentation problems and proposed procedures to 

identify and solve these problems. These problems can be categorized as 1) non-segmented 

planar points, 2) misclassified rough points, 3) over-segmentation, 4) under-segmentation, and 5) 

invading/invaded segments. As a criterion to evaluate the quality of the derived surfaces from the 

proposed segmentation procedure, the surface roughness factor is used. The surface roughness 

factor is computed as the root mean square of the normal distances between the points within a 

segmented region and the best-fitted plane. A brief explanation of addressed problems by each 

QC procedure follows, and the schematic diagram of each category is shown in Figure 3.9.   
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Category Before QC After QC 

non-segmented 

planar points 

  

misclassified 

rough points 

 
 

over-

segmentation 

  

under-

segmentation 

  

invading/invaded 

segments 

  

Figure 3.9: The schematic diagram of addressed problems by the QC procedure 
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In the first case, a planar point might not have been segmented due to the minimum detectable 

cluster size or problems in the attributes calculation and/or cluster detection procedure. Its 

neighboring segment is identified according to the estimated local point density at its location, 

and its normal distance to the fitted plane through the points of the neighboring segment is 

calculated. If the normal distance is less than a predefined threshold, the point is added to the 

plane. The predefined threshold is chosen to be 2-3 times the neighboring segment’s roughness 

factor. Next, a point classified as a part of a rough neighborhood may actually belong to a 

neighboring segment. This might happen due to improper classification of the points, especially 

at the edges of adjacent planar surfaces. In the same way as the first case, the normal distance to 

its neighboring plane is checked and added to the plane when it is less than a predefined 

threshold.  

Due to problems either in the attribute computation or cluster/peak detection process, one planar 

surface might be segmented into more than one segment (i.e., over-segmentation), several planar 

surfaces may be segmented as one region (i.e., under-segmentation), or one segment could be 

invading or is being invaded by another segment (i.e., invading/invaded segments). For the over-

segmentation case, when the surface normals of neighboring segments are similar and the surface 

roughness of the merged segments is similar to the individual segments, the segments are 

merged. In the case of under-segmentation, the average surface roughness factor using all the 

derived segments is assessed, and this criterion is used to detect under-segmentation. When the 

surface roughness factor of any segment is significantly higher than the average roughness 

factor, the segmentation process is repeated by defining a new origin location and new results are 

checked for any differences. After detecting the under-segmented clusters, an over-segmentation 
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quality control procedure is performed to check whether or not newly-generated clusters can be 

merged with other clusters. 

Lastly, to detect invading/invaded segments, each boundary point for a given cluster will be 

checked if there is any neighboring boundary point of another cluster whose normal distance to 

the cluster’s best fitted plane is less than a threshold. When this happens, the boundary point 

from the neighboring segment will be moved to the selected cluster and the boundaries will be 

re-estimated for the invading and invaded clusters. Figure 3.10 shows the quality control of the 

segmentation results, where one can see that the quality of the segmentation is improved 

compared to the one before the QC procedure (Figure 3.8(b)). 

 

Figure 3.10: Quality control of segmentation results 

3.3 Ground/non-ground classification 

As a result of the proposed planar segmentation procedure, planar objects are detected from 

LiDAR data. Since buildings are assumed to be planar, non-ground objects, the LiDAR points 

should be classified into terrain and off-terrain points to find the non-ground planar objects. The 
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classification approach employed in this research considers the 3D discontinuity between 

adjacent clusters in 2D and the physical properties of the derived clusters (i.e., area and slope) 

(Lari and Habib, 2012). First, off-terrain segments are found, the surfaces of which are steep 

with small areas or significantly higher areas than their neighboring segments. Therefore, the 

segments whose slopes are larger than the threshold and areas less than the threshold are 

classified as off-terrain surfaces. Then, the segments, which are higher than their 2D adjacent 

segments, are identified as off-terrain surfaces. When the segments are similar in height to 

adjacent ones that already have been classified as off-terrain, they are also classified as off-

terrain. Once the off-terrain segment classification process is finished, finding terrain regions, 

which are usually low in height and large in area, is conducted. For this, the remaining 

unclassified segments are sorted based on the average height of their boundary points. When the 

area of the segment with the minimum average height is larger than a predefined threshold, the 

segment is classified as terrain. Then, the remaining non-classified segments are compared to 

their nearest terrain-classified segments. If the average height of the segment is similar to the 

nearest terrain region, it is deemed to be part of the terrain surface. Otherwise, it is classified as 

an off-terrain object. This process is performed in an ascending order based on the average 

height of their boundary points. Figure 3.11 presents the ground/non-ground classification results 

for the planar regions shown in Figure 3.10. Regions that are red in color have been classified as 

off-terrain objects and those green in color are terrain regions. A corresponding image is 

presented as a reference. 
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(a) (b) 

Figure 3.11: An example of ground/non-ground classification (ground displayed in green 

and non-ground in red color) (a) and aerial image over the same area (b) 

3.4 Boundary detection and quality control 

Among the points that were identified as planar and non-ground through the aforementioned 

procedures, the points whose sizes and heights above neighboring terrain regions are larger than 

the predefined thresholds are derived as building hypotheses. Figure 3.12 shows the derived 

building hypotheses (a) and their traced boundaries (b). Please refer to Figure 3.11(b) for the 

corresponding image.  
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(a) (b) 

Figure 3.12: Example of building hypotheses generation (different hypothesized buildings 

in different colors) (a) and their boundaries (b) 

Figure 3.13 shows the projection of one of the building boundaries onto the corresponding 

imagery. It can be seen that the boundary is close to the real shape of the building, but it does not 

coincide with the precise building boundary. This is caused by the relatively low sampling rate of 

airborne LiDAR systems. Therefore, the detected building boundaries need to be refined. The 

refinement process will be discussed in Chapters 4 and 5. 
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Figure 3.13: Example of projected LiDAR boundaries onto an image 

Considering the fact that the goal of building detection is to distinguish buildings from other 

objects, the performance of the method can be evaluated as to whether or not the buildings are 

correctly identified. The question to be answered is: when can one conclude that the building is 

identified correctly? Performance metrics have been discussed in numerous papers (e.g., 

(Shufelt, 1999; Rottensteiner et al., 2007; Rutzinger et al., 2009; Rottensteiner et al., 2011). 

However, depending on which entities (e.g., pixels, voxels, areas, or objects) are evaluated and 

what criteria define a correct detection, different evaluation results can be derived for the same 

area. 

The most commonly used metrics for thematic accuracy are based on the confusion or error 

matrix, which compares the detection results with reference data. Since buildings are the only 

focus of detection, two classes can be considered (i.e., buildings and other objects). Regions that 

are not part of the building hypotheses are all considered as other objects. In this case, four 

categories for each region are possible, which are summarized in Table 3.1. A True Positive (TP) 

is an object that is detected as a building which is a building in the reference data. A False 
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Positive (FP), i.e., an error of commission in the building class, is a non-building object in the 

reference data which is detected as a building. A False Negative (FN), i.e., an error of omission 

in the building class, is an object that corresponds to a building in the reference data which is 

detected as other objects, and a True Negative (TN) is an object that corresponds to other objects 

that are detected as non-building. 

Table 3.1: The confusion matrix 

 Reference data 

Sample data Building Other object 

Building True Positive (TP) False Positive (FP) 

Other objects False Negative (FN) True Negative (TN) 

Heipke et al. (1997) introduced the completeness and the correctness of the building detection 

results based on the confusion matrix according to Equations (3.2) and (3.3) below. 

Completeness represents the rate of detected buildings among the buildings in the reference data, 

and correctness shows the rate of buildings among the ones detected as buildings in the test data. 

A good classification should satisfy both conditions, namely, high completeness and high 

correctness. Therefore, in this research, both are used as a quality indicator.  

             
  

     
 (3.2) 

            
  

     
 (3.3) 

The remaining question is what constitutes a TP. Rutzinger et al. (2009) provided an extensive 

review on different definitions of what establishes a TP; and having 50-70% overlap between the 
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entity and the reference data is typically considered as acceptable criteria for a TP. The ISPRS 

benchmark analyzed and compared the segmentation quality based on completeness and 

correctness of the extracted roof planes (Rottensteiner et al., 2012); and roof planes that have 

more than 50% overlap with the planes in the reference data are considered as a correct 

detection. Since an assessment result that is based on mutual overlap depends on the overlap 

threshold, the centroid of a detected building is checked as to whether it falls inside the building 

in the reference data set. The comparison can be carried out at two levels. First, it can be 

performed in the object level (i.e., building by building), then region level (i.e., detected plane by 

plane). One should note that only planes whose areas are larger than the minimum detectable 

area are considered for the comparison. 

3.5 Summary 

This chapter discusses the methodology to detect buildings automatically from LiDAR data and 

generate building hypotheses accordingly. Given the fact that buildings are above ground and are 

mainly comprised of planar rooftops, LiDAR data segmentation and ground/non-ground 

classification procedures are performed. Segmentation procedure proposed by Lari et al. (2011) 

is employed to detect the planar objects from LiDAR data. This segmentation approach considers 

the local point density thus is able to handle datasets with non-uniform point densities. One 

should note that the current research is not limited to the employed segmentation approach and 

any other available LiDAR segmentation approaches can be incorporated. To find non-ground 

planar objects, ground/non ground classification is performed based on the segmentation results. 

At the end, the non-ground, planar regions whose area and heights above neighboring terrain 
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regions are larger than the predefined thresholds are derived as building hypotheses. The 

performance of the method is evaluated as to whether or not the buildings are correctly 

identified. The completeness and correctness are calculated based on the building level and also 

the plane level. 
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 Automatic decomposition/evaluation of LiDAR building boundary Chapter Four:

 

4.1 Introduction 

In Chapter 3, the procedures utilized to detect buildings from LiDAR data were explained, and 

building boundaries were successfully obtained. LiDAR data have been proven to be useful for 

deriving planar features in an automatic way and are suitable for detecting buildings at a high 

success rate. However, as presented in the previous chapter, the derived boundaries of the 

buildings from the LiDAR data need to be improved since they do not represent the actual 

boundaries of the objects due to the relatively low sampling rate of the airborne LiDAR system. 

Therefore, in order to improve the quality of the LiDAR derived building boundaries, 

photogrammetric data will be integrated in this research and a model-based approach is adopted. 

Model-based reconstruction, also referred to as a top-down approach, introduces prior 

knowledge about the object of interest during the reconstruction process. The object of interest, 

in this case, is the derived LiDAR building boundaries in Chapter 3. In this research, any right-

angled-corner buildings, which include box, shed-roof, and gable-roof buildings or a mixture 

thereof, can be modeled using rectangular primitives. The justification for choosing a rectangular 

primitive will be explained in Section 4.2. In order to associate the LiDAR-derived boundaries 

from the data-driven approach with the model-based approach without human intervention, the 

boundaries need to be decomposed into rectangular primitives. This chapter introduces an 

automatic building boundary decomposition algorithm into the rectangular primitives and 
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proposes criteria to evaluate whether or not the primitives accurately describe the building in 

question. 

Since buildings that are comprised of rectangles are the focus of this research and a rectangle is 

chosen as the basic primitive, the Minimum Bounding Rectangle (MBR) algorithm is introduced 

(Chaudhuri and Samal, 2007; Freeman and Shapira, 1975). The MBR algorithm is modified here 

to achieve the purpose of this research and is applied in a recursive way (i.e., Recursive MBR or 

RMBR). This algorithm regularizes the initial LiDAR boundaries and generates sets of 

rectangular primitives. The RMBR algorithm can also determine/control the level of detail for 

the final building models. Depending on the application, building models with a high level of 

detail might not be necessary. In this case, the model can be generalized through the RMBR 

process. Section 4.3 discusses the detailed procedure of the RMBR algorithm. Even though the 

most common building shapes in urban areas are right-angled-corner buildings, irregular 

buildings still exist that cannot be reconstructed using rectangular primitives. To automatically 

generate building models over large urban areas, it is important to decide whether or not the 

buildings can be reconstructed using the proposed methodology. Therefore, Section 4.4 

introduces the methods this research will use to examine the quality of the MBRs to verify 

whether or not the derived primitives can be used to accurately model the building in question.  
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4.2 Choice of the rectangular primitive 

Conventionally, in the model-based approach, each primitive is associated with pose and shape 

parameters to describe its geometric properties. The pose parameters define the position (  ,   , 

  ) and orientation (  ,   ,   ) of the model primitives in object space as seen in Figure 4.1. 

The shape and size of the models are defined using shape parameters. For example, Figure 4.1 

shows that for a solid box primitive, the shape parameters are defined by length ( ), width ( ) 

and height ( ). Different models are represented using different shape parameters (Tseng and 

Wang, 2003). 

 

Figure 4.1: Definition of pose and shape parameters for a solid box primitive 

Figure 4.2 shows the representation of several popular models using different shape parameters. 

Figure 4.2(a) and (b) show the most popular basic model primitives, which are box and wedge 

models. As mentioned before, the model-based approach can construct complex building models 

by combining a set of basic model primitives such as box, wedge, and cylinder models. As seen 

in Figure 4.2(c) and (d), gable-roof buildings and shed-roof buildings can be modeled by 

combining box models and wedge models. As a case in point, some of the past model-based 
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literature predefined gable-roof building model primitives (Suveg and Vosselman, 2000; Tseng 

and Wang, 2003). In this case, the lack of predefined models or a poor choice of the proper 

model can lead to failure in reconstructing accurate building models.  

  

(a) Box (b) Wedge 

 
 

(c) Gable-roof building (d) Shed-roof building 

Figure 4.2: Shape parameters for different model primitives 

Therefore, in this research, it is aimed to reduce the number of model primitives while still being 

able to deal with the aforementioned basic models. For this, the box primitive, which is the most 

basic model, is selected as the initial step. In the case of such a model, three shape parameters, 

the length, width, and height of the box, are required. However, in imagery, there is no guarantee 

that both the rooftops and footprints of buildings are visible at the same time so the heights of the 

buildings are hard to determine from imagery. In addition, LiDAR data provides both the 

rooftops of the buildings and the terrain, which suggests that the elevation of the building roof 

patch generated from LiDAR data is more reliable than the derived boundaries themselves. 
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Therefore, in this research,   is determined from the LiDAR data, which simplifies the box 

model down to a rectangular model primitive. By utilizing a rectangular primitive together with 

their plane parameters from LiDAR data, instead of a box primitive, complex buildings that are 

comprised of rectangles with various slopes can be reconstructed. Figure 4.3 illustrates how 

rectangular primitive can be used to represent different building shapes mentioned in Figure 4.2.  

  

(a) Box (b) Wedge 

 
 

(c) Gable-roof building (d) Shed-roof building 

Figure 4.3: Rectangular primitive representation for different buildings 

For this purpose, the building boundaries will be decomposed into sets of rectangular primitives 

in Section 4.3. All the decomposed rectangles forming the rooftops will be adjusted sequentially 

(Chapter 5). 

4.3 Recursive Minimum Bounding Rectangle 

The MBR algorithm finds the rectangle with the minimum area among the rectangles with 

arbitrary orientations that contains all the given points; in this case, the LiDAR derived boundary 

points (Freeman and Shapira, 1975; Chaudhuri and Samal, 2007). The derivation of the MBR 
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begins with defining arbitrary coordinate systems using the boundary points. The  -axis is 

defined along the vector between a point and its next neighboring point and   axis follows a 

right-handed coordinate system. As Figure 4.4 illustrates, the minimum   and   and the 

maximum   and   coordinates are found according to the defined coordinate system. The four 

coordinates (    ,    ), (    ,    ), (    ,    ), and (    ,    ) define a 

rectangle. This process is repeated based on every coordinate system defined using all the 

boundary points with their next neighboring point. The areas of the rectangles are calculated and 

the rectangle with the minimum area gives the MBR.  

 

Figure 4.4: A bounding rectangle with a coordinate system definition using two consecutive 

points along the boundary 

Figure 4.5(a) and (b) show an aerial image over a simple rectangular building and its boundary 

derived from LiDAR data projected onto the image. Figure 4.5(c) shows some of the possible 

rectangles with arbitrary orientations that contain the boundary points. Among all the possible 
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bounding rectangles, the rectangle with the minimum area is chosen and it is shown in Figure 

4.5(d). 

As seen in Figure 4.5, the original MBR algorithm chooses the rectangle with the minimum area 

among the possible bounding rectangles. This condition produces satisfactory results in most 

cases; however, in some cases this condition is not enough to determine the best representative 

rectangle of the boundary in question. 

  
(a) (b) 

 

 

(c) (d) 

Figure 4.5: An example of a simple rectangular building: aerial image (a), LiDAR derived 

boundary (b), bounding rectangles with arbitrary orientations (c), and the minimum 

bounding rectangle (d) 
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As seen in Figure 4.6(a), depending on the shape of the buildings, the bounding rectangle with 

the minimum area might derive a rectangle that does not coincide with the main orientation of 

the building. The representative rectangle should be redefined as a rectangle with the minimum 

area that has considerable overlap with the investigated boundary (i.e., LiDAR-based boundary). 

  

(a) (b) 

Figure 4.6: The MBR with the minimum area condition (a) and the MBR with the 

maximum overlapping ratio condition (b) 

Therefore, in this research, the number of boundary points aligned with the MBR (i.e., 

overlapping ratio between the given boundary points and the MBR) is considered as a new 

criterion. The distance between the boundary points and the closest side of the generated 

bounding rectangle is calculated, and the number of points whose distance is less than a 

threshold, which is related to the average point spacing of the dataset, are counted. The bounding 

rectangle with the maximum number of boundary points within the normal-distance threshold is 

chosen as the minimum bounding rectangle instead of the one with the minimum area. Figure 
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4.6(b) shows the results from the modified MBR algorithm; namely, the rectangle with the 

largest number of boundary points aligned with the resulting MBR. Note that the resulting MBR 

is aligned with the main orientation of the building boundary.  

To obtain regularized boundaries with multiple rectangles, this algorithm can be applied 

recursively to complex structures. Figure 4.7 illustrates the flowchart of the RMBR procedure 

proposed in this research. The RMBR algorithm starts by applying the introduced MBR 

algorithm to the LiDAR-derived boundary and the generated MBR is called the first level MBR. 

Then, tracking the non-overlapping initial boundary segments with the first level MBR is 

performed. When the length of the detected non-overlapping segments is larger than a threshold, 

the MBR algorithm is applied again on the non-overlapping segments, and their projection onto 

the MBR sides to derive the next level MBR. It should be pointed out that each level, except the 

first level, can have more than one MBR as shown in Figure 4.8. The same procedure is repeated 

until there are no LiDAR boundary points remaining. As a result of the recursive MBR, sets of 

rectangles are derived depending on the required level of detail (i.e., either one level of rectangle 

or several levels of rectangles). Examples to demonstrate the step–by–step procedure of the 

RMBR algorithm are introduced later. The building shapes differ in terms of complexity, which 

means they are represented using different MBR levels. 



 

53 

LiDAR boundary 

points

MBR algorithm

MBR(s)

Identify non-overlapping LiDAR 

boundary segments with MBRs 

Length of segments > 

Threshold
YES

No

Calculate model paramters

Finish procedure

Project the non-overlapping segment 

onto the sides of MBR

 

Figure 4.7: Flowchart of the RMBR procedure 

Figure 4.8(a) and (b) show an initial LiDAR boundary of the building and its projection onto an 

image. As proposed, the MBR algorithm is applied to the boundary points and the first level 

MBR (i.e., the blue rectangle in Figure 4.8(c)) is generated. Then, the entire boundary points are 

traced to find non-overlapping boundary segments with the first level MBR. The distances 

between the boundary points to the closest side of the MBR are calculated. If the distance is 

larger than a threshold which is twice the average point spacing of the LiDAR dataset, then the 

first point whose distance is larger than a threshold is considered as the start of the non-
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overlapping segment with the first level MBR. All the connected neighboring points whose 

distances are larger than the threshold are recorded as one non-overlapping segment until a point 

coincides with the MBR. The last non-overlapping point is identified as the end point of the non-

overlapping segment. The closest MBR side(s) where the non-overlapping segments start and 

end (i.e., purple circles in Figure 4.8(d)) is recorded for the next step. Non-overlapping segments 

that contain less than the predefined number of points are ignored. The predefined number of 

points is determined considering the  i AR point density and the model’s target level of detail. 

As a result of this process, the lists of boundary segments that do not overlap with the detected 

MBR are found as seen in Figure 4.8(d) (green circles). The non-overlapping boundary segments 

are projected onto the MBR sides found in the previous step as displayed by the arrows in Figure 

4.8(e), and the projected points are displayed in red circles. Using the non-overlapping boundary 

points and their projected counterparts, the MBR algorithm is applied to derive the second level 

MBRs. In this case, two second level MBRs are derived as seen in Figure 4.8(f). Since all the 

boundary points overlap with the derived MBRs, the procedure stops. It is worth mentioning that 

the orientation of the second level MBR always follows the first level MBR since the projected 

points, which are 50% of the points used to detect the second level MBRs, fall on the first level 

MBR. In addition, the MBRs share one of the vertices of the rectangles with the previous level 

MBR, which only leaves the dimensions of the rectangle in question for the next level MBR.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.8: The step-by-step illustration of the RMBR procedure for two MBR levels 

When finding the closest MBR side(s) of the start and end points of the non-overlapping 

segments, one should check for the condition that the projection rays do not go through the 

LiDAR boundary points. The condition is implemented in a way that ensures the two projected 
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sides are in sequential order. Figure 4.9 shows an example of when this condition is not 

considered. After the first MBR is derived, one non-overlapping segment (i.e., green and purple 

circles) is found. The LiDAR-derived boundary points are ordered counter-clock-wise and the 

closest sides of the start and last of the non-overlapping segment are not sequential (i.e., side 1 

and side 4). When projecting the non-overlapping points onto the closest sides of the start and 

end points (i.e., red circles), the projections rays go through the given LiDAR boundary points, 

as seen in Figure 4.9(a). The final shape can be derived by subtracting the second level MBR 

from the first level MBR. As a result of this, an undesirable final shape is derived as seen in 

Figure 4.9(b). On the other hand, Figure 4.10(a) shows that the non-overlapping segments are 

projected onto the other side of the rectangle by checking the proposed condition. One can 

observe that Figure 4.10(b) shows a result that represents the LiDAR boundary better. 

  

(a) (b) 

Figure 4.9: Example of projecting non-overlapping segments with the projection rays going 

through the LiDAR boundary points (a) and the RMBR result (b) 

side 1 

side 2 

 

side 3 

 

side 4 
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(a) (b) 

Figure 4.10: Example of projecting non-overlapping segments without the projection rays 

going through the LiDAR boundary points (a) and the RMBR result (b) 

Figure 4.11 illustrates the RMBR procedure for another building which includes three MBR 

levels. An initial LiDAR boundary of the building and its projection onto an image is presented 

in Figure 4.11(a) and (b). The same procedure demonstrated in the previous example is applied, 

and the first level MBR is shown in Figure 4.11(c). Figure 4.11(d) displays the non-overlapping 

points with the first level MBR in green circles; and Figure 4.11(e) shows their projection onto 

the first level MBR in red circles. The second level MBR (i.e., Figure 4.11(f)) is derived using 

the points in the colors green and red in Figure 4.11(e). The same procedure is repeated to find 

the non-overlapping LiDAR points with the second level MBR (i.e., green circles in Figure 

4.11(g)) and their projection onto the second level MBR (i.e., red circles in Figure 4.11(h)). 

Figure 4.11(i) shows the third level MBR in blue. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 4.11: The step-by-step illustration of the recursive MBR procedure for three MBR 

levels 
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As a result of the recursive MBR, different levels of MBRs are derived and by alternating 

subtraction and addition of each level, the final shape can be generated. This operation is 

represented by the alternating series in Equation (4.1), where k represents the RMBR levels and 

  represents the maximum number of RMBR levels. In practice, the maximum level of RMBRs 

( ) does not exceed five levels even in the most complex building cases. The maximum level of 

RMBRs determines the level of detail for the final building models and the maximum level is 

determined by the LiDAR point density. More specifically, details less than twice average point 

spacing of the dataset will not be detected.  

            ∑(  )      

 

   

 (4.1) 

Figure 4.12 presents the results of the alternating series operation according to Equation (4.1) on 

the MBRs from Figure 4.11 using different levels of detail. Figure 4.12(a) shows the single level 

MBR (  =1), and it is identical to the first level MBR. Figure 4.12(b) uses two levels of MBR (  

=2), and the results are derived by subtracting the second level MBR from the first level MBR. 

Three levels of MBR (  =3) are constructed by adding the third level MBR to the previous result 

and is shown in Figure 4.12(c). The projection of the final shape using different levels of MBRs 

onto the corresponding images are shown in Figure 4.12(d), (e), and (f). 
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(a) (b)  (c) 

   

(d) (e) (f) 

Figure 4.12: Final results using different RMBR levels: single level (a), two levels (b), three 

levels (c), projection of single level RMBR operation onto an image (d), projection of two 

levels of RMBR operation onto an image (e), and projection of three levels of RMBR 

operation onto an image (f) 

It can be seen that, even though the final shape derived from the LiDAR data show quite 

promising results in terms of the building location and general shape representation, the 

horizontal locations of the boundaries need improvement. Therefore, before performing the 

operations of different MBR levels, the determined rectangular primitives from the LiDAR data 
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will undergo a refinement process using the image data based on the model-based image fitting 

which will be discussed in Chapter 5. 

4.4 The RMBR evaluation 

The proposed RMBR algorithm decomposes the LiDAR-derived boundaries into sets of 

rectangles automatically. As previously mentioned, they are to be adjusted sequentially using a 

model-based photogrammetric technique to improve the horizontal accuracy of the LiDAR 

boundary. As mentioned earlier, the model-based image fitting in this research is based on 

rectangular primitives. However, not all the detected buildings are regular in shape and 

comprised of sets of rectangles. Moreover, depending on the noise level in the LiDAR data, the 

thresholds used for plane segmentation and the area/height thresholds for building hypotheses, 

there might be instances where non-building objects might be falsely identified as buildings. 

Figure 4.13(a) shows the LiDAR boundary of a tree object projected onto an image. The tree 

object is an example of false positive buildings (i.e., non-building objects that are classified as 

buildings) that should not have been included as a building hypothesis. Figure 4.14(a) shows the 

boundary of an irregular building, which cannot be decomposed into rectangles, projected onto 

an image. Figure 4.13(b) and Figure 4.14(b) illustrate that the RMBR algorithm generates a 

bounding rectangle which has the maximum overlapping ratio with the boundary points 

regardless of the building shape. This will give false model primitives that do not represent the 

physical boundaries of the building.  
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(a) (b) 

Figure 4.13: The final MBR of an irregular shape – non-building object: LiDAR boundary 

projected onto an image (a) and its MBR (b) 

  

(a) (b) 

Figure 4.14: The final MBR of an irregular shape – buildings that are not comprised of 

rectangles: LiDAR boundary projected onto an image (a) and its MBR (b) 

When a manual interaction is involved, the MBRs derived from the false positive buildings and 

non-right-angled-corner buildings would be eliminated for the next step. Only rectangular 
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primitives derived from the regular shape buildings shown in Figure 4.15 would have been 

incorporated with photogrammetric data.  

 
 

(a) (b) 

  

(c) (d) 

Figure 4.15: The final MBRs of regular shapes that are comprised of rectangles: LiDAR 

boundaries projected onto an image (a), (c) and their MBRs (b), (d) 

It is important to automatically discern if the buildings can be reconstructed using the proposed 

methodologies. However, a prompt manual evaluation process might not be possible, especially 
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over large urban areas; and the lack of this confirmation will slow down the whole process. 

Therefore, in this research, an automatic process to determine the quality of the derived MBRs 

(i.e., if they are from regular shape buildings) is proposed. 

Hence, the quality of the MBRs needs to be examined to verify that the buildings have regular 

shapes which include sets of rectangles. For this process, two criteria are proposed to evaluate 

the adequacy of the MBRs derived from LiDAR data. The assumption is that if the building is 

regular in shape, the similarity between the final MBR and the LiDAR derived boundary should 

be higher than the irregular-shaped ones. First, the areas of the LiDAR boundary and the final 

MBR are compared using Equation (4.2) to check the similarity of the two polygons.  

            
                      

                  
 (4.2) 

The area of the polygons enclosed by   vertices (     ) is given by Equation (4.3). Using this 

equation, the area of the LiDAR-derived boundary and the MBRs can be calculated. The MBRs 

with the area ratio close to 1 represents high similarity with the LiDAR boundary. 

  
 

 
∑(             )

   

   

 (4.3) 

Most of the MBRs with an area ratio close to 1 show similarity with the LiDAR boundaries; 

however, in some cases, the MBRs still may have areas similar to the LiDAR boundaries when 

their actual similarity is low. Figure 4.14(b) shows similar areas between the final MBR and the 

LiDAR boundary, but the MBRs do not represent the actual building boundary since the building 

is irregular in shape. Therefore, additionally, the Root Mean Squared Error (RMSE) of the 
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distances between the LiDAR boundary points and the closest side of the MBR are used to check 

the similarity of the original and regularized boundaries. The MBRs with an RMSE less than 

twice the average point spacing of the dataset confirm that the final MBRs are close to the 

LiDAR boundaries. 

Table 4.1 presents the area ratio and RMSE of the aforementioned examples in Figure 4.13, 

Figure 4.14, and Figure 4.15. The regular buildings have an area ratio close to 1 and RMSE 

values less than twice the average point spacing of the LiDAR data, (i.e., 0.88m) while the 

irregular buildings in Figure 4.13 show a low area ratio (i.e., less than 0.5) and high RMSE 

values (i.e., more than four times the average point spacing of the LiDAR data). As mentioned 

before, Figure 4.14 shows high area ratio, but the RMSE value is larger than the threshold. The 

values confirm that the proposed criteria can determine the adequacy of the MBRs to be used for 

the next step. Therefore, only MBRs with area ratios higher than 0.8 and RMSEs less than twice 

the average point spacing are declared as right-angled-corner buildings that are properly detected 

from LiDAR data.  

Table 4.1: The criteria for the model adequacy evaluation 

 Area ratio RMSE (m) 

Figure 4.13-irregular shape 0.49 4.18 

Figure 4.14-irregular shape 0.90 1.80 

Figure 4.15(a)-Regular shape 0.92 1.22 

Figure 4.15(c)-Regular shape 0.98 1.14 
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4.5 Summary 

This chapter provided the justification why a rectangular primitive is employed in this research. 

To reduce the number of model primitives while still being able to deal with any kinds of right-

angled-corner buildings, simple box primitive is chosen as an initial model. Then, it is 

demonstrated that by utilizing a rectangular primitive together with their plane parameters from 

LiDAR data, instead of a box primitive, complex buildings that are comprised of rectangles with 

various slopes can be reconstructed.  

In order to associate the LiDAR-derived boundaries from the data-driven approach in Chapter 3 

with the model-based approach without human intervention, the MBR algorithm is introduced 

and modified to achieve the purpose of this research. The modified MBR algorithm generates a 

rectangle that best represent the LiDAR-derived boundary; a rectangle with the minimum area 

that has the considerable overlap with the investigated boundary. The modified MBR algorithm 

is applied in a recursive way to decompose the boundary into rectangular primitives 

automatically. As a result, different levels of MBRs are generated and they are used to derive the 

initial model parameters which will be refined through model-based image fitting in Chapter 5. 

To automatically discern if the buildings can be reconstructed using the proposed methodologies 

(i.e., whether the investigated boundaries are derived from buildings with right-angled-corners), 

the quality of the MBRs need to be examined. Two criteria that can represent the similarity 

between the LiDAR-derived boundary and generated MBRs are proposed. Examples of the 

boundaries from the false positive buildings and non-right-angled-corner buildings were 

presented and compared to the ones from right-angled-corner buildings. 
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 Model-based building reconstruction using photogrammetric data Chapter Five:

 

5.1 Introduction 

In Chapter 3, initial building boundaries were detected from LiDAR data based on the data-

driven approach. These boundaries were automatically decomposed into sets of rectangular 

primitives through the RMBR process in Chapter 4. Also, the quality of the rectangular 

primitives was evaluated to confirm that they are derived from the buildings that are regular in 

shape (i.e., buildings with right-angled-corners). As noted before, the horizontal location of the 

resulting boundaries needs to be improved. Therefore, in this chapter, the derived model 

primitives from the LiDAR data will be refined through a model-based approach to improve the 

horizontal accuracy of the boundary while keeping the LiDAR vertical accuracy at a high level 

by integrating image information. One of the traditional 3D building reconstruction techniques, 

which is based on photogrammetric data, matches the features derived either manually or 

automatically. Although matching-based reconstruction techniques produce high quality building 

boundaries, the matching ambiguities in multiple images remains the main obstacle to overcome. 

In this regard, the derived rectangular model primitives from the LiDAR data are incorporated to 

restrict the search space and resolve the matching ambiguities in the multiple images. 

The main idea behind the model-based reconstruction is to describe the whole object using a 

predefined parametric model. Starting from the approximate values of the model parameters, 

those parameters are adjusted by minimizing the difference between the projected model, 
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represented by the initial parameters, and its realization in the imagery. Realization of the model 

in the imagery is described by its bounding edges. This approach involves a recognition step to 

determine which model must be used and where in the image it is located (i.e., selection of the 

model primitives and their initial parameter determination). In this research, rectangular model 

primitives are used and their initial parameters are determined from the LiDAR data. Then, 

through a LSA fitting, the parameters will be refined to minimize the discrepancy between the 

projected model and the edges extracted from the images.  

The main advantage of the proposed model-based reconstruction methodology, compared to the 

existing matching-based reconstruction method, is that it does not require a special procedure to 

identify any conjugate features. Therefore, even when partial occlusions exist in the images, 

which can be problematic in the case of the image-matching-based reconstruction, the model-

based image fitting can still produce reliable results.  

Since the LiDAR data information is incorporated with aerial images, which are from different 

sources, it must be preregistered to a common reference frame. Section 5.2 will discuss the 

registration of the two datasets. The details of the rectangular model parameters used in this 

research and the relationships between the involved coordinate systems will be presented in 

Section 5.3. The process to extract relevant edge information is discussed in Section 5.4. Section 

5.5 explains the details of the model-based image fitting algorithm using LSA, and Section 5.6 

proposes how to apply the algorithm sequentially to adjust multiple level MBRs.  
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5.2 Prerequisites  

To make use of the synergetic properties of combined photogrammetric and LiDAR data, the 

following prerequisite processes should be performed: Quality Assurance (QA), Quality Control 

(QC) of photogrammetric and LiDAR data, and co-registration of both datasets.  

QA activities are usually performed before the aerial mission to ensure that the quality of the 

service, item, and process meet the user’s requirements, which is comprised of the management 

activities related to data collection and includes determination of the flying height and GPS base 

station distances. The key activity in QA is the calibration procedure. To achieve the desired 

quality of the final products, all the individual system components should be accurately 

calibrated and the relationship between the various system components also should be accurately 

estimated. For the photogrammetric system, the Interior Orientation Parameters (IOPs) are 

determined through a camera calibration process. The spatial and rotational offsets between 

various system components are derived through total system calibration. A typical LiDAR 

acquisition system is composed of a Global Positioning System (GPS), an Inertial Navigation 

System (INS), and a laser scanning system. The calibration of a LiDAR system aims at the 

estimation of systematic errors in the system parameters (e.g., lever arm offset and boresight 

angles). In this research, the camera and LiDAR systems were calibrated by adopting the 

approaches in Habib and Morgan (2005) and Habib et al. (2010), respectively. 

QC is a post-mission procedure to verify whether the desired quality (i.e., data integrity, 

correctness, and completeness) was achieved. The photogrammetric QC process can be carried 

out by internal QC and external QC. Precision evaluation, internal QC, of the derived data can be 
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attained based on the redundant measurements. External QC assesses the accuracy of the final 

product through check point analysis. Internal LiDAR QC can be implemented by evaluating the 

coincidence of the common features in overlapping strips. External LiDAR QC is a similar step 

to the photogrammetric check point analysis, but it requires specially-designed LiDAR targets 

(Habib et al., 2009). 

Once the QA and QC of the photogrammetric and LiDAR data verify the quality of the datasets, 

the data can be used with confidence. Since two datasets from different sources are utilized, they 

must be registered to a common reference frame. Photogrammetric geo-referencing is the 

process of defining the camera’s position and attitude relative to the object space coordinate 

system at the moment of exposure. LiDAR data can be utilized as a source of control for 

photogrammetric geo-referencing. Due to the irregular nature of LiDAR data, point-to-point 

correspondence between photogrammetric and LiDAR data is virtually impossible. Previous 

work by Habib et al. (2008) confirmed the feasibility of using the linear and areal features 

derived from LiDAR data as a source of control for photogrammetric geo-referencing. Therefore, 

in this research, the photogrammetric georeferencing method in Habib et al. (2008) is used. 

Straight lines and planar patches are extracted from LiDAR data in a semi-automatic way and 

used as the registration primitives for photogrammetric and LiDAR dataset integration. Point-

based bundle adjustment processes with modified weight matrices are used to incorporate linear 

and planar features (Habib et al., 2008).  
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5.3 Model parameters and coordinate systems 

The model-based approach involves three coordinate systems (model, object, and image 

coordinate systems). Transformation between the coordinate systems can be performed based on 

the associated parameters as seen in Figure 5.1. More specifically, the shape and pose 

parameters are used when transforming from the model to the object coordinate systems, and the 

exterior orientation parameters (EOP) and interior orientation parameters (IOP) are utilized when 

transforming from the object to the image coordinate systems. The following subsections will 

discuss the parameters of the rectangular primitives and the relationships between the coordinate 

systems.  

 

(a) (b) (c) 

Figure 5.1: The involved coordinate systems in the model-based approach and their 

relationships: model coordinate system (a), object coordinate system (b), and image 

coordinate system (c) 

5.3.1 Model parameters and model to object coordinate system transformation 

A model has its own coordinate system (U, V, W) and the origin is defined at a reference point 

(e.g., the lower left corner point on a building rooftop) shown as a blue circle in Figure 5.2. The 

U and V axes are aligned along the sides of the rectangle, and the W axis is normal to the surface 
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of the rectangle.    and    are the shape parameters of the rectangular model primitive as 

introduced in Chapter 4.  

 

Figure 5.2: Definition of the rectangular model coordinate system 

The object coordinate system is the reference coordinate system used for the LiDAR building 

detection in Chapter 3. X0, Y0, Z0 refer to the position of the reference point on the rectangle (i.e., 

the origin of the model coordinate system, vertex 1 (  )) in object space. The   ,   ,    

parameters are the angles that need to be applied to the object coordinate system in order for the 

object coordinate system to become parallel to the model coordinate system. The relationship 

between the coordinates of the rectangle vertices in the model and object coordinates can be 

expressed according to Equation (5.1). It is assumed that the rotation angles (  ,   ,   ) are 

applied in the same sequence as in traditional photogrammetric procedures (Kraus, 1993). Table 

5.1 lists the four vertices of a rectangle in the model and object coordinate systems. 
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Table 5.1: Vertices of a rectangle in the model and object coordinate systems 

Vertex 
Model 

coordinates 
Transformed coordinates in object coordinate system 

   (0, 0, 0) (  ,   ,   ) 

 2 (  , 0, 0) (        ,       2 ,       3 ) 

 3 (  ,   , 0) (             2,       2 +   22,       3     32) 

 4 (0,   , 0) (       2,      22,       32) 

As mentioned in Chapter 3, precise plane information (i.e., the plane parameters a, b, c) for each 

building’s rooftop is available from the  i AR plane segmentation. Therefore, Z0 can be 

expressed as a function of the plane parameters and the X0, Y0 coordinates of the reference point 

according to Equation (5.2). 

    (                     )            (5.2) 

Using rectangular primitives, gable-roof buildings and shed-roof buildings can be modeled 

without the necessity of defining them in advance as different models. 

Previous literature (Suveg and Vosselman, 2000; Tseng and Wang, 2003; Vosselman and 

Veldhuis, 1999) only use a rotation angle around the Z-axis (  ), and    and    are not 

considered, assuming that that buildings stand vertical with horizontal rooftops. For more general 

building models (i.e., not only horizontal rooftops, but also tilted rooftops), the    and    

angles can be defined with high accuracy using the orientation of the normal to the planar 

surface. The relationship between the normal to the plane in the model coordinate system (0, 0, 

1) and the object space (  ,   ,   ) can be expressed using Equation (5.3). 
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The relationship between the normal to the plane in the object space (  ,   ,   ) and the plane 

parameter ( ,  ,   from Equation (5.2)) is expressed in Equation (5.4). From Equation (5.4),    

can be derived as       (  ) and    can be derived as       (       ).  
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In summary, among the aforementioned pose (  ,   ,   ,   ,   ,   ) and shape (  ,   ) 

parameters,    and    are accurately defined by the normal to the surface of the building 

rooftop plane from the LiDAR segmentation process, and    is defined as a function of   ,   , 

and the plane parameters. Only approximate values are available from the previous step for the 

remaining parameters. Thus, the model parameters in need of refinement are:   ,   ,   ,   , and 
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   as illustrated in Figure 5.3. These five parameters are estimated by integrating information 

from images, where the building in question appears through the model-based image fitting. One 

should note that a good estimation of the initial values of the five parameters is already available 

from LiDAR data segmentation and the RMBR procedure.  

 

Figure 5.3: Rectangular primitive and related parameters used in this research 

5.3.2 Object to image coordinate system transformation 

The rectangular primitive in the object space is transformed into an image coordinate system to 

integrate image information as discussed in the previous section. The EOPs and IOPs of the 

images are derived from the registration process and camera calibration, respectively. The 

vertices of the rectangle can be projected onto the image using the collinearity equations with the 

derived EOP and IOP according to Equation (5.5).  
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(5.5) 

where,  

  ,   : projected image coordinates of vertex    

  ,   ,    : coordinates of vertex   in object coordinate system as shown in Table 5.1 

       : image coordinates of principal point and principal distance 

     : contribution of the distortions 

  ,   ,   : the object coordinates of the perspective center 

   
   33

 : the elements of the rotation matrix that depend on the rotation angles (  ,   ,   ) 

Figure 5.4(a) depicts the projected rectangular primitive under consideration into the imagery 

using the provided EOP, IOP, and initial model parameters. The initial model parameters are 

acquired from the LiDAR data segmentation and RMBR process so the initial projection should 

be close to the actual outlines of the building roof on the aerial photo.  
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(a) (b) 

Figure 5.4: Projected rectangular model primitive onto the image space (a) and 

the effective buffer zone for one side of the rectangle (      ) (b) 

Based on the initial projection of the model onto the images, a buffer is set around each side of 

the rectangle and only the edge pixels within the buffer are utilized for the next step. Figure 

5.4(b) shows the selected edges within the buffer. The model parameters will be updated through 

a LSA, which will minimize the distance between the projected model and the extracted edges 

from the imagery. More details of the edge detection process are discussed in the next section.  

5.4 Edge extraction 

All the extracted edges from the images do not necessarily represent the rooftop boundaries due 

to shadows, noise, or irrelevant features near or on the roofs. Since using incorrect edges will 

lead to inaccurate model parameters, filtering irrelevant edge information is important. Figure 

5.5 shows the procedure to extract only the relevant edge pixels from the images for the model-

based image fitting process. The discrete edge points are first detected by applying the Canny 

edge detector (Canny, 1986) to all the images in which the building appears. The Canny edge 

detector is one of the most common edge detection methods used in the image processing 
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research, which theoretically produces thin edges close to the true edges. After a buffer is 

defined around the initial boundary of each rectangular primitive in the images, only the edge 

points that are inside the defined buffer zone are considered as candidate edge pixels. Figure 

5.6(a) shows an example of the initial rectangular model projected onto one of the images it 

appears in. 

Imagery

Canny edge detection

Filtering based on orientation 

using gradient direction

Filtering based on length

after edge linking

Relevant edges

Edge selection within buffer zone

 

Figure 5.5: Edge extraction and filtering process 

Ideally, the Canny edge detector should yield sets of pixels that are one pixel thick, lying on 

building boundaries; however, as seen in Figure 5.6(b), it produces unnecessary edges near the 

building boundary because of noise, non-uniform illuminations, shadows, and other objects. To 

exclude irrelevant edges, the position and orientation information of the initial model are 
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incorporated. Since a decent approximation of the derived rectangular primitive from the LiDAR 

data is available, only the edges within the buffer around the projected model and whose 

orientation is similar to the orientation of the sides of the projected model are selected. The 

gradient angle of the extracted edges is compared with the angle of the normal vector of the 

initial model line (i.e., each side of the rectangle) using Equation (5.6). Note that the direction of 

the edge is perpendicular to the gradient vector. 

| (   )    (     )|     (5.6) 

where,  

 (   ) is the direction angle of the gradient vector of an edge pixel at (x, y) 

 (     ) is the angle of the normal vector of the initial rectangular model line (i.e., side of 

rectangle) 

A is a positive angle threshold 

After that, to remove unnecessary small segments, edge linking is performed on the edge pixels, 

and segments whose lengths are smaller than a given threshold are removed. This process is 

applied to all the images where the building primitive appears. Figure 5.6(c) shows the edge 

linking results where different colors represent different linked edge groups. In summary, only 

the edge pixels within the set buffer, which have similar orientation to the projected model and 

whose lengths are longer than a predefined threshold, are used for the adjustment as seen in 

Figure 5.6(d). When compared with Figure 5.6(b) (detected edges using the Canny operator), 

unnecessary edge information is removed. 
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(a) (b) 

  

(c) (d) 

Figure 5.6: Aerial photo over the area of interest (a), Canny edge detection (b), 

filtered/linked edges where different grouped lines are shown in different colors (c), and the 

filtered / linked edges displayed on the image (d) 

5.5 Model-based image fitting 

This section addresses how a model-based image fitting algorithm adjusts the model parameters 

using the extracted edge information from the corresponding images. The approximate model 

parameters are simultaneously refined through a LSA procedure using all the images in which 

the building rooftop in question appears. This is achieved through observation equations that 

minimize the normal distance between the sides of the projected model and the detected edge 
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pixels within the buffer around the sides. This constraint is applied to all sides of the rectangle in 

all the images while refining the model parameters. While the concept of the LSA with normal 

distance minimization is straightforward, its implementation is complex and will be discussed in 

Subsection 5.5.1. Therefore, for simplicity in the implementation, modification to the traditional 

Gauss Markov stochastic model is incorporated by assuming point-based observation. The 

details of this implementation will be described in Subsection 5.5.2. 

5.5.1 LSA based on the normal distance constraint 

Figure 5.7 depicts one side of the initial rectangle derived from the LiDAR data and the extracted 

edges around it. The normal distance (  ) from one edge pixel (   ,    ) to a side of the 

rectangle, which is the projected line with end points (     ) and (         ), is formulated in 

Equation (5.7) as a function of the provided EOPs, IOPs, and initial model parameters. In this 

case, observations are EOPs, IOPs,   ,   , and plane parameters (     ). Table 5.1 presented 

the object coordinates of the four corner points (        ) expressed as a function of the model 

parameters.  

 
  

(a) 
 

 
(b) 

Figure 5.7: Normal distance between the edge pixel and one side of the initial rectangle (a) 

and the adjusted side of the rectangle after the model-based image fitting (b) 
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|(       )    (       )    (             )|

√(       )2  (       )2
 0 

where, (     )   (                  ), 

(        )   (              ),
  

(         )   (                        ), 

(              )   (              ),  

(5.7) 

Since the normal distance is a non-linear function between the unknown parameters and 

observations, it should be linearized using Taylor series expansion which can be expressed using 

the Gauss Helmert model, also known as the general case of least squares estimation as seen in 

Equation (5.8).  

                     (0  )          
2    (5.8) 

The Gauss Helmert model can be transformed into the Gauss Markov model with the appropriate 

variable substitution (Koch, 1999), which can be written as Equation (5.9). 

                        (0  )          
2(     𝑇) (5.9) 

In this equation,   represents the calculated normal distance using the approximate values of the 

model parameters,   is the corrections to the initial values, and the design matrix ( ) is derived 

using the partial derivatives of    with respect to the unknown model parameters.   is the 

random error which is normally distributed with a zero mean and variance-covariance matrix,  . 

The statistical properties of the e are expressed using the variance-covariance matrix ( ) derived 

through the law of error propagation using the partial parameters with respect to the observations 

( ) in Equation (5.7). 
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The LSA procedure aims at estimating the unknown parameters, which minimize the sum of 

squares of the weighted residuals ( 𝑇  ), and it iterates until the difference in the corrections is 

smaller than a set threshold. It is worth mentioning that the buffer size around the sides of the 

projected rectangle for the edge detection and filtering decreases as the solution is converging. 

The traditional least-squares solution is shown in Equation (5.10) (Mikhail, 1976). In addition, 

the stochastic properties of the estimated parameters can be derived through the variance-

covariance matrix of the adjusted parameters as seen in Equation (5.11). Also, the overall quality 

of the adjustment can be evaluated using the a-posteriori variance factor shown in Equation 

(5.12).  

 ̂  ( 𝑇  )   𝑇                (Solution Vector) (5.10) 

 { ̂}   ̂ 
2( 𝑇  )    ̂ 

2            (Variance-Covariance Matrix) (5.11) 

 ̂ 
2  ( ̃𝑇  ̃) (   )    (A-posteriori Variance Factor) 

(5.12) 
where,   is the number of extracted and filtered edge pixels, and   is the number of 

unknown parameters 

As mentioned, the design matrix A is derived using partial derivatives for    with respect to the 

unknown parameters as seen in Equation (5.13). This can be derived using the Chain rule and an 

example of the derivation is shown in Equation (5.14).  

     [
   

   
 
   

   
 
   

   
 
   

   
 
   

  
] (5.13) 
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(5.14) 

Due to the complexity of the partial derivatives using the normal distance minimization, 

alternative implementation utilizing modified LSA is employed.  

5.5.2 Modified LSA 

As mentioned above, the normal distance minimization constraint makes LSA implementation 

complex. Therefore, in this research, an alternative implementation, modified LSA, is employed. 

To minimize the normal distance between the projected rectangular model and the extracted and 

filtered edges, the corner points of the adjusted rectangle should be aligned along the line 

connecting the edges as seen in Figure 5.8(b). When one assumes that the detected and filtered 

edge pixels and the vertex point of the projected rectangle as conjugate-points, the vertex point 

(  ) and the edge points(   ) are not corresponding to each other and have a discrepancy vector 

  between them. Therefore, these points will be referred to as pseudo-conjugate points. Each 

edge pixel after the linking and filtering process,    , contributes one set of observation 

equations assuming that one of the vertex points of rectangle (  ) and edge pixel (   ) are 

conjugate.  
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(a) 
 

 
(b) 

Figure 5.8: Pseudo-conjugate points (i.e., the vertex of the rectangle and an edge pixel) (a) 

and the additional unknown vector D (b) 

The mathematical model describing the discrepancy between the pseudo conjugate points (   , 

   ) and (  ,   ) will take the form in Equation (5.15).  

            =  (                )        

            =  (                )        
(5.15) 

where,  

   and    are the components of the discrepancy vector ( ) between the adjusted vertex after 

model-image fitting (  (        )(     )) and the edge point (   (       )) in the   and   

directions, respectively.  

The stochastic model describing the mathematical relationship among the pseudo-conjugate 

points can be represented by the Gauss Markov stochastic model in Equation (5.16). 

                (0  )                  
2    (5.16) 

𝑣𝑖(𝑥𝑖  𝑦𝑖) 𝑝𝑒𝑑(𝑥𝑒𝑑  𝑦𝑒𝑑) 

 

𝑣𝑖  (𝑥𝑖   𝑦𝑖  ) 

𝓎 
𝑉  

model-based 

image fitting 
one side of the adjusted rectangle  

𝑣𝑖(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) 

𝑝𝑒𝑑(𝑥𝑒𝑑  𝑦𝑒𝑑) 

𝐷 

 

one side of initial rectangle  
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The design matrix A is derived through the partial derivatives of   ,   with respect to the 

unknown parameters as seen in Equation (5.17), and an example for the chain rule can be seen in 

Equation (5.18). It can be seen that the populated A matrix gets simpler than the A matrix from 

the previous implementation.  

 2   

[
 
 
 
 
   
   

   

   

 

   
   
   

   

 

   
   

   

   

 

   
   

   

   

 

   
  
   

  ]
 
 
 
 

 (5.17) 

   
   

 
   
   

 
   

   
 

   
   

 
   
   

 
   
   

 
   

   
 (5.18) 

Appendix A shows the partial derivatives of collinearity equations and the partial derivatives of 

each rectangle vertex with respect to each parameter. 

The modified LSA is introduced in Habib et al. (2010) to consider the model in Equation (5.16) 

without estimating the additional unknown vector ( ) during the LSA. This can be achieved by 

modifying stochastic properties of the random errors to satisfy the condition (    0) as 

presented in Equation (5.19). This condition implies that the modified weight matrix    is not 

positive-definite; thus, the inverse matrix      
 does not exist. Therefore, the modified variance-

covariance matrix will be represented as Equation (5.19).  

  { }     
2      where       0 

where,     is the Moore-Penrose pseudo inverse of    

(5.19) 

The LSA target function can be rewritten as Equation (5.20) using the modified weight matrix 

(  ). By incorporating the fact that     0, the LSA target function reduces to the form in 

Equation (5.21), which can be expanded to Equation (5.22).  



 

87 

 𝑇    (      )𝑇  (      )     |    (LSA Target function) (5.20) 

 𝑇    (    )𝑇  (    )     |  (LSA Target Function) (5.21) 

 ( )   𝑇     𝑇 𝑇       𝑇 𝑇       |  (LSA Target Function) 
(5.22) 

The solution vector ( ̂) that minimizes  ( ) can be obtained by differentiating  ( ) with 

respect to   and equaling it to zero (Equation (5.23)). Thus, the solution ( ̂) to the LSA target 

function is defined by Equation (5.24). One should note that although the modified weight matrix 

(  ) is not a full rank matrix, the solution is available due to the large number of observations. 

Using the law of error propagation, the variance-covariance matrix of the solution vector,  { ̂}, 

can be obtained as in Equation(5.25). 

  

  
   𝑇       𝑇    0 (5.23) 

 ̂  ( 𝑇   )   𝑇        𝑇    (Estimated Unknowns) 

where     𝑇    
(5.24) 

 { ̂}    
2    (Variance-Covariance Matrix) (5.25) 

 

The a-posteriori variance factor (  ̂ 
2) for the modified LSA can be derived as follows. The 

expected value of the sum of squares of the weighted predicted residuals in Equation (5.26) can 

be reorganized to produce the form in Equation (5.27) by substituting the derived solution for  ̂ 

from Equation (5.24). Equation (5.27) can be manipulated as seen in Equation (5.28) based on 

the basic properties of the trace; the trace of a scalar equals to the scalar (i.e., tr(S) = S) and the 
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trace operation is commutative (i.e., tr(AB) = tr(BA) ) (Koch, 1988). Equation (5.28) yields 

Equation (5.29) using the properties that tr(A) + tr(B) = tr(A+B) and  {  ( )}    { ( )} 

(Koch, 1988). 

 ( ̃𝑇   ̃)   {(    ̂   )𝑇  (    ̂   )}   {(    ̂)𝑇  (    ̂)} (5.26) 

 ( ̃𝑇   ̃)   { 𝑇     𝑇       𝑇   } (5.27) 

 ( ̃𝑇   ̃)   {  (    𝑇)    (       𝑇    𝑇)} (5.28) 

E( ̃T   ̃)      [E(  T)   N   T  E(  T)]      (I   N   T  )E(  T) 

wh     I  is an     identity matrix 
(5.29) 

The variance-covariance matrix of the observations vector,  { }, can be defined as seen in 

Equation (5.30) and therefore the term  (  𝑇) can be derived according to Equation (5.31).  

 { }    
2     {(      )(      )𝑇} (5.30) 

 (  𝑇)    
2    (    )(    )𝑇

   
2       𝑇 𝑇     𝑇    𝑇 𝑇    𝑇 

(5.31) 

Equation (5.29) can be simplified to Equation (5.32) by substituting  (  𝑇) in Equation (5.29) 

with Equation (5.31) and using the fact that     0. Equation (5.33) can be stated based on the 

properties that   (  )      (  ) (given that    is idempotent) and     (  )  

    (           ) (Kock, 1988). Since   (     )    (rank of the modified matrix as shown 

in Equation (5.33)) and             (where     is Moore–Penrose pseudo inverse), Equation 

(5.32) can be simplified to Equation (5.34). As a result, the a-posteriori variance factor (  ̂ 
2) can 

be derived according to Equation (5.35). 
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 ( ̃𝑇   ̃)    
2    (       𝑇  )      

2          
2      𝑇         (5.32) 

  (     )      (     )     (              )           (5.33) 

 ( ̃𝑇   ̃)    
2    

2         
2    

2       
2    

2  

wh           h   u b      u    w             
(5.34) 

 ̂ 
2  

 ( ̃𝑇   ̃)

(   )
 

(    ̂)𝑇  (    ̂)

(   )
 (5.35) 

In summary, the LSA solution to the stochastic model in Equation (5.36) can be derived using 

Equations (5.24), (5.25), and (5.35). The modified LSA solution is similar to the solution of the 

traditional Gauss Markov model with the exception that the redundancy is evaluated as the 

difference between the rank of the modified weight matrix ( ) and the number of unknowns ( ).  

                (0   )                   
2             0 (5.36) 

It is therefore proven that by modifying the weights of the residuals, the additional unknown 

vector, D, is eliminated from the estimation while still being able to use a similar solution to the 

traditional Gauss Markov model. Consequently, one can estimate the model parameters while 

dealing with the non-conjugate points (i.e., the edge pixels and end vertices of the sides of the 

rectangle) using the modified LSA in the same manner it would deal with conjugate points using 

traditional LSA. For this purpose, the weight matrix ( ) needs to be modified as follows (  ). 

First, a local coordinate system (    ) is defined where    axis is aligned along the extracted 

edge pixels, and the    axis is perpendicular to the    axis as seen in Figure 5.9. The relationship 

between the image coordinate system (  ) and a local coordinate system (    ) is described 

using the angle ( ) between the    axis and the   axis (Equation (5.37)).  
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Figure 5.9: The relationship between the image and the local coordinate systems for the 

weight modification 

[
  

  ]    [
 
 ]  [

        
         

] [
 
 ] (5.37) 

The original weight matrix,    , is defined as the inverse of the variance-covariance matrix    , 

which depends on the accuracy of the edge extraction as seen in Equation (5.38). The accuracy 

of the extracted edge pixel is determined by its gradient intensity (    and    ). 

       
   [

   0
0    

] (5.38) 

The weight of the points in the local coordinate system (     ) can be derived using the law of 

error propagation according to Equation (5.39). 

             
𝑇  [

        

        
] (5.39) 

Then, the weight matrix can be modified according to Equation (5.40) by assigning a zero value 

for the weights along the line, to obtain a new weight matrix   
     in the      coordinate 

system.  

  
      [

0 0
0    

] (5.40) 

𝓎 𝑉  

𝜃 
   

detected/filtered edge pixels 

for one side of the rectangular 

primitive 
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Finally, the modified weight matrix   
   in the image coordinate system (  ) can be derived as 

shown in Equation (5.41). 

  
     

𝑇  
       (5.41) 

Using the modified weight matrix in Equation (5.41), one can confirm that the modified weight 

matrix satisfies the given condition (i.e.,   
     0) (Equation (5.42)). One should note that 

after the model-based image fitting, the discrepancy vector in the      coordinate system 

(       ) only has    components and    components is zero.  

  
      

𝑇  
      [

  

  
]    

𝑇  
    [

   

0
]    

𝑇 [
0 0
0    

] [
   

0
]  0 (5.42) 

In summary, the model-based image fitting aims at estimating the model parameters by 

minimizing the difference between the projected model onto the image space and its realization 

in the imagery. The projected model is defined by the IOPs and EOPs of the utilized cameras, the 

plane parameters from the LiDAR building detection process, and the current estimates of the 

model parameters. The model realization in the imagery is defined by the detected and filtered 

edges. This fitting can be simultaneously conducted for all the images in which the rectangular 

primitive appears and for all the sides of the rectangle. It should be noted that there is no 

limitation in terms of the number of images used. The use of a single image would produce 

satisfactory results; however, the use of more images is expected to provide various views of the 

building, which decreases the impact of occlusion. 
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5.6 Sequential model-based image fitting 

For complex buildings, different levels of rectangular primitives are derived from LiDAR data 

using the recursive MBR procedure described in Section 4.3. Since different MBRs have shared 

vertices between the levels and have the same orientation, the results from the previous level 

MBRs can be incorporated as apriori information when adjusting the next level MBRs. This 

section discusses how the modified LSA is sequentially applied to all the rectangular primitives 

while incorporating this apriori information as fixed constraints during the LSA.  

Figure 5.10 illustrates the flowchart of the proposed sequential model-based image fitting. There 

are three different ways (i.e., two general cases and one gable-roof case) to constrain the prior 

information depending on the relationships between the different level MBRs. The sequential 

model-based image fitting starts with determining whether the building in question belongs to 

the gable-roof case or either of the general building cases. As it will be demonstrated later, a 

building can be identified from LiDAR data as a gable-roof through adjacency analysis of the 

neighborhood planes and the intersections of them. Then, the general cases can be distinguished 

into two cases (i.e., common corner case and corner on side case) by checking two conditions. 

First, does the second level MBR share any common corner points with the first level MBR? 

Secondly, when the different level MBRs do not have shared corner points, do any corner points 

of the second level MBR exist between two corner points from the first level MBR? The 

following subsections will present diagrams of popular types of buildings (i.e., L-shape, U-

shape, gable-roof, T-shape, and multiple level building) to demonstrate the sequential adjustment 

process of multiple level MBRs.  
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Initial models

Any common corner points with the 

previous level MBR?

Fix the corner point as the reference point

Fix orientation 

Any corner points on the line 

between two corners from the previous 

level MBR?

Introduce the reference point as a function of λ 

and two corner points 

Fix orientation 

Modified LSA

Adjusted models
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Fix orientation 

1st level MBR?
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Yes Yes
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No
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Gable roof or General case

Final level?

Boolean operation

Final model

 

Figure 5.10: Flowchart of the sequential MBR adjustment
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An L-shape building is a typical example of the common corner case in the general case. It 

includes two MBR levels as shown in Figure 5.11(a). The first level MBR is adjusted using the 

modified LSA proposed in the previous section; and as a result, five model parameters (  ,   , 

   ,    , and   ) are refined. The second level MBR is adjusted in the same manner as the first 

level MBR except that the results from the first level MBR are incorporated as aprior 

information. This is implemented by zeroing the respective rows and columns in the N and C 

matrix except the diagonal element. In this case, one of the vertices of the second level MBR is 

shared with the first level MBR ( 2 in Figure 5.11(b)). Since the four corner points of the first 

level MBR are accurately defined from the first level MBR model-based image fitting, the 

adjusted coordinates of the shared corner point are used as a reference point of the second level 

MBR (red circle in Figure 5.11(c)). The reference point coordinate is fixed as a constraint and 

not solved during the adjustment. The orientation of the second level MBR follows the first level 

MBR, thus the    angle is fixed during the adjustment. Therefore, the unknown parameters to be 

estimated reduce to the dimensions of the rectangle, which are   2 and   2. This can be 

implemented by replacing the values corresponding to   ,   , and    in each parameter location 

with zero in the N matrix and C matrix except the diagonal elements during the LSA. It should 

be noted that only the edges from the actual building boundaries are considered during the LSA. 

The implementation is realized by disregarding the edge pixels that do not belong to the parts 

which do not correspond to the rooftop boundary within the current MBR level. The zones in 

gray color define the buffer around the physical building boundary as seen in Figure 5.11(b) and 

Figure 5.11(c). Figure 5.12(b) and (d) show the actual edges used for the adjustment for each 
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level. For the second level MBR, the edge pixels from two sides of the rectangle are used for the 

adjustment, rather than all four sides. 

 

 
 

(a) (b) (c) 

Figure 5.11: L-shape building (a), first level MBR (b), and second level MBR (c) 

  

(a) (b) 

 

  
(c) (d) 

Figure 5.12: L-Shape building: Initial MBRs projected onto image (a), edges used for the 

first level MBR adjustment (b), edges used for the second level MBR adjustment (c), and 

adjusted MBRs projected onto image (d) 

    

    

  2 

  2 

 

   

   

 

 

 

(P) 

   

   (     ) 

 

 

 

 

(P) 

 2 

   

 

 

 

(P) 

 3 

   

 

 

 

(P) 

 2 

   

 

 

 

(P) 

Ref. point 

 

 

(P) 

Ref. point 

 

 

(P) 



 

96 

The second instance of the general case (i.e., corner on side case) can be explained best using a 

U-shape building. This U-shape building is comprised of two MBR levels which do not have any 

shared corner points between them (Figure 5.13(a)).  

 

 
 

(a) (b) (c) 

Figure 5.13: U-shape building (a), first level MBR (b), and second level MBR (c) 

The first level MBR is adjusted through the LSA (Figure 5.13(b)). In this case, there is no 

common corner point between the first level MBR and the second level MBR. Instead, one of the 

corner points of the second level MBR exists along the line between the two corner points of the 

first level MBR ( 2 and  3 in Figure 5.13(c)). Hence, the reference point (  ,   ) for the second 

level MBR can be expressed as a function of the two corner points of the first level MBR ( 2 and 

 3) by introducing the scale factor   according to Equation (5.43). The orientation angle is the 

same as the first level MBR. Consequently, the number of unknowns for the second level MBR 

becomes three, which are   2,   2, and  . 
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[
  

  
]  [

  

  
]   [

  

  
 

  

  
] 

where A and B are the first level MBR corner points 

(5.43) 

The last case is a gable-roof building. As mentioned, this building case can be automatically 

identified from the LiDAR data through adjacency analysis and the intersection of neighboring 

planes. After LiDAR data segmentation in Chapter 3, each plane is checked for any neighboring 

groups that are adjacent to each other. This is done by comparing the distance from the centroid 

of each plane to the farthest point of its boundary (  , and   ) with the distance between the 

centroid of each plane (   ). As seen in Figure 5.14(a), adjacent planes satisfy the condition in 

Equation (5.44). Figure 5.14(b) shows that when two planes are not adjacent the condition is not 

satisfied.  

(     )       (5.44) 

 

  

(a) (b) 

Figure 5.14: Adjacent neighboring planes (a) and non-adjacent neighboring planes (b) 

Once adjacent neighboring planes are identified, the intersection line between the neighboring 

planes is generated. To avoid the intersection of the building primitives that are almost parallel 

and/or coplanar, the intersection angle between the two planes is checked. If the angle is less 
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than a pre-defined threshold, the intersection line is not considered for further processing. After 

this analysis, the gable-roof buildings are identified with their intersection line. Gable-roof 

buildings can be treated as two separate rectangular primitives; however, since LiDAR data 

produces accurate plane parameters, precise boundary segments between the two sides of a 

gable-roof can be generated by intersecting the two planes as seen in Figure 5.15(b). Since the 

intersection of the planes results in an infinite line, two end points are defined by projecting the 

segmented points onto the intersection line and choosing the end points on the line. Thus, a 

restriction is imposed that the reference point should exist along the intersection line of the two 

planes. The reference point is defined using the two end points of the LiDAR intersection line 

based on Equation (5.43). Using these two end points, the orientation angle of the building can 

be derived. Hence, a gable-roof model has one un nown parameter λ for the reference point and 

two shape parameters for the dimensions of each side of the roof.  
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B

A

 

(a) (b) (c) 

Figure 5.15: Gable-roof building (a), intersection of two LiDAR derived planes (b), and 

adjustment of gable-roof (c) 

Most of the right-angle-corner buildings can be reconstructed based on these three cases and/or a 

mixture of them. Following are two more examples of buildings having more than one second 

level MBR and more than two MBR levels.  

Figure 5.16(a) shows a T-shape building which has one first level MBR with two second
 
level 

MBRs. After performing the first level MBR adjustment as seen in Figure 5.16(b), two second 

level MBRs are adjusted independently. For each second level MBR, shared corner points with 

the first level MBR are found, which are chosen as the reference points (circles in Figure 

5.16(c)). The accurate coordinates of the corner points (   and   ) and the orientation of the 

building are known as a result of the first level MBR adjustment. Therefore, the length and width 

of the second level MBRs are adjusted using the edge information extracted within the buffer, 

which is the shaded zone shown in Figure 5.16(c). This can be implemented by manipulating the 

N and C matrix as mentioned in the previous example of corner overlapping case.  
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(a) (b) (c) 

Figure 5.16: T-shape building (a), first level MBR (b), and second level MBR (c) 

Another example is a building with three MBR levels, which were presented in Figure 4.11 and 

shown below in Figure 5.17. All the levels of MBRs are adjusted sequentially in the same 

manner. After the first level MBR adjustment, the second level MBR is adjusted using the result 

of the first level MBR. Similar to the L-shape case, the second level MBR has a shared corner 

point with the first level MBR; therefore, the adjusted corner point from the first level MBR 

adjustment will be used as a reference point for the second level MBR. Since they also have the 

same orientation, second level MBR LSA will solve for the length and width. Next, the third 

level MBR is adjusted by incorporating the result from the second level MBR. As seen in Figure 

5.17(c), the third level MBR has a shared corner point with the second level MBR and it has the 

same orientation as the second level MBR, which is also the same as the first level MBR. The 

adjusted corner points from the second level MBR adjustment is incorporated as a reference 

point. Thus, the corresponding rows/columns in the N and C matrix is zeroed except the diagonal 

elements while only solving for two parameters (  3, and   3).  
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(a) (b) 

B

  

(c) (d) 

Figure 5.17: Three level building (a), first level MBR (b), second level MBR (c), and third 

level MBR (d) 

Figure 5.18(a) presents three levels of initial models derived from the LiDAR data (Section 4.3) 

projected onto an image. Different colors represent different MBR levels. The projection of the 

results after the proposed sequential model-based image fitting is shown in Figure 5.18(b). 
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(a) (b) 

  

(c) (d) 

Figure 5.18: Initial MBRs projected onto an image (a), adjusted MBRs projected onto an 

image (b), final shape derived from only LiDAR data projected onto an image (c), and final 

shape adjusted using photogrammetric data projected onto an image (d) 

After all the rectangular primitives are adjusted sequentially, the final model is obtained by 

alternating the subtraction and addition of each level of the adjusted rectangle. Figure 5.18(c) and 

(d) show the final shape projected onto an image. The final shape derived from LiDAR data as a 

result of the RMBR process (Figure 5.18(c), which was presented in Figure 4.17, can be 
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compared with the shape after the proposed adjustment based on the image data (Figure 5.18(d)). 

One can confirm that the accuracy of the building boundary is improved when visually checked. 

The determination of different cases is carried out automatically by checking if there are any 

shared corner points (i.e., common corner case), if any point falls on the side of the rectangle 

(i.e., corner on the side case), or if two neighboring planes intersect (i.e., gable-roof case). After 

the sequential model-based image fitting is finished, the quality of adjustment can be checked 

through the qualitative analysis as presented in Figure 5.18 by projecting the final shape onto an 

image. As a quantitative analysis, the stochastic properties of the LSA will be used. The overall 

quality of the adjustment will be evaluated using the a-posteriori variance factor. The stochastic 

properties of the estimated parameters will be derived through the standard deviation of the 

adjusted parameters. Also, to check the accuracy of the final product, the derived coordinates of 

the corner points of each building using the proposed methodology will be compared with the 

one derived from image-matching reconstruction based on manual image measurement.  

5.7 Summary 

This chapter employed the model-based approach integrating information from aerial images to 

improve the horizontal location of the derived model primitives from LiDAR data. To ensure 

that both the photogrammetric and LiDAR datasets could be combined with their fully synergetic 

properties, prerequisite procedures of QA, QC, and co-registration of both datasets were 

performed. 
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Model-based reconstruction describes the building using a predefined parametric model. In this 

research, rectangular model primitives were used and the initial model parameters were derived 

from LiDAR data. Among the initial model parameters, the parameters to be calculated from 

LiDAR data and the model parameters to be refined through model-based reconstruction were 

defined. The relationships between the involved coordinate systems were explained. Starting 

from the approximate values of the model parameters, the parameters to be refined were adjusted 

by minimizing the difference between the projected model represented by the initial parameters 

and its realization in the imagery. Realization of the model in the imagery is described by its 

bounding edges. The edge detection and filtering process was included to ensure that relevant 

edge pixels that can represent building boundaries were extracted. The discrepancy between the 

projected model and the edges extracted from images were minimized through a least-squares 

adjustment fitting while refining the model parameters. For the simplified implementation of the 

LSA, modified LSA was used. Complex buildings include different levels of rectangular 

primitives. The modified LSA was sequentially applied to all the rectangular primitives while 

incorporating information from the previous level MBRs as apriori constraints. The detailed 

procedure was discussed with examples of typical building types. 
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 Experimental results  Chapter Six:

 

6.1 Introduction 

The previous chapters discussed the procedures to generate 3D building models of right-angled- 

corner buildings automatically using both LiDAR and photogrammetric data. In the experimental 

phase, building hypotheses were first generated from LiDAR data under the assumption that 

building rooftops are planar and off-ground (Chapter 3). To refine the LiDAR derived building 

boundaries, a rectangular model-based approach was employed in this research. Therefore, the 

building boundaries were decomposed into sets of rectangular primitives. The validity of the 

derived primitives was established using the similarity criteria between the LiDAR building 

boundaries and the derived primitives (Chapter 4). Finally, the sets of primitives were adjusted 

sequentially using the available overlapping images through model-based image fitting (Chapter 

5). To evaluate the feasibility of the proposed methodology, our experimental results are 

presented in this chapter using real LiDAR and image data. 

6.2  Dataset description 

To verify the proposed methodology, a dataset over the University of Calgary, Canada was used. 

The dataset includes multiple aerial images and multiple strips of airborne LiDAR data collected 

over the same area. A brief description of the datasets is provided in Table 6.1. 
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Table 6.1: Summary of data description 

 Photogrammetric data LiDAR data 

System Analog camera RC30 Optech 3100 

Flying height 770m 1,000m and 1,400m 

Ground Sampling Distance 

for image / 

Average point density for LiDAR 

6cm 

1.3 points/m
2
 

for combined data 

from different flying heights 

Planimetric accuracy 6cm 
50cm and 70cm for each flying 

height 

Vertical accuracy 14cm 15cm 

 

Nine photos were captured by an analog camera (RC30) at an average flying height of 770m and 

then were digitally scanned at a resolution of 12µm. The ground sampling distance (GSD) for the 

scanned images was 6cm. The LiDAR dataset was captured by an Optech 3100 system from 

flying heights of 1,000m and 1,400m. Ten strips were combined after the LiDAR QA/QC 

procedures and the average point spacing of the combined strips was approximately 0.88m. The 

main campus area among the University of Calgary dataset was selected for further examination 

(i.e., red polygon in Figure 6.1). Figure 6.1 shows (a) one of the aerial images over the area of 

interest and (b) the LiDAR data displayed in different colors according to their heights.  
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(a) (b) 

Figure 6.1: Aerial photo over the area of interest (a) and LiDAR points colored according 

to height over the same area (b) 

To ensure that the information obtained from both datasets could be combined together, co-

registration of both datasets was completed by geo-referencing the images with respect to the 

LiDAR reference frame. For this purpose, both the derived linear and planar features from the 

LiDAR data were used as a source of control during the image geo-referencing process as 

discussed in Chapter 5. As a result, the EOPs were determined with high precision and no 

significant correlations were observed among the estimated EOPs. The standard deviations of the 

attitude ranged from 5 to 20 sec and the positions were between 0.024 and 0.097m.  

6.3 Building detection experimental results 

To detect the possible buildings, the methodology discussed in Chapter 3 was employed on the 

LiDAR dataset. First, the planar regions were generated through the LiDAR segmentation and 

QC process. The values and the justification of the used thresholds during this process are 
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described in Table 6.2. The values can be justified according to the average point density, noise 

level of the dataset, and details of the buildings that need to be detected. Then, the modified 

convex hull algorithm was applied on the derived segments to identify the boundaries of the 

regions. The traced boundaries of the segmented results after the QC process are presented in 

Figure 6.2.  
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Table 6.2: Values and justifications for the used thresholds for the plane segmentation  

 

Procedure Threshold Value Justification 

Neighborhood 

definition/point density 

calculation 

Number of neighboring points for the 

plane definition 
12 points 

Reliable number of points to define planes 

while considering the possibility for having 

some outliers 

Roughness checking 

Height of the cylinder (buffer 

defined above and below the final 

fitted plane) 

0.8m 

(0.4m each for 

above and 

below) 

About four times the vertical accuracy of the 

LiDAR data (i.e., 0.2m) 

Percentage for point classification as 

being part of a plane 
95% 

To be determined as a plane, 95% of the 

LiDAR points inside the spherical 

neighborhood should be within the cylinder 

Grouping 
Radius of the spherical neighborhood 

for region growing 
3∙    Radius to define the neighboring points 

Iterative plane fitting 
Number of neighboring points for 

attribute computation 
20 

Reliable number of points to define meaningful 

plane parameters while considering the 

possibility of having some outliers 
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Procedure Threshold Value Justification 

Clustering 

Minimum angular separation 

between detectable planes 
10° 

Acceptable angular deviations among points 

that would be deemed as part of a single planar 

region 

Minimum distance between parallel 

planes 
0.8m 

Acceptable spatial deviations among points that 

would be deemed as part of a single planar 

region (about four times the vertical accuracy 

of the LiDAR data) 

Size of the minimum detectable 

cluster 
10 points 

Smallest region to detect which is related to 

prior knowledge about a building’s size within 

the area of interest and the average point 

density 

Intersection checking 

between adjacent clusters 

Minimum angle between two 

clusters before intersection 
20° 

Avoids the intersection of planes that are 

almost parallel 

Minimum distance between two 

clusters to be determined as adjacent 

clusters 

1.5m 
Less than twice the average point spacing of the 

LiDAR data 
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Figure 6.2: Region boundaries after the planar segmentation and QC process 

To generate building hypotheses, in addition to detecting planar regions, non-ground regions 

must be identified. The segmentation-based LiDAR classification discussed in Chapter 3 was 

performed to distinguish terrain and off-terrain points. Figure 6.3 displays the non-ground 

regions of the study area in blue.  



 

112 

 

Figure 6.3: Classified off-terrain points 

Among the points identified as planar and non-ground through the aforementioned procedures, 

regions with sizes and heights larger than our predefined thresholds (i.e., 200m
2
 and 20m) were 

identified as building hypotheses. The generated building hypotheses and their boundaries are 

shown in Figure 6.4 and Figure 6.5, respectively. As seen in Figure 6.5, LiDAR-derived 

boundaries represent the location of the building roughly and its shape. However, the irregular 

boundaries need to be regularized and refined to represent actual building boundaries, which are 

achieved by incorporating image information.  
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Figure 6.4: Generated building hypotheses from LiDAR data overlaid on top of an 

orthophoto 
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Figure 6.5: Boundaries of the building hypotheses 

To evaluate the performance of the building detection (i.e., how correctly the buildings were 

identified), the identified building segments and missing building segments were counted. The 

available campus 2D map shown in Figure 6.6 was used as reference data to verify the existence 

of the buildings. Site visits were also available to confirm the presence of a given building.  
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Figure 6.6: University of Calgary campus map used as reference data 

The study area included a total of 32 buildings. While some buildings were characterized by a 

single plane, some of the buildings were represented by up to 12 planes. There were a total of 

112 planes that constituted the buildings in the study area. Therefore, the quality of building 

detection was assessed by how many planes were segmented correctly. Table 6.3 presents the 

matrix utilized to evaluate the outcome of the building detection process. The proposed 

procedure produced 140 planes as building hypotheses. Among the produced building 

hypotheses, 112 planes were correctly detected (TP). Twenty-eight planes were identified as 

buildings that were, in reality, trees and other objects near buildings. However, the procedure 

identified all the buildings as buildings (i.e., zero false negative).  
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Table 6.3: The quality analysis of the building detection process 

 Campus map (reference data) 

Results 

from the proposed methodology 
Building Non-building 

Identified as building 112 (TP) 28 (FP) 

Missing building segments 0 (FN) N/A (TN) 

Based on the above matrix, completeness was calculated as 100% according to Equation (3.2), 

which means that, using LiDAR data, one could identify all of the buildings as buildings. 

However, 20% of the non-building objects (e.g., trees) were included as building hypotheses, 

which demonstrated 80% of correctness measure. The 20% of the segments which were 

erroneously identified as buildings could be filtered out during the RMBR process since the 

boundaries of the trees were not regular in shape as seen in Figure 6.7.  

 

Figure 6.7: Example of erroneously identified building regions (FP) 
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6.4 Boundary decomposition experimental results 

As evaluated in the previous section, 140 planes were derived as building hypotheses. The 

RMBR algorithm proposed in Chapter 4 was implemented in Microsoft Visual C# with Matlab 

display functions. The RMBR algorithm was applied on the generated boundaries of the building 

hypotheses. An example of applying the RMBR process on a building boundary is presented in 

Figure 6.8. Figure 6.8(a) shows the LiDAR derived boundary projected onto an image. The 

presented example includes one first level MBR (b), three second level MBRs (c), and three third 

level MBRs (d). Figure 6.8(e) shows the final shape of the building after the alternating series 

operation of each level based on Equation (4.1). The distance threshold used for the RMBR 

process is around two times the average point spacing of the LiDAR data, which is 2m.  
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(a) (b) (c) 

 
 

(d) (e) 

Figure 6.8: The RMBR procedure: projected boundary onto an image (a), first level MBR 

(b), second level MBRs (c), third level MBRs (d), and the final shape (e) 

Figure 6.9 shows an example of the projection of the final regularized shapes from the 

decomposed primitives of the building hypotheses onto an image. 
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Figure 6.9: An example of the final shapes derived as a result of the RMBR process 

projected onto an image 

As mentioned before, some of the non-building objects were falsely identified as buildings (red 

circles in Figure 6.9). To choose the buildings that were comprised of rectangles only (i.e., right-

angled-corner buildings), the two criteria that compare the LiDAR boundary points and the 

derived MBRs were used. The two criteria included the area ratio and the RMSE of the normal 

distance between the LiDAR boundary points and the derived MBRs as discussed in Chapter 4. 

In this research, the MBRs with an area ratio larger than 0.6 and a RMSE value less than the 

used distance threshold (i.e., 2m) were selected as the model primitives for further processing. 

Those selected were believed to belong to right-angled-corner buildings. Figure 6.10 shows the 
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final shapes of the selected MBRs after the evaluation, and it can be seen that the irregular 

boundaries from falsely identified buildings were removed through this evaluation process.  

To determine how correctly the right-angled-corner buildings were selected and that the falsely 

identified buildings were filtered out during this process, the completeness and correctness of the 

evaluation process were calculated. The number of right-angled-corner building planes in the test 

area was 92 out of 112 building planes. Out of the 92 planes, 92 were determined to be right-

angled-corner buildings (TP). There was no right-angled-corner planes identified as non-right 

angled-corner building planes (zero false negative). Out of the 28 falsely identified planes from 

the building hypotheses, 21 planes were correctly identified as non-right angled corner building 

(TN). Seven planes were selected as right-angled-corner buildings (FP). Therefore, the 

completeness measure after this process was 100% and the correctness measure was 93% since 

all the right-angled-corner building planes were correctly selected for further processing and only 

7% of the planes were falsely selected. This number confirms that the majority of the 

erroneously identified building planes were filtered out. The selected MBRs were stored in 

Extensible Markup Language (XML) format to deal with the different levels of MBRs efficiently 

for the sequential model-based image fitting process.   
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Figure 6.10: Selected MBRs projected onto an image after the right-angled-corner 

buildings’ check  

6.5 Model-based reconstruction experimental results 

From the LiDAR-derived boundary, the approximate rectangular model parameters were 

established using the proposed RMBR algorithm. The rectangular model parameters were 

adjusted during the model-image fitting process, which can be applied on a single image; 

however, using more images captured from different views can reduce the chance of occlusions. 

Figure 6.11 shows an example of a simple rectangular building adjusted using three images 

within which the building appears. The quality of LiDAR-derived MBR depends on the 

planimetric LiDAR accuracy and average point spacing. Since the distance threshold to derive 

the initial model primitives during the RMBR process was 2m and the expected planimetric 
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accuracy of the used LiDAR data was 0.6m, the initial MBR was assumed to be accurate within 

those ranges. Therefore, the buffer for the edge detection/filtering around the initial projected 

model translated into 33 pixels, which was equivalent to around 2m (the GSD of the image is 

6cm). As the number of iterations increased, the buffer size for edge detection/filtering decreased 

until it reached five pixels, which is equivalent to 30cm on the ground. Figure 6.12 shows the 

adjusted MBR projected onto the three images after the model-based image fitting. The model-

based image fitting software with its visualization was developed in Microsoft Visual C#.  

 

Figure 6.11: Projection of LiDAR-derived MBR onto three images  
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Figure 6.12: Projection of the adjusted MBR onto three images 

To demonstrate the quality of the model-based image fitting process, the stochastic properties of 

the LSA are presented in Table 6.4. The overall quality of the adjustment was confirmed by the 

a-posterior variance factor. The standard deviations of the adjusted parameters show that the 

precisions of the adjusted parameters were quite good. It is worth mentioning that the estimated 

values look too optimistic because of huge redundancy. 

Table 6.4: The stochastic properties of the model-based image fitting 

   ̂    
 [m]     [m]   𝑤

 [m]   𝑙
 [m]    

 [sec] 

values 0.0004 ±0.004 ±0.003 ±0.004 ±0.004 ±35.108 

Figure 6.13 presents an example of a more complex building which can be decomposed into 

multiple levels of MBRs to show how the rectangular primitives were sequentially adjusted. As 

mentioned previously, only the edges extracted from the building boundaries for each level were 

used for the model-image fitting. Figure 6.13(a), (c), (e), and (g) show the initial MBRs derived 
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from the LiDAR data projected onto the image with different level of detail. Figure 6.13(b), (d), 

(f), and (h) show the projection of the adjusted MBRs. In this case, two images were used during 

the adjustment. Depending on the desired level of detail, the MBRs shown vary from a single 

level MBR, which is the lowest level of detail corresponding to LoD1, to four MBR levels with 

the highest level of detail (i.e., LoD2). Each MBR level is shown in a different color (red, 

yellow, magenta, and blue). Visual inspection of the MBRs’ projection onto an image confirms 

the proper alignment of the MBRs with the building's edges. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

Figure 6.13: MBRs projected onto the image: initial (a) and adjusted (b) first level MBR in 

red color, initial (c) and adjusted (d) second level MBRs in yellow, initial (e) and adjusted 

(f) third level MBRs in magenta, and initial (g) and adjusted (h) fourth level MBR in blue 

The final constructed boundaries from the MBRs using an alternating series operation are shown 

in Figure 6.14. A single level MBR (Figure 6.14(a)) was constructed from the first level MBR 

shown in Figure 6.13(b), and two levels of MBR (Figure 6.14(b)) were derived by subtracting 

the second level MBR from the first level shown in Figure 6.13(d). Three levels of MBR (Figure 
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6.14(c)) and four levels of MBR (Figure 5(d)) were constructed in the same manner as the 

previous level of MBRs. The level of detail was determined by considering the resolution of the 

image and the LiDAR point density.  

  

(a) (b) 

  

(c) (d) 

Figure 6.14: Final display of MBRs from: single level (red) (a), two levels (red - yellow) (b), 

three levels (red – yellow + magenta) (c), and four levels (red – yellow + magenta - blue) (d) 

Figure 6.15 shows an example of a gable-roof building hypothesis generated from LiDAR data. 

The gable-roof case was modeled by adding the constraint that the reference point should be 
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along the intersection line between the two planes. Figure 6.16 shows the projection of the initial 

derived models through a neighborhood analysis and the plane intersection onto four images; and 

the initial reference point (i.e., blue circle) can be seen to exist along the intersection of the two 

planes. The adjusted models after the model-based image fitting procedure are projected onto the 

images (Figure 6.17), which shows that the position of the reference point is moved only along 

the intersection line and the dimension of the models were accurately refined.  

 

Figure 6.15: Segmented planes of a gable-roof building 
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Figure 6.16: Projection of initial models derived from LiDAR data with the reference point 

(blue circle) along the intersection of two planes onto four images 

 

Figure 6.17: Projection of adjusted models with the reference point (blue circle) along the 

intersection of two planes onto four images 
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Even when the building is a right-angled-corner building and the RMBR procedure decomposes 

them correctly, the edges that represent the building might not be extracted properly depending 

on the surrounding structures and image condition. Figure 6.18 shows an example where the 

building boundaries (Figure 6.18(a)) were decomposed into multiple rectangles through the 

RMBR process (Figure 6.18(b)), but it was not possible to extract a sufficient number of edges to 

adjust the model parameters. As seen in Figure 6.18(c), one side of the building was too short 

(red circle) and the edges that ordinarily could represent the building boundary were missing. 

Hence, the first level MBR could not be properly adjusted during the model-based image fitting 

process. It produced an error message with the lack of information to determine the length of the 

rectangle. In this case, an alternative representation of the buildings could be sought. One 

alternative could be to use the final shape derived from the LiDAR data only without adjustment 

through the model-based image fitting process as seen in Figure 6.18(d).  

  

(a) (b) 
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(c) (d) 

Figure 6.18: LiDAR building boundary (a), different levels of MBRs (b), extracted/filtered 

edges for the first level MBR (c), and final shape derived from LiDAR data only (d) 

After the LiDAR-derived primitives are adjusted through the sequential model-based image 

fitting, the final shape of the building can be derived using the refined rectangular primitives. 

Figure 6.19 presents the final derived building models of the study area displayed on top of the 

orthophoto. Figure 6.20 displays the final building models in 3D. It is important to mention that 

the presented results were reconstructed in a fully automatic way. 
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Figure 6.19: Final derived building models on top of orthophoto 
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Figure 6.20: Final derived building models in 3D 

To demonstrate how applicable the proposed methodology was for the test area, the right-angled-

corner buildings/planes were counted. The test area included 32 buildings. As seen in Table 6.5, 

out of the 32 total buildings, 72% of them have right-angled-corner rooftops which could be 

reconstructed using the proposed methodology. Nineteen percent of the buildings could be 

partially reconstructed, which means that some of the planes were not right-angled-corners in the 

case of buildings that are comprised of multiple planes. Less than 10% of the buildings could not 

be reconstructed using the proposed methodology because they were not right-angled-corner 

buildings as seen in Figure 6.21.  
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Figure 6.21: Examples of non-right-angled-corner building 

Table 6.6 presents the analysis in terms of the number of planes. Of the 112 total planes, 82% 

were right-angled-corner planes and 18% of the planes were non-right-angled-corner planes that 

could not be reconstructed using the proposed methodology. In this experiment, all the right-

angled-corner planes were reconstructed, with the exception of two that were derived from 

LiDAR data only.  

Table 6.5: Applicability of the proposed methodology to the test area in terms of number of 

buildings 

 
Right-angled-

corner buildings 

Partially right-

angled-corner 

buildings 

Non-right-

angled-corner 

buildings 

Total 

# of buildings 23 6 3 32 

Percentage of 

buildings 
72% 19% 9% 100% 
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Table 6.6: Applicability of the proposed methodology to the test area in terms of number of 

planes 

 Right-angled-corner planes 
Non-right-angled-

corner planes 
Total 

# of planes 92 20 112 

Percentage of planes 82% 18% 100% 

As a final product of the automated building reconstruction process, the generated DBM was 

converted into a Keyhole Markup Language (KML) format, which can be directly imported to 

Google Earth, as shown in Figure 6.22.  

 

Figure 6.22: Produced DBM from the proposed methodology in KML format  
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The qualitative evaluation was performed by projecting the buildings’ derived boundaries onto 

corresponding images after the model-based image fitting. Checking whether the adjusted model 

is aligned properly with edges that represent building boundaries confirms the quality of the final 

model. To assess the accuracy of the established DBM in a quantitative way, the coordinates of 

the DBM corner points were compared with those derived manually using the photogrammetric 

reconstruction procedure. 110 building corner points were measured manually on the multiple 

overlapping images and then the bundle adjustment process was performed. The quality of 

photogrammetric reconstruction is defined by its bundle adjustment precision; and the a-

posteriori variance factor is 4µm, which is equivalent to 1/3 pixel size. The expected accuracies 

(  ,   , and   ) of the reconstructed points can be calculated based on the assumed image 

measurement accuracy, the height, the camera’s focal length, and the height-base ratio. Using 

one pixel image measurement accuracy, the expected planimetric and vertical accuracy were 

6cm and 14cm, respectively. The standard deviations of the reconstructed points were minimum 

±2cm and maximum ±5cm, which are within the expected accuracy. The statistical properties for 

the differences in the corner point coordinates between the manual photogrammetric 

reconstruction and the proposed methodology are shown in Table 6.7.  

Table 6.7: Statistical properties for the comparison between the manual photogrammetric 

reconstruction and the proposed methodology (110 check points) 

[Unit: m] X Y Z 

Mean 0.07 0.12 0.48 

Standard deviation 0.35 0.30 0.43 

RMSE 0.35 0.32 0.64 
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As seen in Table 6.7, the planimetric accuracy was 30cm, which is equivalent to five pixels in 

the image space. Previous research on the same dataset reported that the RMSE between the 

manual photogrammetric reconstructions from different operators was also 30cm (Kim, 2008). 

Given the fact that the buffer size for edge detection/filtering to represent the building boundaries 

is five pixels, which is equivalent to 30cm GSD, the planimetric accuracy was considered to be 

numerically high. The mean (i.e., bias) ranged from 7 to 12cm for the planimetric coordinates. 

The standard deviations for the X and Y coordinates were around 30cm, which was higher than 

expected. These high deviations were caused by the problem of identifying the corner points of a 

building rooftop during the manual image measurements. As seen in Figure 6.23, when the 

corner points were occluded by trees or corner points were not clearly visible due to textures on 

the wall, it was difficult for the operators to select the exact same corner points in overlapping 

images. However, the proposed methodology adjusted the model primitives based on the 

automatic edge extraction. As seen in Figure 6.24(a), a building is represented by the 

automatically extracted/filtered edges and the model parameters can be adjusted accordingly, 

which eliminates the need to select the corner point (Figure 6.24(b)). 
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Figure 6.23: Problems with manually-identified corner points  

  

(a) (b) 

Figure 6.24: Building representation by automatically-extracted/filtered edges (a) and 

projection of automatically-reconstructed boundary onto an image 
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On the other hand, it can be observed that the vertical accuracy was worse than the planimetric 

accuracy as reported in Table 6.7. This accuracy difference was due to the fact that operator 

identifies the corner point on top of fences while the proposed methodology reconstructs the 

corner points on the rooftop plane using the derived plane parameters from the LiDAR 

segmentation. Therefore, the proposed methodology ensures that the vertical coordinates of the 

corner points are always defined on the rooftop plane. Figure 6.25 demonstrates the difference 

between the manually and automatically reconstructed points.  

   

(a) (b) 

Figure 6.25: An example of a building with a fence: projection of reconstructed points from 

manual photogrammetric method (a) and projection of reconstructed points from the 

proposed methodology (b) 

The projection of the reconstructed points onto an image in Figure 6.25 shows that the manual 

reconstruction was carried out on top of the fence while the automatic process was completed on 
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the rooftop plane. The reported mean values for the vertical coordinate comparison (i.e., 48cm in 

Table 6.7) reveal the existence of height-bias between the two reconstruction processes, which 

indicates that there was a constant shift due to the anticipated heights of the fences. 

To further investigate the improvement of the horizontal accuracy of the derived building models 

through the model-based image fitting compared to the LiDAR-based one, the accuracy of the 

building model derived from LiDAR data only was also compared to the manual 

photogrammetric reconstruction. More specifically, the coordinates of the regularized building 

model after the RMBR procedure, which were presented in Section 6.4, were compared with the 

manual photogrammetric reconstruction. The same 110 building corner points used as check 

points during the final DBM analysis were employed. Table 6.8 presents the statistical properties 

of the differences between the results from the RMBR process and the manual reconstruction. 

One can observe that while the vertical accuracy was quite similar to that derived using the 

proposed methodology reported in Table 6.7, the planimetric accuracy was much worse. This 

was expected since the photogrammetric data provide better horizontal accuracy compared to 

LiDAR data. Also, as seen in the circled area in Figure 6.26, the regularized MBR shows varying 

qualities of the corner points, depending on the structure of the building and the quality of the 

LiDAR segmentation. This result can be easily improved using photogrammetric data through 

model-based image fitting.  
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Table 6.8: Statistical properties for the comparison between the manual photogrammetric 

reconstruction and the reconstruction using LiDAR data only (110 check points) 

[Unit: m] X Y Z 

Mean 0.09 0.35 0.48 

Standard deviation 0.81 0.78 0.50 

RMSE 0.81 0.85 0.69 

 

 

Figure 6.26: Regularized building boundaries through the RMBR process 

To demonstrate the impact of the number of utilized images on the quality of the derived models, 

another dataset which includes more number of images over the same area are used. The dataset 

used is captured over British Colombia Institute of Technology (BCIT) in Vancouver, Canada. 

The selected buildings appear in multiple aerial images and airborne LiDAR data are available 

over the same area. Both datasets were captured from two different flying height (540 and 

1,150m), which leads to ground sampling distance of 5 and 10cm for images, and LiDAR point 

density of 1.5 and 4.0pts/m
2
. Since the dataset includes mostly simple rectangular shape 

buildings and gable roof buildings, two test buildings that are the most common shapes in the 

good accuracy 

bad accuracy 
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data have been selected. The first building is a simple rectangular shape building and the 

building is partially occluded by trees. The second building is a gable roof shape. Five images 

which captured the test buildings from different locations of camera exposures are used. Figure 

6.27 illustrates approximate locations of camera exposures of five images including flying 

directions and heights. This figure also includes approximate locations of the test buildings. 

Figure 6.28 and Figure 6.29 show the test buildings in the different images used in this 

experiment. 

 

Figure 6.27: Illustration of approximate locations of camera exposures of the imagery and 

buildings 
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 #1 #2 #3 #4 #5 

Test 

building 1 

    
 

Figure 6.28: The first test building appeared in the different images 

 

Test building 2 

#1 #2 

  

#3 #4 #5 

  
 

Figure 6.29: The second test building appeared in the different images 

The proposed building detection procedures were performed on the LiDAR dataset and the MBR 

algorithm was applied to derive the initial information about the building. The initial models 

were adjusted through the proposed model-based image fitting procedure. The model-based 

image fitting was applied on using single image (i.e., image #1), two images (i.e., image #1 and 

#2), four images (i.e., image #1, # 2, #3, and #4), and five images (i.e., image #1, #2, #3, #4, and 
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#5). To provide a reference for the quality comparison, corner points of the test buildings are 

reconstructed through multiple light ray intersections of manually measured points.  

For a quantitative analysis on the quality of the models, the RMSE between the reconstructed 

corner points using different number of images and the manual reconstruction are calculated. 

Table 6.9 and Table 6.10 report the RMSE in X, Y, and Z direction for the first and second test 

buildings, respectively.  

Table 6.9: RMSE between the manual photogrammetric reconstruction and the proposed 

methodology of the first test building  

RMSE [m] X Y Z Total 

single image 0.03 0.08 0.23 0.24 

two images 0.03 0.09 0.23 0.25 

four images 0.05 0.08 0.23 0.24 

five images 0.05 0.07 0.23 0.24 

 

Table 6.10: RMSE between the manual photogrammetric reconstruction and the proposed 

methodology of the second test building 

RMSE [m] X Y Z Total 

single image 0.17 0.05 0.39 0.43 

two images 0.11 0.06 0.34 0.36 

four images 0.10 0.08 0.34 0.36 

five images 0.06 0.06 0.33 0.34 
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Using 1 pixel (0.006mm) for the image measurement accuracy, σx and σy is equivalent to 0.1m 

and σz is 0.47m. RMSE from both tests are within the range of expected precision of 

photogrammetric reconstruction using 1 pixel accuracy. It is worth noting that both results show 

lower RMSE in X, Y directions than Z direction. It is well known that planimetric precision of 

the photogrammetric reconstruction is higher than vertical one and it was confirmed by previous 

RMSE analysis using University of Calgary campus dataset. Since the Z values from the 

proposed methodology come from LiDAR data which shows higher vertical accuracy, they are 

believed to be more accurate compared to the one from manual reconstruction. In case of simple 

rectangular building, the accuracies of the results are similar regardless of the number of images 

used, even when single image is used. However, the gable roof shows slightly higher RMSE 

when using one image, but it is still less than 2 pixels. This happens because not enough edges 

were selected in the image #1. Different images with different view angles provide more 

redundant observations and increase the chance of providing better results.  

The quality of the models also can be compared in a qualitative way by projecting the 

reconstructed points onto one of the images. Figure 6.30 and Figure 6.31 show the projection of 

the reconstructed points of the test buildings onto one of the image (i.e., image #1). When 

visually checked, all of the projected lines coincide with building edge lines and all the cases 

show similarly good results. Thus, one can confirm that the proposed methodology works well 

using a single image as discussed, but for complex buildings, using more images would increase 

the chance of more accurate building models.  
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(a) (b) (c) (d) (e) 

Figure 6.30: Projection of the reconstructed corner points of the first building onto image 

#1 using: the manual reconstruction (a), the proposed methodology with single image (b), 

with two images (c), with four images (d), with five images (e) 

   

(a) (b) (c) 

  

 

(d) (e)  

Figure 6.31: Projection of the reconstructed corner points of the second building onto 

image #1 using: the manual reconstruction (a), the proposed methodology with single 

image (b), with two images (c), with four images (d), with five images (e) 
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6.6 Summary 

This chapter presented the experimental results using a real dataset comprised of multiple 

LiDAR strips and images to demonstrate the feasibility of the proposed methodology. Building 

hypotheses were generated from the LiDAR data through plane segmentation and ground/non-

ground classification. The employed building detection methodology in this research 

demonstrated a high level of completeness and correctness. However, the derived building 

boundaries from the LiDAR data show irregular characteristics and therefore need to be 

regularized. This research proposed rectangular model-based image fitting to improve the 

building boundaries. In order to decompose the LiDAR boundaries into rectangular primitives, 

the RMBR algorithm was applied. The derived MBRs from the boundaries that were falsely 

identified as buildings were successfully removed using two criteria which represent the 

similarity between the final shape and the LiDAR boundary. The horizontal accuracy of the 

derived building models from the LiDAR data as a result of the RMBR process was around 

90cm when compared with the manual photogrammetric reconstruction. This reported RMSE 

value reveals that the horizontal accuracy of the building models needed improvement. 

Therefore, using the derived multiple levels of MBRs from LiDAR data as an initial model 

primitive, model-based image fitting was applied sequentially. The final shape was derived by an 

alternating series operation of addition and subtraction for the multiple levels and the results 

were evaluated qualitatively and quantitatively. Visual inspection of the projected boundary of 

the buildings onto images reveals improvements in the quality of the building boundary. The 

planimetric RMSE value between the final product and the manual photogrammetric 
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reconstruction was 30cm, which confirmed that the horizontal accuracy of the building corner 

points was improved after the model-based image fitting.  
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 Conclusions and recommendations for future work Chapter Seven:

 

This chapter discusses the conclusions from the research findings, which were confirmed by the 

experimental results using real datasets as well as how they met the objectives of the research. 

The major contributions of this research are summarized and also, recommendations/suggestions 

for future work are included.  

7.1 Conclusions 

As presented in Section 1.2, this research aimed at the development of a hybrid approach for 

automatic building model generation of right-angled-corner buildings. One of the most important 

objectives was to achieve a high level of automation with minimum human interaction. 

Accordingly it aimed at reducing the number of model primitives and deriving the initial model 

parameters automatically. Another objective of the proposed research is obtaining a high level of 

accuracy in terms of both horizontal and vertical accuracies. In addition, buildings with different 

level of details could be reconstructed while generalizing the building models automatically. 

This research is expected to eliminate the limitation of number of images that can be used and 

overcome the effect of the partial occlusions. The following discussion will demonstrate how 

these intended objectives are met in this research and what are the advantages and limitations of 

the research.  

This research presented a robust approach to generate building models automatically from 

LiDAR data and imagery by combining a data-driven approach and a model-based approach. 
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One of the most common problems encountered when using LiDAR data within a data-driven 

approach is determining a way to regularize the LiDAR-derived boundaries. On the other hand, a 

model-based approach implicitly constrains the rules, which eliminates the need for a 

regularization process. However, selecting accurate model primitives and determining their 

initial parameters involves manual interaction. To alleviate the problems of each approach and 

complement both datasets, the presented research takes advantage of overlapping imagery and 

LiDAR data that have undergone rigorous QA/QC and registration procedures. 

First, LiDAR data were used to detect the buildings automatically; planar segmentation and 

ground/non-ground classification procedures were performed to differentiate buildings from 

ground and non-planar objects. The thresholds used for building detection process were logical 

and justifiable which are not based on a trial and error process. The performance of the building 

detection process was evaluated by checking the completeness and correctness of its detection 

ability. The building detection results revealed a high level of completeness and correctness; 

however, the boundaries did not always represent the actual boundaries of the objects due to the 

relatively low sampling rate of the airborne LiDAR system. The derived boundaries of the 

buildings from the LiDAR data therefore indicated the need for improvement, and 

photogrammetric data were integrated in an attempt to improve the quality of the LiDAR-derived 

building boundaries. In this research, right-angled-corner buildings (e.g., box, shed-roof, and 

gable-roof buildings or a mixture thereof) were the main interest, which could be achieved by 

using rectangular primitives. 
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Secondly, to eliminate the need to determine the initial model parameters manually, the RMBR 

algorithm was proposed. The RMBR algorithm can decompose buildings into rectangular models 

automatically without human intervention or requiring any additional GIS data. To improve the 

correctness measure for further processing, the LiDAR boundaries were compared to the derived 

MBRs; and the developed criteria to select only right-angled-corner buildings removed the 

irregular boundaries from falsely identified buildings. This evaluation procedure thereby retained 

a high level of completeness and improved the correctness level.  

Lastly, sequential model-based image fitting was undertaken to refine the model parameters of 

the multiple levels of MBRs. The final models were constructed by alternating the operation of 

subtraction and addition from each level of adjusted MBRs. The quality of the final building 

models was evaluated through qualitative and quantitative analysis. Visual inspection of the 

projected boundaries of the buildings onto the images revealed improvements in the quality of 

the building boundaries. To assess the accuracy of the established DBM in a quantitative way, 

the coordinates of the DBM corner points were compared with those derived manually using the 

photogrammetric reconstruction procedure. The RMSE analysis showed that the accuracy of the 

final DBM was very similar to the manual reconstruction. To investigate the improvement of the 

horizontal accuracy of the derived building models through the model-based image fitting 

compared to the LiDAR-based method, the accuracy of the building model derived from LiDAR 

data only was also compared to the manual photogrammetric reconstruction. Significant 

improvement of the horizontal accuracy was observed while the vertical accuracy was similar, 

which is due to the fact that photogrammetric data provide better horizontal accuracy compared 

to LiDAR data. As confirmed by the visual inspection and the RMSE analysis, the proposed 
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approach produced DBMs with high accuracy. The results were obtained with a high level of 

automation and minimal human intervention.  

One of the advantages of the proposed method, established from the experimental results, is that 

the amount of processing could be minimized for each step since appropriate quality control of 

each processing step was performed. Also, the presented research confirmed that there is no 

limitation in terms of the number of images that can be utilized.  

Another area of improvement is minimizing the effect of partial occlusions, which is the most 

common problem for image-based approaches. Most of the data-driven approaches require 

applying constraints during the reconstruction process and the use of image matching from stereo 

images. Moreover, these approaches assume availability of complete edges from both images. 

This research proved the robustness against occlusions and when only partial edges exist, the 

building model can still be reconstructed with the proposed method.  

The proposed method also can generate different levels of detail such that the model can be 

generalized to LoD 1 producing a prismatic building and can obtain details equivalent to LoD 2 

as well. This process is affected by the LiDAR point density and the size of the target building, 

thus, when the LiDAR point density is low and/or the object is smaller than the utilized 

threshold, the model cannot be properly reconstructed. This research utilized only a rectangular 

model, which greatly reduced the number of models to deal with, but it still was able to model 

complex buildings automatically. Even though accurate final building models were reconstructed 

with a high level of automation using the rectangular model only, its biggest limitation is that it 

can model only the types of buildings which decompose into rectangles.  



 

152 

In addition, when LiDAR data are not available, the proposed method can be applied using only 

images. 3D point cloud can be generated using available image matching algorithms from 

multiple images and the proposed building detection process can be performed on them. Then, 

the model-based image fitting reconstruction can be employed to improve the image-matching- 

based photogrammetric reconstruction. The potentials of the proposed methodology using only 

images were demonstrated in the application of detecting the sub-millimeter level beam 

deformation and were presented in Kwak et al. (2012).  

7.2 Summary of research contributions 

In summary, this research introduces an innovative methodology for automatically 

reconstructing accurate right-angled-corner building models from LiDAR and photogrammetric 

data. A high level of automation is achieved by combining data-driven and model-driven 

processing strategies. These strategies are devised to take full advantage of both 

photogrammetric and LiDAR data (i.e., the highest level of information that could be reliably 

extracted from both datasets are utilized for building detection and reconstruction). An additional 

contribution is the automatic generation of reliable initial model parameters from LiDAR data 

through the newly developed RMBR process. The RMBR algorithm is capable of dealing with 

several building models while only relying on rectangular primitives to represent the buildings in 

question. This introduces further advantage by simplifying the processing procedure while being 

able to deal with complex and varying models. For medium-accuracy applications, the derived 

model from the RMBR process can be used as a digital building model, whose planimetric 

accuracy is equivalent to the point-spacing of the utilized LiDAR data. With the increase in the 
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pulse repetition rate of modern LiDAR system, the planimetric accuracy of the RMBR-based 

building models will get better. Another advantage of the introduced RMBR process is the 

ability to automatically generalize the reconstructed building models according to the required 

level of detail. 

To enhance the horizontal accuracy of the RMBR-based DBM, a sequential model-based image 

fitting is developed by considering derived edges from overlapping imagery. Contrary to 

previous literature, the model-based strategy can generate building models using only one image 

as well as any number of overlapping images. Moreover, the proposed procedure does not 

require the identification of conjugate features or building corners in overlapping imagery. This 

characteristic reduces the sensitivity of the proposed methodology to partial occlusions in the 

imagery. A modified least squares adjustment procedure has been utilized to simplify the model-

based image fitting process. 

Another advantage of the developed methodology is that the performance of the intermediate 

results is assessed to ensure that the buildings to be reconstructed belong to the category of right-

angled-corner buildings through a sequence of quality control measures. The quality control at 

each step determines in advance whether the building in question can be reconstructed using the 

proposed methodology or not, thereby avoiding unnecessary processing of buildings that fall 

beyond the ones of interest. This QC procedure is useful for classifying the detected buildings 

into right-angled-corner buildings and non-right-angled-corner buildings. Once the building 

model generation is completed, the stochastic properties of the generated DBMs indicate the 
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precision of the adjustment. The developed methodologies have been incorporated in a software 

package that allowed for a straightforward testing using real datasets.  

7.3 Recommendations for future work 

As previously mentioned, this research work only models buildings with right-angled-corners. 

Future work therefore could include increasing the applicability of the proposed algorithm for 

other building shapes in order to obtain more extensive building models while maintaining a high 

level of accuracy and automation. Since this research can automatically distinguish right-angled 

and non-right-angled-corner buildings, the future work can focus on the reconstruction of non-

right-angled-corner buildings. As previously mentioned, the LiDAR regularized boundaries (i.e., 

the derived models from the RMBR process) can be used as DBMs for the non-right-angled 

corner buildings. Otherwise, LiDAR derived boundaries can be adjusted/improved by 

minimizing the normal distances between the boundaries and extracted edges from images or 

image-matching-based reconstruction. Another alternative can be an incorporation of different 

models primitives only for the non-right-angled building reconstruction. As mentioned, since 

majority of the buildings (i.e., right-angled-corner buildings) can be reconstructed using the 

proposed methodology, the amount of processing for the remaining buildings (i.e., non-right-

angled-corner buildings) will be minimized.  

Another area to investigate is the possibility of extending the proposed algorithm into terrestrial 

laser scanning data to include façade modeling, which could increase the level of detail of the 

buildings. The further investigation of reconstructing 3D building models using only images can 

be performed as well. The available dense matching algorithm can be incorporated and the 
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quality of the final building models derived through this process can be compared. Future work 

could include carrying out more testing on different datasets with different point densities and 

image resolutions, as well as analyzing the effects of those characteristics on the accuracy, 

completeness, and correctness of the models. Finally, user interface development is required to 

show the instances where the approach is not applicable while allowing for semi-automated 

refinement of the DBM.  
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  Appendix A:

The partial derivatives of each rectangle vertex with respect to each model parameter 
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The partial derivatives of collinearity equations with respect to          

vertex 
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